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SOME PROPERTIES FOR v-ZEROS OF PARABOLIC
CYLINDER FUNCTIONS

C. BLANCHET-SCALLIET - D. DOROBANTU - B. NIETO

Abstract. Let Dy (z) be the Parabolic Cylinder function. We study the v-zeros
of the function v — D, (z) with respect to the real variable z. We establish
a formula for the derivative of a zero and deduce some monotonicity results.
Then we also give an asymptotic expansion for v-zeros for large positive z.

1. Introduction

Since the mid-twentieth century, real and complex zeros of special functions
such as Bessel functions, Parabolic Cylinder functions, Hankel functions etc.
have been intensively studied for various applications in physics, applied math-
ematics and engineering.

Studies on zeros for a special function of order v and argument z have been
performed by several authors. For example, Olver finds the z-zeros of Parabolic
Cylinder functions [14] for large values of v. The case of Bessel functions
has been frequently studied (see for example Olver [[13], Watson [17]], Lafor-
gia and Natalini [9]. In [3]], the author presents a selection of results on the
zeros of Bessel functions. Other authors have been interested in the z-zeros of
Hermite functions or Confluent Hypergeometric functions (see for example [6]],
[71]). In [6], Elbert and Muldoon study the variation of the z-zeros of the Hermite
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function and establish a formula for the derivative of a zero with respect to the
parameter v.

Fewer studies have been published on the v-zeros. In [L1] or [8]], the authors
study the behavior of the v-zeros of the Hankel function of the first kind. Later
on, these results were improved by Cochran [3]]. Conde and Kalla [4] compute
the v-zeros of the Bessel function. Slater [15] gives an asymptotic formula for
large v-zeros of the Parabolic Cylinder function when z is fixed. Besides that,
little is known, about the v-zeros of the Parabolic Cylinder function. However,
these zeros appear in the first passage time law of an Ornstein Uhlenbeck pro-
cess and other associated laws ([[1], [2], [LLO]]).

In this paper we study the v-zeros of the Parabolic Cylinder function, the
solution of the differential equation

{ Y (@) +(v+1 N 12)y(2) =0,
v, ,—z /4

W) o et

where the Parabolic Cylinder function, denoted D (z), is to be considered as

function of its order v.

The aim of this paper is to complete Slater’s study and to propose a formula
for v-zeros for large values of z. We also establish a formula for the derivative
of a v-zero and deduce some monotonicity results. Since the z-zeros of Hermite
functions are linked to those of Parabolic Cylinder functions, our analysis is
based on the results of [6]]. Asymptotic expressions for the v-zeros are derived
from the expansion of Olver [14]]. Our analysis is similar to that of [3]] for
Hankel functions. Only real parameters are considered in this paper.

The paper is organized as follows : in Section 2 we present some properties
for the v-zeros of the Parabolic Cylinder function Dy (z). Section 3 focusses on
the behavior of the v-zeros for large z. Moreover, numerical verifications of the
asymptotic expansion are displayed.

2. Variation of zeros

In this section we present some properties for the v-zeros of the Parabolic Cylin-
der function Dy(z) with respect to the real variable z. Since the function is
holomorphic (see [12]], ch. 10) in the complex plane, the set of v-zeros has no
accumulation points and there is a countably infinite number of zeros. More-
over, in the real case they are strictly positive [2]. In the following, we denote
by (Vu(z))n>1 the ordered sequence of zeros of the function v — D, (z).

The following proposition gives some monotonicity properties of the zeros.

