SOME REMARKS ON A RECENT CRITICAL POINT RESULT OF NONSMOOTH ANALYSIS

GIOVANNI MOLICA BISCI

The aim of this paper is to investigate some consequences of a nonsmooth version, established in [13], of Ghoussoub's general min-max principle [8, Theorem 1]. An application to a class of elliptic variationalhemivariational inequalities is also pointed out.

1. Introduction

In a recent paper [13], a general min-max principle for C^{1}-functions obtained by Ghoussoub [8, Theorem 1] has been extended to functionals f, on an infinite dimensional Banach space X, fulfilling the structural hypothesis
$\left(\mathrm{H}_{f}^{\prime}\right) f(x):=\Phi(x)+\psi(x)$ for all $x \in X$, where $\Phi: X \rightarrow \mathbb{R}$ is locally Lipschitz continuous, while $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ turns out convex, proper, and lower semicontinuous. Moreover, ψ is continuous on any nonempty compact set $A \subseteq X$ such that $\sup _{x \in A} \psi(x)<+\infty$.

Likewise the C^{1}-setting, this result leads to a nonsmooth version [12, Theorem 3.1] of the famous critical point theorem in presence of splitting established by Brézis and Nirenberg [2, Theorem 4].

Entrato in redazione: 16 gennaio 2009
Keywords: Critical points; Nonsmooth functions; Splittings; Elliptic hemivariational inequalities.

The main purpose of this paper is to present some consequences of both Theorem 3.1 in [13] and Theorem 3.1 of [12]. Section 2 is devoted to basic definitions and preliminary results. In Section 3 we first point out an immediate but useful consequence of Theorem 3.1 in [13]; see Theorem 3.2 below. In the locally Lipschitz continuous case, this result has already been obtained by X. Wu [15] through a different and longer proof. The above-mentioned nonsmooth version of Brézis-Nirenberg's critical point theorem is then presented and discussed; vide Theorem 3.3 below. Finally, Section 4 contains an application of Theorem 3.3 to an elliptic variational-hemivariational inequality problem. More precisely, let Ω be a nonempty, bounded, open subset of the real Euclidean N space $\left(\mathbb{R}^{N},|\cdot|\right), N \geq 3$, having a smooth boundary $\partial \Omega$, and let

$$
\mathscr{G}(u):=\int_{\Omega} G(x, u(x)) d x, \quad u \in H_{0}^{1}(\Omega)
$$

where $G(x, \xi):=\int_{0}^{\xi}-g(x, t) d t$ for all $(x, \xi) \in \Omega \times \mathbb{R}$, and
$\left(\mathrm{h}_{1}\right) g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a locally bounded measurable function such that

$$
-\infty<\liminf _{|t| \rightarrow \infty} \frac{g(x, t)}{t} \leq \limsup _{|t| \rightarrow \infty} \frac{g(x, t)}{t}<\lambda_{1}
$$

uniformly in $x \in \Omega$.
Here, as usual, λ_{1} denotes the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$. The function \mathscr{G} is well defined and locally Lipschitz continuous. Hence, we can consider its generalized directional derivative \mathscr{G}^{0} in the sense of Clarke [4].

Let K be a suitable nonempty, convex, closed subset of $H_{0}^{1}(\Omega)$ and let $\left(\mathrm{P}_{K}\right)$ denote the following elliptic variational-hemivariational inequality problem:
Find $u \in K$ such that

$$
-\int_{\Omega} \nabla u(x) \cdot \nabla(v-u)(x) d x \leq \mathscr{G}^{0}(u ; v-u)
$$

for all $v \in K$.
We shall prove that if g satisfies appropriate growth conditions, then $\left(\mathrm{P}_{K}\right)$ possesses at least two nontrivial solutions; see Theorem 4.1. Moreover, when

$$
g^{-}(x, t):=\lim _{\delta \rightarrow 0|\xi-t|<\delta} \inf g(x, \xi), g^{+}(x, t):=\lim _{\delta \rightarrow 0} \sup _{|\xi-t|<\delta} g(x, \xi),
$$

turn out to be superposition measurable and $K:=H_{0}^{1}(\Omega)$ one actually has two nontrivial solutions of the following multivalued Dirichlet problem:

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{cases}-\Delta u \in\left[g^{-}(x, u), g^{+}(x, u)\right] & \text { in } \Omega \tag{W}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Let us finally note that Problem (W) has previously been investigated in [15] under different assumptions on the datum g; vide Remark 4.4.

