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SOME REMARKS ON A RECENT CRITICAL POINT RESULT
OF NONSMOOTH ANALYSIS

GIOVANNI MOLICA BISCI

The aim of this paper is to investigate some consequences of a nons-
mooth version, established in [13], of Ghoussoub’s general min-max prin-
ciple [8, Theorem 1]. An application to a class of elliptic variational-
hemivariational inequalities is also pointed out.

1. Introduction

In a recent paper [13], a general min-max principle for C1-functions obtained
by Ghoussoub [8, Theorem 1] has been extended to functionals f , on an infinite
dimensional Banach space X , fulfilling the structural hypothesis

(H′f ) f (x) := Φ(x)+ψ(x) for all x ∈ X, where Φ : X → IR is locally Lipschitz
continuous, while ψ : X→ IR∪{+∞} turns out convex, proper, and lower
semicontinuous. Moreover, ψ is continuous on any nonempty compact set
A⊆ X such that supx∈A ψ(x) < +∞.

Likewise the C1-setting, this result leads to a nonsmooth version [12, Theorem
3.1] of the famous critical point theorem in presence of splitting established by
Brézis and Nirenberg [2, Theorem 4].
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The main purpose of this paper is to present some consequences of both
Theorem 3.1 in [13] and Theorem 3.1 of [12]. Section 2 is devoted to basic
definitions and preliminary results. In Section 3 we first point out an immediate
but useful consequence of Theorem 3.1 in [13]; see Theorem 3.2 below. In the
locally Lipschitz continuous case, this result has already been obtained by X.
Wu [15] through a different and longer proof. The above-mentioned nonsmooth
version of Brézis-Nirenberg’s critical point theorem is then presented and dis-
cussed; vide Theorem 3.3 below. Finally, Section 4 contains an application of
Theorem 3.3 to an elliptic variational-hemivariational inequality problem. More
precisely, let Ω be a nonempty, bounded, open subset of the real Euclidean N-
space (IRN , | · |), N ≥ 3, having a smooth boundary ∂Ω, and let

G (u) :=
∫

Ω

G(x,u(x))dx, u ∈ H1
0 (Ω),

where G(x,ξ ) :=
∫ ξ

0 −g(x, t)dt for all (x,ξ ) ∈Ω× IR, and

(h1) g : Ω× IR→ IR is a locally bounded measurable function such that

−∞ < liminf
|t|→∞

g(x, t)
t
≤ limsup

|t|→∞

g(x, t)
t

< λ1,

uniformly in x ∈Ω.

Here, as usual, λ1 denotes the first eigenvalue of −∆ in H1
0 (Ω). The function

G is well defined and locally Lipschitz continuous. Hence, we can consider its
generalized directional derivative G 0 in the sense of Clarke [4].

Let K be a suitable nonempty, convex, closed subset of H1
0 (Ω) and let (PK)

denote the following elliptic variational-hemivariational inequality problem:
Find u ∈ K such that

−
∫

Ω

∇u(x) ·∇(v−u)(x)dx≤ G 0(u;v−u)

for all v ∈ K.
We shall prove that if g satisfies appropriate growth conditions, then (PK) pos-
sesses at least two nontrivial solutions; see Theorem 4.1. Moreover, when

g−(x, t) := lim
δ→0

inf
|ξ−t|<δ

g(x,ξ ), g+(x, t) := lim
δ→0

sup
|ξ−t|<δ

g(x,ξ ),

turn out to be superposition measurable and K := H1
0 (Ω) one actually has two

nontrivial solutions of the following multivalued Dirichlet problem:
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Find u ∈ H1
0 (Ω) such that{

−∆u ∈ [g−(x,u),g+(x,u)] in Ω,
u = 0 on ∂Ω.

(W)

Let us finally note that Problem (W) has previously been investigated in [15]
under different assumptions on the datum g; vide Remark 4.4.

2. Basic definitions and auxiliary results

Let (X ,‖ · ‖) be a real Banach space. If V is a subset of X , we write V for the
closure of V and ∂V for its boundary. When V is nonempty, x ∈ X , and δ > 0,
we define B(x,δ ) := {z ∈ X : ‖z− x‖< δ} and

d(x,V ) := inf
z∈V
‖x− z‖.