Proposition 2.1. Foralln € N* :
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1. The first derivative of the n —th v-zero is given by :

2

> —(ZVn(Z)-&-l)u-&-ﬁtanh(u) tanh( ) du
\/ﬁfo ¢ i el’fC <Z > \/smh cosh(u
(1)

9V (2) =

2. The function z — v, (z) is strictly increasing and convex.

Proof. 1. Letz(v, ) a zero of the function z — cos(ot)Hy(z) +sin(@)Gy(z)
where a is fixed and Hy(z) and Gy (z) are linear independent solutions of
y'—2zy' +2vy =0 with H,(z) ~ (2z)" and Gy (z) ~ ﬁr(l + V)77V let
when z — +-o0. In [6], the authors compute the derivative with respect to
v and obtain

VT [ v Dute(v.a) anh(u) . p. du
dvalv.a) =Y /0 e erfe (2(v,a)y/anh(u)) e
Since Dy(z) =2~ Te~ g H, (\f) then choosing o = 0 the result is a

direct. consequence of the local inversion theorem.

2. Elbert and Muldoon [6] (Corollary 7.2) prove that v — z(v,a) is com-
pletely monotonic : dyz(v, ) >0, (—1)*ok+z(v,a) > 0,k=1,2,...,n
The conclusion follows from the local inversion theorem.

O

If z =0, Formula (I) can be simplified. Indeed, the zeros (v,(0)),>1 of
v — D, (0) are the positive odd integers, v,(0) = 2n— 1. In this particular case,
becomes:

2 .
2 7= if n=1,
azvn (Z) |z:0 = "y = { 2 :
9 9 n— le f > 2.
ffo A/ §11'1h COQE ﬁ(nil)B(nihg) 1 " B
Remark 2.1. We can prove that the function z — Vv, (z) is strictly increasing

without using the form (1)) of the derivative d,v, (z). Indeed, on the one hand,
thanks to [2] (Proposition 3.14), we have :

| D3 (= =va (@) Dy 1 (DD ().
On the other hand, by differentiating Dy, .y (z) = 0 with respect to z, we get

Ay 2y (2) 0V (2) Vi (2) Dy -1 (1) =0,
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Therefore
Vi (2) Dy, (2)-1 (2)

a\/Dvn(z) (Z) - azvn (Z)

So that we finally get

\ (Z)ZD%/n(Z)_l (z)
I D%}n @ (x)dx

azvn (Z =
As a consequence of (IJ), we obtain some bounds on the derivative of a v-
zero with respect to z.

Corollary 2.1.1. The following inequalities hold

1. If z > 0, then v, (z) > 1 for all n € N* and

gy S e S—
VA (@) - 1)B(25-3) VA (@) - Derfe(5)B(297,3)

2. If <0, then 0 < vi(z) < 1 and v, (z) > 1 for n > 2. We also have
Zefé 2
<ovi(z) < ;
vi(z) Vrerfc <\%) - Vaey, (2)
46_% 4

<0V (2) <

VT (Ve (2) = 1)erfe <%>B(v,,(12>,17%> <

where ¢y, (,) € [1 %) is a constant depending on v (z).

Proof. 1. If z= 0, the zeros (v,(0)),>1 are the positive odd integers. Since
the z — Vv, (z) is strictly increasing (see Proposition , then for z > 0,
we get

Vp(z) >Vv,(0) >v;(0)=1, neN".

Since u is positive, then tanh () € [0, 1] and

2 Z 2 tanh(u)
< tanh(u) < 1
eZerfc <ﬁ> <ez erfc|z > <

Moreover, V, (z) > 1 for all n € N*, then

/oo e (2va(@)+1)u Va(z) =1 <Vn (z)—1 3>
0

sinh(u)cosh(u) 2
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2. On the one hand, in the case of negative z, the strictly monotonicity prop-
erty of z — V,(z) gives v, (z) < v, (0) =2n— 1 for all n € N*.

On the other hand, the behavior of D, (z) for large negative z is ([12]]) :

v _2 -2 Zﬂeivm. —v—1 2 -2
Dy(z)=z"¢ % (1+0 (|7 ))—ﬂz et (1+0(|z7%)).
(2)
If v € N, the dominant part (second term) in (2)) vanishes and Dy (z) —
7——oo

0. Therefore v,(z) — n—1 for all n € N*. We deduce that for n € N*,
z—r—oo

we have
n—1<v,(z) <2n—1.