2. Basic definitions and auxiliary results

Let $(X,\|\cdot\|)$ be a real Banach space. If V is a subset of X, we write \bar{V} for the closure of V and ∂V for its boundary. When V is nonempty, $x \in X$, and $\delta>0$, we define $B(x, \delta):=\{z \in X:\|z-x\|<\delta\}$ and

$$
d(x, V):=\inf _{z \in V}\|x-z\|
$$

Given $x, z \in X$, the symbol $[x, z]$ indicates the line segment joining x to z, namely

$$
[x, z]:=\{(1-t) x+t z: t \in[0,1]\} .
$$

We denote by X^{*} the dual space of X, while $\langle\cdot, \cdot\rangle$ stands for the duality pairing between X^{*} and X. A function $\Phi: X \rightarrow \mathbb{R}$ is called locally Lipschitz continuous when to every $x \in X$ there correspond a neighbourhood V_{x} of x and a constant $L_{x} \geq 0$ such that

$$
|\Phi(z)-\Phi(w)| \leq L_{x}\|z-w\| \quad \forall z, w \in V_{x} .
$$

If $x, z \in X$, we write $\Phi^{0}(x ; z)$ for the generalized directional derivative of Φ at the point x along the direction z, i.e.,

$$
\Phi^{0}(x ; z):=\limsup _{w \rightarrow x, t \rightarrow 0^{+}} \Phi(w+t z)-\frac{\Phi(w)}{t}
$$

It is known [4, Proposition 2.1.1] that Φ^{0} is upper semicontinuous on $X \times X$. The generalized gradient of the function Φ in x, denoted by $\partial \Phi(x)$, is the set

$$
\partial \Phi(x):=\left\{x^{*} \in X^{*}:\left\langle x^{*}, z\right\rangle \leq \Phi^{0}(x ; z) \forall z \in X\right\} .
$$

Proposition 2.1.2 of [4] ensures that $\partial \Phi(x)$ turns out nonempty, convex, in addition to weak* compact.
Let f be a function on X satisfying the structural hypothesis $\left(\mathrm{H}_{f}^{\prime}\right)$. Put $D_{\psi}:=$ $\{x \in X: \psi(x)<+\infty\}$. Since ψ is continuous on $\operatorname{int}\left(D_{\psi}\right)$ (see for instance [5,

Exercise 1, p. 296]), the same holds regarding f. We say that $x \in D_{\psi}$ is a critical point of f when

$$
\Phi^{0}(x ; z-x)+\psi(z)-\psi(x) \geq 0 \quad \forall z \in X
$$

If $\psi \equiv 0$, it clearly signifies $0 \in \partial \Phi(x)$, namely x is a critical point of Φ according to [3, Definition 2.1].

Let S be a nonempty closed subset of X. The function f is said to fulfil the Palais-Smale condition at the level c and around the set S provided
$(\mathrm{PS})_{S, c}$ Every sequence $\left\{x_{n}\right\} \subseteq X$ such that $d\left(x_{n}, S\right) \rightarrow 0, f\left(x_{n}\right) \rightarrow c$, and

$$
\begin{equation*}
\Phi^{0}\left(x_{n} ; x-x_{n}\right)+\psi(x)-\psi\left(x_{n}\right) \geq-\varepsilon_{n}\left\|x-x_{n}\right\| \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $x \in X$, where $\varepsilon_{n} \rightarrow 0^{+}$, possesses a convergent subsequence.

When $S=X$ we simply write $(\mathrm{PS})_{c}$ in place of $(\mathrm{PS})_{S, c}$. Moreover f satisfies $(\mathrm{PS})_{f}$ means that $(\mathrm{PS})_{c}$ hold true at any level c.

3. Some remarks on a recent critical point theorem

Let B be a nonempty closed subset of X and let \mathscr{F} be a class of nonempty compact sets in X. We say that \mathscr{F} is a homotopy-stable family with extended boundary B when for every $A \in \mathscr{F}$ and every $\eta \in C^{0}([0,1] \times X, X)$ such that $\eta(t, x)=x$ in $(\{0\} \times X) \cup([0,1] \times B)$ one has $\eta(\{1\} \times A) \in \mathscr{F}$. The following assumptions will be posited in the sequel.
$\left(\mathrm{a}_{1}\right) \mathscr{F}$ is a homotopy-stable family with extended boundary B, the function f fulfills condition $\left(\mathrm{H}_{f}^{\prime}\right)$, and

$$
c=\inf _{A \in \mathscr{F}} \sup _{x \in A} f(x)<+\infty .
$$

$\left(\mathrm{a}_{2}\right)$ There exists a closed subset F of X such that

$$
\begin{equation*}
(A \cap F) \backslash B \neq \emptyset \quad \forall A \in \mathscr{F}, \tag{2}
\end{equation*}
$$

and, moreover,

$$
\begin{equation*}
\sup _{x \in B} f(x) \leq \inf _{x \in F} f(x) \tag{3}
\end{equation*}
$$

Gathering $\left(\mathrm{a}_{1}\right)$ and $\left(\mathrm{a}_{2}\right)$ together one has

$$
\begin{equation*}
\inf _{x \in F} f(x) \leq c \tag{4}
\end{equation*}
$$

The next result [13, Theorem 3.1] holds.