Given x,z∈ X , the symbol [x,z] indicates the line segment joining x to z, namely

[x,z] := {(1− t)x+ tz : t ∈ [0,1]} .

We denote by X∗ the dual space of X , while 〈·, ·〉 stands for the duality pairing
between X∗ and X . A function Φ : X→ IR is called locally Lipschitz continuous
when to every x ∈ X there correspond a neighbourhood Vx of x and a constant
Lx ≥ 0 such that

|Φ(z)−Φ(w)| ≤ Lx‖z−w‖ ∀z,w ∈Vx .

If x,z ∈ X , we write Φ0(x;z) for the generalized directional derivative of Φ at
the point x along the direction z, i.e.,

Φ
0(x;z) := limsup

w→x, t→0+
Φ(w+ tz)− Φ(w)

t
.

It is known [4, Proposition 2.1.1] that Φ0 is upper semicontinuous on X ×X .
The generalized gradient of the function Φ in x, denoted by ∂Φ(x), is the set

∂Φ(x) :=
{

x∗ ∈ X∗ : 〈x∗,z〉 ≤Φ
0(x;z) ∀z ∈ X

}
.

Proposition 2.1.2 of [4] ensures that ∂Φ(x) turns out nonempty, convex, in ad-
dition to weak* compact.
Let f be a function on X satisfying the structural hypothesis (H′f ). Put Dψ :=
{x ∈ X : ψ(x) < +∞}. Since ψ is continuous on int(Dψ) (see for instance [5,
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Exercise 1, p. 296]), the same holds regarding f . We say that x∈Dψ is a critical
point of f when

Φ
0(x;z− x)+ψ(z)−ψ(x)≥ 0 ∀z ∈ X .

If ψ ≡ 0, it clearly signifies 0 ∈ ∂Φ(x), namely x is a critical point of Φ accord-
ing to [3, Definition 2.1].

Let S be a nonempty closed subset of X . The function f is said to fulfil the
Palais-Smale condition at the level c and around the set S provided

(PS)S,c Every sequence {xn} ⊆ X such that d(xn,S)→ 0, f (xn)→ c, and

Φ
0(xn;x− xn)+ψ(x)−ψ(xn)≥−εn‖x− xn‖ (1)

for all n ∈ IN and x ∈ X, where εn→ 0+, possesses a convergent subse-
quence.

When S = X we simply write (PS)c in place of (PS)S,c. Moreover f satisfies
(PS) f means that (PS)c hold true at any level c.

3. Some remarks on a recent critical point theorem

Let B be a nonempty closed subset of X and let F be a class of nonempty
compact sets in X . We say that F is a homotopy-stable family with extended
boundary B when for every A ∈ F and every η ∈ C0([0,1]×X ,X) such that
η(t,x) = x in ({0}×X)∪ ([0,1]×B) one has η({1}×A) ∈F . The following
assumptions will be posited in the sequel.

(a1) F is a homotopy-stable family with extended boundary B, the function f
fulfills condition (H′f ), and

c = inf
A∈F

sup
x∈A

f (x) < +∞.

(a2) There exists a closed subset F of X such that

(A∩F)\B 6= /0 ∀A ∈F , (2)

and, moreover,
sup
x∈B

f (x)≤ inf
x∈F

f (x). (3)

Gathering (a1) and (a2) together one has

inf
x∈F

f (x)≤ c. (4)

The next result [13, Theorem 3.1] holds.
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Theorem 3.1. Let (a1) and (a2) be satisfied. Then to every sequence {An} ⊆F
such that lim

n→+∞
sup
x∈An

f (x) = c there corresponds a sequence {xn} ⊆ X \B having

the following properties:

(i1) lim
n→+∞

f (xn) = c.

(i2) Φ0(xn;z−xn)+ψ(z)−ψ(xn)≥−εn‖z−xn‖, ∀n∈ IN, z∈ X, where εn→
0+.