Ifz <O, then1<eztanh erfc( tang(”)> <ezerfc<ﬁ)

Moreover

/ —(2v+Du {c 1% if 0<v<l,
\/smh )cosh(u %B(%vg) it v>1,
where ¢y is a constant depending on V.
O

Remark 2.2. In the case z < 0, by using the inequality n — 1 < v, (z) <2n—1,
we obtain less accurate bounds depending only on .

3. Asymptotic expansions of v-zeros for large z

We are now interested in the behavior of v-zeros for large positive values of z.
Since the v-zeros are positive, we restrict ourselves to the case of real positive
V.

Asymptotic expansion of Parabolic cylinder function

Recall that the Parabolic cylinder function Dy, (z) is solution of the differen-
tial equation :

Vi 1 12 _
y(z)+< +2_4Z>y(Z)—0, zeC. 3)

The behavior of Dy, (z) for large positive z and z >> |v| is ([12]) :

Dy (z) = P [1+0(z?)]. “

Equation (3)) has two turning points at /4v +2 and —+/4v + 2 The asymp-
totic behavior of Dy (z) changes significantly depending on the relative position
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of z with respect to the turning points. The asymptotic behavior (@) is still not
valid if z runs through an interval containing one of the turning points. In this
case, an Airy type expansion is needed to obtain those of the Parabolic cylinder

function. Its expression is ( [[14], [L6]) :

Dy (v2) = 2vaudew (,f(_”lf [Ai (1) Au <5>+M8u @],

—+

where Ai is the Airy function of the first kind,

1
2ewi= [ Viswd, 1<i<1(E<0),
2 3 t
SEO)? = [V —iau, 12162 0),
s~ 2_%112_%@_%”2#%”2_% 1+122S% and the coefficients y; are defined by
H—rtoo 2x>l ’u2x s

I R
F(E—l—z) ~ 27[3 ZZZZ;.

LA 5>0

More details on these coefficients 7; and their computation can be found in [14]],
pages 134-135. For example, Olver finds for s <4 :

1 1
:1 = —— e
4] » N 24>Y2 11527

1003 4027
B= a0 T 39813120

: : ~ A1) ~
The functions A, and By satisfy A, (§) P Yoo~y By &) i

Y0 %, where the coefficients A (&(¢)) and B, (£(¢)) are given by

2s %
M) =07 L (3 @rmincal)

2s+1 %
BAEW) = -E0) " Y a ( £ ) (25— mt Dismar (1),

m=0 t2—1
(2m+1)(2m+3)...(6m—1) 6m—+1
=1 d(Xm: yPm = ————0
%=1 an m1(144)™ i

and u,(t) are polynomials in ¢ of degrees 3s (s odd), 3s — 2 (s even, s > 2) and
they satisfy the recurrence relation

(% — 1) (1) = 3stug(t) = rs_1 (1),
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where
8r(1) = (32 + 2)uy(t) — 12(s+ Dtry_1 (1) +4(> = 1)/’ (¢).

Formula (5) gives the asymptotic behavior of Dy (z) if z runs through an
interval containing the turning point +/4v +2. Near the other turning point
—1/4v +2 (so when z < 0), the asymptotic behavior of D, (z) is given by an-
other formula (see [14], (9.7.)). As in this section we study the v-zeros only in
the case of large positive z, this second formula will not be useful here.

Remark 3.1. If z belongs to an interval containing the other turning point
—+v4v +2, the study of the asymptotic behavior of the zeros is easier. The
zeros tend to positive integers.

Indeed, in this case the asymptotic behavior of the Parabolic cylinder func-
tion is given by ( [14], [116]) :

Dy y (-urv2) = 2vantetn (84)° {m(;nuz) (Ai (&) au(@)+ ’MBp <¢>>>

n

oo (u s 0) @+ e ]|, ©

3 1
F AR

e Z

oo Zﬁz 7
1

zarjroo \/E ¢

=
W[

1
Al ~
I(Z)z%%x’ Zﬁz

1
Bi(z) ~ —=z

2t /T

Z

w2
ojw

Wi

3 1
Bi(z) ‘e

=

e

) 5 (o)
As the factor Bi (/.Lié (t)> Au (&) 4+ ——5—%By (§) goes to infinity when
us3

U — oo, to obtain the zeros of D L2l we must cancelled this terme. If % “2 —

n—+ % in @ the cosine vanishes and, hence, the dominant part vanishes.