(i3) lim
n→+∞

d(xn,F) = 0 provided infx∈F f (x) = c.

(i4) lim
n→+∞

d(xn,An) = 0.

Now, let X be reflexive, let K be a compact metric space, and let K∗ be a
nonempty closed subset of K. Define A = {p ∈C0(K,X) : p|K∗ = p∗}, where
p∗ : K∗→ X is a fixed continuous function. If

c := inf
p∈A

sup
x∈K

f (p(x)),

then c≥ supx∈K∗ f (p∗(x)).

An immediate consequence of Theorem 3.1 is the following.

Theorem 3.2. Let the function f : X → IR∪{+∞} fulfill the following assump-
tions in addition to (H′f ).

(j1) supx∈K f (p(x)) < +∞ for some p ∈A .

(j2) There exists a closed subset D of X such that (p(K)∩D)\ p∗(K∗) 6= /0 for
every p ∈A and, moreover, supx∈K∗ f (p∗(x))≤ infx∈D f (x).

Then there is a sequence {un} ⊆ X having properties (i1)–(i3), with F := D. If,
in addition, f satisfies condition (PS)c, then it has a critical point u ∈ D such
that f (u) = c.

Proof. Define B := p∗(K∗). Obviously, setting

F := {p(K) : p ∈A }

we obtain a homotopy-stable family with extended boundary B. Moreover,
thanks (j1), c = infp∈A supx∈K f (p(x)) < +∞. Hence, (a1) holds true. Bear-
ing in mind (j2) yields (a2). Now, the conclusion is an immediate consequence
of Theorem 3.1.
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Remark 3.3. In the locally Lipschitz continuous case, Theorem 3.2 has been
established by X. Wu in [15] using different methods and a longer proof. We
also point out that weaker Palais-Smale’s type compactness conditions might be
adopted once one exploits Theorem 3.1 of [11].

Now, let X be reflexive and let f be a function from X into IR∪{+∞}. The
following hypothesis will be posited in the sequel:

(f1) f is bounded below and fulfils (PS) f besides (H′f ),

(f2) x0 is a global minimum point of the function f .

Since under (f1) each minimizing sequence for f possesses a convergent subse-
quence (see [12]), the function f must attain its minimum at some point x0 ∈ X .
So, (f2) is quite natural. Suppose further

X := X1⊕X2 ,

where dim(X1) > 0, while 0 < dim(X2) < ∞.

The following nonsmooth version of the famous Brézis-Nirenberg critical
point theorem in presence of splitting is proved in [12].

Theorem 3.4. If (f1)–(f2) are satisfied, infx∈X f (x)< f (0), f (0)= 0, and, more-
over,

(f3) the set {x ∈ X : f (x) < a} is open for some constant a > 0,

(f4) there exists an r ∈]0, ‖x0‖
2 [ such that f |B(0,r)∩X1

≥ 0, f |B(0,r)∩X2
≤ 0, and

f |∂B(0,r)∩X2 < 0,

then the function f possesses at least two nontrivial critical points.

Remark 3.5. Hypothesis (f4) is obviously fulfilled in the meaningful special
case when

(f′4) for some r > 0 one has f |B(0,r)∩X1
≥ 0 as well as f |B(0,r)∩X2\{0} < 0,

namely 0 turns out a local minimum of f |X1 and a proper local maximum for
f |X2 .

Assuming that f is a locally Lipschitz continuous, i.e. ψ ≡ 0, and substitut-
ing hypothesis (f4) with

(f∗4) there exists a positive constant r such that f |B(0,r)∩X1
≥ 0, f |B(0,r)∩X2

≤ 0,

one can get Theorem 2.3 of [15].
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4. Application

Let Ω and g : Ω× IR→ IR be as in the Introduction. The main purpose of
this section is to investigate a variational-hemivariational inequality version of
Problem (W). The symbol H1

0 (Ω) indicates the closure of C∞
0 (Ω) in W 1,2(Ω)

with respect to the norm

‖u‖ :=
(∫

Ω

|∇u(x)|2dx
) 1

2

.

Denote by 2∗ the critical exponent for the Sobolev embedding H1
0 (Ω) ↪→ Lp(Ω).

Recall that 2∗ = 2N
N−2 , if p ∈ [1,2∗] then there exists a positive constant cp such

that
‖u‖Lp(Ω) ≤ cp‖u‖ , u ∈ H1

0 (Ω) , (5)

and, in particular, the embedding is compact whenever p ∈ [1,2∗[; see e.g.[14,
Proposition B.7].
Consider the following eigenvalue problem

−∆u = λu in Ω ,

u = 0 on ∂Ω.
(6)

It is well known [7, Section 8.12] that (6) possesses a sequence {λn} of eigenval-
ues fulfilling 0 < λ1 < λ2 ≤ ·· · ≤ λn ≤ ·· · . The number of times an eigenvalue
appears in the sequence equals its multiplicity.
Let {ϕn} be a corresponding sequence of eigenfunctions normalized as follows:∫

Ω

|∇ϕn(x)|2dx = λn

∫
Ω

ϕn(x)2dx = λn ∀n ∈ IN; (7)

∫
Ω

∇ϕm(x) ·∇ϕn(x)dx =
∫

Ω

ϕm(x)ϕn(x)dx = 0, (8)

provided m,n ∈ IN and m 6= n.

By (h1) there are constants ε ∈]0,λ1[ and r > 0 such that

g(x, t) < (λ1− ε)t (9)

for all |t| ≥ r and x ∈Ω. Since g is locally bounded, we also have

M := sup
(x,t)∈Ω×[−r,r]

|g(x, t)|< +∞. (10)
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Now, let κ > 0. Define

rκ :=

√
κ +Mrµ(Ω)

ε
2λ1, (11)

where µ(Ω) is the Lebesgue measure of Ω. A set K ⊆ H1
0 (Ω) is called of type

(K) provided

(K) K turns out to be nonempty, convex, closed in H1
0 (Ω). Moreover, there

exists a κ > 0 such that B(0,rκ)⊂ K.

The following result provides an application of Theorem 3.3.

Theorem 4.1. Let g satisfy condition (h1) and let K be of type (K). Assume that
there exists an integer k ≥ 1 such that

λk < λk+1. (12)

If, moreover,

liminf
ξ→0

∫
ξ

0
g(x, t)dt

|ξ |2
>

λk

2
, (13)

and

limsup
|ξ |→0

g(x,ξ )
ξ

< λk+1 (14)

uniformly in x ∈ Ω, then Problem (PK) possesses at least two nontrivial solu-
tions.

Proof. Pick X := H1
0 (Ω), p ∈]2,2∗[ and define, whenever u ∈ X ,

Φ(u) :=
1
2

∫
Ω

|∇u(x)|2dx+G (u),

as well as

ψ(u) :=
{

0 if u ∈ K,
+∞ otherwise,

f (u) := Φ(u)+ψ(u).

Owing to (h1) the function Φ : X → IR turns out to be locally Lipschitz contin-
uous. Consequently, f satisfies condition (H′f ).
We shall prove that f is bounded from below and coercive. By (9) and (10) one
has ∫

ξ

0
g(x, t)dt ≤Mr +

1
2
(λ1− ε)ξ 2 ∀ξ ∈ IR. (15)



SOME REMARKS ON A RECENT CRITICAL POINT RESULT ... 105

Hence,

f (u)≥Φ(u) =

1
2
‖u‖2−

∫
Ω

dx
∫ u(x)

0
g(x, t)dt

≥ 1
2
‖u‖2−

∫
Ω

[
Mr +

1
2
(λ1− ε)|u(x)|2

]
dx =

=
1
2
‖u‖2− 1

2
(λ1− ε)

∫
Ω

|u(x)|2dx−Mrµ(Ω).

From ‖u‖L2(Ω) ≤
1√
λ1
‖u‖ (see for instance [7, p. 213]) it follows that

f (u)≥ 1
2
‖u‖2− 1

2

(
1− ε

λ1

)
‖u‖2−Mrµ(Ω).