Asymptotic expansion of v-zeros

For large positive values of z, the v-zeros of Dy(z) are linked to a,, n =
1,2,..., the zeros of the Airy function (Ai(a,) = 0). The zeros of Ai have been
studied ([13]). Olver shows that they are all real and negative. They may be
expressed asymptotically as

NETAEN
annH+oo > n 1 .

The following proposition gives the behavior of v, (z) when z — co.
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Proposition 3.1. For large positive z, we have :

21
vn(z):%—E—Z%Z*%an—l—O(z*%), 7

where a,, n =1,2,... are the zeros of the Airy function.

Proof. We apply the method given in [3]] to compute the zeros of the Hankel
function.

Taking 4 = +/2v + 1in H the original argument z of Dy, (z) has temporarily
been replaced by 7 (&) +/21/2v + 1. The v-zeros of D, (t &) ﬁm) are
given asymptotically by the v-zeros of the right hand side of (5)). These zeros
in turn appear to be given by the v-solutions of Ai ((ZV + 1)%§ (t)) =0, from

which we deduce that )
2v+1)3& (1) ~ ay,

as vV — oo, Since a, is negative, then & (1) < 0. Hence we obtain the asymptotic
relation between zeros of the Airy function and v-zeros of the Parabolic cylinder
function (we restore the original argument z = £ (£)v/2v/2v + 1):

() =1 =5

where £ and t are related by the relation 3 (—¢ (t))% = ['VT—uldu. We de-
duce that the limiting case that gives rise to large values of z (so large values of
v,)is & (1) — 0. As & is negative, so the case & () 1 0 is associated with the
behavior of the v-zeros of Dy (z) for large positive z. We easily deduce that if
E(1)10,thenstlands(E) =14273E — L2524 0(&3).

Thus, for z — oo,

2 2
Z Z 1
2Vj+1: -5
212 2 -1 -3 ’
)2 (1428 — o ie+o()
Z2 2 1 2 2 3
=5 (1-29 452738 +40(8)
Zz 2 1 1 2 _2 9 -2
:E_ngaﬁrozzz Sa;+7 70(1).

O]

Remark 3.2. The expansions (7) are still valid for complex values of the pa-
rameters.
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Numerical verification

The values of the function v — Dy (z) exceed the computer capabilities,
the zeros are no longer observable and computable. For large values of z, the
function oscillates between +oo and —eo, so numerical verifications will be per-
formed for moderate values of z. To check the quality of our results, we compare
graphically the v-zeros given by the asymptotic expansion (7)) with those of the
function. The computations are done in Python.

n 1 2 3 4 5
Dichotomy 143.8036 153.0062 160.6533 167.4948 173.8159
Asymptotic expansion 143.6623 152.5775 159.8764 166.3272 172.2242
Relative error 0.0009 0,0028 0,0048 0,0069 0,0091

Figure 1: Comparison of v-zeros of Dy (z) for z = 23 with the asymptotic de-
velopment

Figure 1 provides the graph of the Parabolic Cylinder functions Dy (23) in
blue. The small red crosses mark the v-zeros calculated with the formula (7).

We observe that, although the asymptotic formula is for large z, for
z =23 we already obtain acceptable estimates. We clearly see the loss of accu-
racy, but numerical right shift of the v-zeros estimated with (7)) can be explained
as follows. Since simulations cannot be performed for very large z, as n increase,
the zeros of Airy function become dominant on (7). The quantity —1%2_%(1,1 >0
becomes too small, which involves a right shift on the simulation. This example
shows that our formula allows to evaluate the first five v-zeros even for moder-
ates values of z.
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