Thus,

f (u)≥ ε

2λ1
‖u‖2−Mrµ(Ω) ∀u ∈ X , (16)

which shows the claim.
Let us next show that the function f satisfies condition (PS) f . So, pick a se-
quence {un} ⊆ X such that { f (un)} is bounded and

Φ
0(un;v−un)+ψ(v)−ψ(un)≥−εn‖v−un‖ (17)

for all n ∈ IN, v ∈ X , where εn→ 0+. One evidently has {un} ⊆ K. Since f is
coercive, the sequence {un} turns out bounded. Thus, passing to a subsequence
if necessary, we may suppose both un ⇀ u in X and un→ u in L2(Ω). The point
u belongs to K because this set is weakly closed. Exploiting (17) with v := u we
then get∫

Ω

∇un(x) ·∇(u−un)(x)dx+G 0(un;u−un)≥−εn‖u−un‖ ∀n ∈ IN . (18)

The upper semicontinuity of G 0 on L2(Ω)×L2(Ω) forces

limsup
n→+∞

G 0(un;u−un)≤ G 0(u;0) = 0 . (19)

By (19), besides the weak convergence of {un} to u, inequality (18) yields, as
n→+∞,

limsup
n→∞

∫
Ω

|∇un(x)|2dx≤
∫

Ω

|∇u(x)|2dx.
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Hence, thanks to [1, Proposition III.30], un → u in X , i.e., hypothesis (f1) of
Theorem 3.3 is fulfilled.

The next step is to verify (f3). Since K is of type (K), there exists a κ > 0
such that the set {u ∈ X : f (u) < κ} is open. Indeed, through (16) we obtain

{u ∈ X : f (u) < κ} ⊆ B(0,rκ)⊆ K.

Consequently,

{u ∈ X : f (u) < κ}= {u ∈ K : Φ(u) < κ}= {u ∈ X : Φ(u) < κ},

which is open.
Let X2 := span{ϕ1, . . . ,ϕk} and let X1 := X⊥2 , where the orthogonal com-

plement is taken in H1
0 (Ω). One clearly has X = X1⊕X2, dim(X1) > 0, and

0 < dim(X2) < +∞. Due to (13) there exists a δ > 0 such that∫
ξ

0
g(x, t)dt >

λk

2
|ξ |2,

provided 0 < |ξ | < δ . Since X2 is finite dimensional, we can find a positive
constant ρ1 < rκ such that if u ∈ X2 and ‖u‖ ≤ ρ1, then ‖u‖L∞(Ω) < δ . So, 0 <
‖u‖L∞(Ω) < δ for all u ∈ B(0,ρ1)∩X2 \{0}, which forces 0≤ |u(x)|< δ almost
everywhere in Ω as well as 0 < |u(x)| in Ω0⊆Ω with µ(Ω0) > 0. Consequently,∫ u(x)

0
g(x, t)dt ≥ λk

2
|u(x)|2

for almost all x ∈ Ω and with a strict inequality in Ω0. Now if u ∈ X2, u =
∑

k
i=1 αiϕi, for suitable αi ∈ IR, i = 1, ...,k. Owing (7) and (8) one has

‖u‖2 =
k

∑
i=1

α
2
i

∫
Ω

|∇ϕi(x)|2dx =
k

∑
i=1

α
2
i λi

∫
Ω

ϕi(x)2dx≤ λk

∫
Ω

|u(x)|2dx.

This implies

f (u) =
1
2
‖u‖2 +

∫
Ω

G(x,u(x))dx

≤ λk

2

∫
Ω

|u(x)|2dx−
∫

Ω

[∫ u(x)

0
g(x, t)dt

]
dx

=
∫

Ω

[
λk

2
|u(x)|2−

∫ u(x)

0
g(x, t)dt

]
dx < 0,

which clearly means

f (u) < 0 ∀u ∈ B(0,ρ1)∩X2 \{0}. (20)
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By (14) there exist λ ∈]0,λk+1[ and σ ∈]0,r[ such that g(x,t)
t < λ for every

|t| ∈]0,σ [ and x ∈Ω. Hence∫
|u(x)|<σ

[∫ u(x)

0
g(x, t)dt

]
dx≤ λ

2

∫
Ω

|u(x)|2dx. (21)

Due to (15), one has

G(x,ξ )≥−Mr− 1
2
(λ1− ε)ξ 2 ≥−

(Mr
σ p +

λ1− ε

σ p−2

)
|ξ |p, (22)

provided |ξ | ≥ σ . The Sobolev embedding theorem gives

∫
|u(x)|≥σ

G(x,u(x))dx≥−
(Mr

σ p +
λ1− ε

σ p−2

)
‖u‖Lp(Ω) ≥−c∗‖u‖p, (23)

where c∗ :=
(Mr

σ p +
λ1− ε

σ p−2

)
cp

p. Now if u ∈ X1, u = ∑
+∞

j=k+1 β jϕ j, for suitable

β j ∈ IR, j = k +1, ... Owing (7) and (8), one has

‖u‖2
L2(Ω) =

+∞

∑
j=k+1

β
2
j

∫
Ω

ϕ j(x)2dx =
+∞

∑
j=k+1

β 2
j

λ j

∫
Ω

|∇ϕ j(x)|2dx≤ 1
λk+1
‖u‖2,

i.e.,

‖u‖L2(Ω) ≤
1√
λk+1
‖u‖ (24)

for each u ∈ X1. Then, by (21), (23) and (24) we get

f (u) =
1
2
‖u‖2 +

∫
Ω

G(x,u(x))dx =

=
1
2
‖u‖2−

∫
|u(x)|<σ

[∫ u(x)

0
g(x, t)dt

]
dx+

∫
|u(x)|≥σ

G(x,u(x))dx≥ (25)

≥ 1
2

(
1− λ

λk+1

)
‖u‖2− c∗‖u‖p.

Since p > 2, putting ρ2 :=
[ 1

2c∗

(
1− λ

λk+1

)]1/(p−2)
, from (25) it follows that

f (u)≥ 0 ∀u ∈ B(0,ρ2)∩X1 . (26)

Choose ρ := min{ρ1,ρ2}. Then

f (u) < 0 ∀u ∈ B(0,ρ)∩X2,
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and

f (u)≥ 0 ∀u ∈ B(0,ρ)∩X1.

Bearing in mind Remark 3.5, this immediately yields (f4).
Finally, observe that by (20) one has infu∈X f (u) < 0. We are in a position now
to apply Theorem 3.3. Thus there exist at least two points u1,u2 ∈ X \{0} such
that

Φ
0(ui;v−ui)+ψ(v)−ψ(ui)≥ 0

for all v ∈ X , i = 1,2. The choice of ψ gives both ui ∈ K and Φ0(ui;v−ui)≥ 0,
v∈K, i = 1,2, namely u1, u2 turn out to be nontrivial solutions of Problem (PK),
which completes the proof.

Example 4.2. The aim of this example is to exhibit a non-trivial case of set in
H1

0 (Ω) of type (K). Let h : H1
0 (Ω)→ IR be a weakly continuous and convex

function. For κ > 0 fixed, put

rκ :=

√
κ +Mrµ(Ω)

ε
2λ1, (27)

with the same notation as before. The ball B(0,rκ) is a weakly compact subset
of H1

0 (Ω), hence h|B(0,rκ ) admits a global maximum. Then the set

K := {u ∈ H1
0 (Ω) : h(u)≤ α +1},

where α := maxu∈B(0,rκ ) h(u), is a subset of H1
0 (Ω) of type (K).

Remark 4.3. Recall that a function q : Ω× IR → IR is called superposition
measurable when x 7→ q(x,u(x)) is measurable for all measurable u : Ω→ IR.
Let K := H1

0 (Ω). Assume that:

(h2) The functions

g−(x, t) := lim
δ→0

inf
|ξ−t|<δ

g(x,ξ ), g+(x, t) := lim
δ→0

sup
|ξ−t|<δ

g(x,ξ )

are superposition measurable.

If u ∈ H1
0 (Ω) complies with

−
∫

Ω

∇u(x) ·∇(v−u)(x)dx≤ G 0(u;v−u) ∀v ∈ H1
0 (Ω),
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then ∫
Ω

−∆u(x) ·w(x)dx≤ (−G )0(u;w), w ∈ H1
0 (Ω).

This implies

−∆u ∈ ∂ (−G )(u)⊆ {w ∈ L2(Ω) : g−(x,u(x))≤ w(x)≤ g+(x,u(x)) a.e. in Ω},

i.e.,
−∆u(x) ∈ [g−(x,u(x)),g+(x,u(x))] foralmostall x ∈Ω.

Hence, Theorem 4.1 gives at least two nontrivial solutions of Problem (W).

Remark 4.4. Very recently, in [15], an existence result has been obtained by
using hypotheses (h1),(h2),(14), and the following one:
There exists a δ > 0 such that

λk ≤
g(x, t)

t

for all 0 < |t| < δ and almost all x ∈ Ω; cf. [15, Theorem 3.1]. It is simple
matter to see that this result and Theorem 4.1 above are mutually independent.

Remark 4.5. Let Ω and g : Ω× IR→ IR be as in the Introduction and let A be a
uniformly elliptic operator of the form

Au =−
N

∑
i, j=1

∂

∂x j

(
ai j(x)

∂u
∂xi

)
+ c(x)u,

where ai j : Ω→ IR, i, j = 1, ...,N, satisfy the following conditions:

A1) ai j = a ji ∈ L∞(Ω);

A2) c ∈ L∞(Ω) and c≥ 0 almost everywhere in Ω;

A3) There is a γ > 0 such that

N

∑
i, j=1

ai j(x)ξiξ j ≥ γ|ξ |2 ∀x ∈Ω, ξ ∈ IRN .

On H1
0 (Ω) we consider the norm (equivalent to the usual one)

‖u‖ := 〈Au,u〉1/2

induced by the inner product

〈Au,v〉=
∫

Ω

[ N

∑
i, j=1

ai j(x)
∂u(x)

∂xi

∂v(x)
∂x j

+ c(x)u(x)v(x)
]
dx,
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see for instance [6, p. 650]. It is well known (vide Proposition 6.1.15, p. 652,
and Theorem 6.1.21, p. 654, of [6]) that the eigenvalue Dirichlet problem

Au = λu in Ω,

u = 0 on ∂Ω,
(28)

possesses a sequence {λn} of eigenvalues fulfilling

0 < λ1 < λ2 ≤ ·· · ≤ λn ≤ ·· ·

and a corresponding sequence {ϕn} of eigenfunctions normalized as follows:

〈Aϕn,ϕn〉= λn

∫
Ω

ϕn(x)2dx = λn ∀n ∈ IN; (29)

〈Aϕn,ϕm〉=
∫

Ω

ϕm(x)ϕn(x)dx = 0, (30)

provided m,n ∈ IN and m 6= n; see [6, Proposition 6.1.19, p. 653].
Arguing as in the proof of Theorem 4.1, but with Au in place of−∆u,u∈H1

0 (Ω),
it is possible to obtain two nontrivial solutions of the following variational-
hemivariational inequality problem:{

u ∈ K,
〈Au,v−u〉+ G 0(u;v−u)≥ 0 ∀v ∈ K,

(PA,K)

where K is of type (K) in H1
0 (Ω). Recently, in [16], X. Wu and T. Leng studied

the existence of two nontrivial solutions in H1
0 (Ω) to the problem

Au = g(x,u) in Ω,

u = 0 on ∂Ω,
(31)

where g is a locally bounded Carathéodory function, under assumption (h1) and
the following one:
There exists an integer k ≥ 1 such that

λk ≤ liminf
t→0

g(x, t)
t
≤ limsup

t→0

g(x, t)
t

< λk+1, (32)

uniformly for a.e. x ∈Ω.
We point out that if the first inequality in (32) is strict, then Theorem 1.1 of
[16] is a very special case of Theorem 4.1 written for (PA,K). For example, we
require only that g be a locally bounded measurable function.
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