Theorem 3.1. Let $\left(\mathrm{a}_{1}\right)$ and $\left(\mathrm{a}_{2}\right)$ be satisfied. Then to every sequence $\left\{A_{n}\right\} \subseteq \mathscr{F}$ such that $\lim _{n \rightarrow+\infty} \sup _{x \in A_{n}} f(x)=c$ there corresponds a sequence $\left\{x_{n}\right\} \subseteq X \backslash B$ having the following properties:
(i $\left.\mathrm{i}_{1}\right) \lim _{n \rightarrow+\infty} f\left(x_{n}\right)=c$.
(i2) $\Phi^{0}\left(x_{n} ; z-x_{n}\right)+\psi(z)-\psi\left(x_{n}\right) \geq-\varepsilon_{n}\left\|z-x_{n}\right\|, \forall n \in \mathbb{N}, z \in X$, where $\varepsilon_{n} \rightarrow$ 0^{+}.
(i3) $\lim _{n \rightarrow+\infty} d\left(x_{n}, F\right)=0$ provided $\inf _{x \in F} f(x)=c$.
(i4) $\lim _{n \rightarrow+\infty} d\left(x_{n}, A_{n}\right)=0$.
Now, let X be reflexive, let K be a compact metric space, and let K^{*} be a nonempty closed subset of K. Define $\mathscr{A}=\left\{p \in C^{0}(K, X):\left.p\right|_{K^{*}}=p^{*}\right\}$, where $p^{*}: K^{*} \rightarrow X$ is a fixed continuous function. If

$$
c:=\inf _{p \in \mathscr{A}} \sup _{x \in K} f(p(x))
$$

then $c \geq \sup _{x \in K^{*}} f\left(p^{*}(x)\right)$.
An immediate consequence of Theorem 3.1 is the following.
Theorem 3.2. Let the function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ fulfill the following assumptions in addition to $\left(\mathrm{H}_{f}^{\prime}\right)$.
$\left(\mathrm{j}_{1}\right) \sup _{x \in K} f(p(x))<+\infty$ for some $p \in \mathscr{A}$.
$\left(\mathrm{j}_{2}\right)$ There exists a closed subset D of X such that $(p(K) \cap D) \backslash p^{*}\left(K^{*}\right) \neq \emptyset$ for every $p \in \mathscr{A}$ and, moreover, $\sup _{x \in K^{*}} f\left(p^{*}(x)\right) \leq \inf _{x \in D} f(x)$.

Then there is a sequence $\left\{u_{n}\right\} \subseteq X$ having properties $\left(\mathrm{i}_{1}\right)-\left(\mathrm{i}_{3}\right)$, with $F:=D$. If, in addition, f satisfies condition (PS $)_{c}$, then it has a critical point $u \in D$ such that $f(u)=c$.

Proof. Define $B:=p^{*}\left(K^{*}\right)$. Obviously, setting

$$
\mathscr{F}:=\{p(K): p \in \mathscr{A}\}
$$

we obtain a homotopy-stable family with extended boundary B. Moreover, thanks $\left(\mathrm{j}_{1}\right), c=\inf _{p \in \mathscr{A}} \sup _{x \in K} f(p(x))<+\infty$. Hence, $\left(\mathrm{a}_{1}\right)$ holds true. Bearing in mind $\left(\mathrm{j}_{2}\right)$ yields $\left(\mathrm{a}_{2}\right)$. Now, the conclusion is an immediate consequence of Theorem 3.1.

Remark 3.3. In the locally Lipschitz continuous case, Theorem 3.2 has been established by X. Wu in [15] using different methods and a longer proof. We also point out that weaker Palais-Smale's type compactness conditions might be adopted once one exploits Theorem 3.1 of [11].

Now, let X be reflexive and let f be a function from X into $\mathbb{R} \cup\{+\infty\}$. The following hypothesis will be posited in the sequel:
$\left(\mathrm{f}_{1}\right) f$ is bounded below and fulfils $(\mathrm{PS})_{f}$ besides $\left(\mathrm{H}_{f}^{\prime}\right)$,
$\left(\mathrm{f}_{2}\right) x_{0}$ is a global minimum point of the function f.
Since under $\left(\mathrm{f}_{1}\right)$ each minimizing sequence for f possesses a convergent subsequence (see [12]), the function f must attain its minimum at some point $x_{0} \in X$. So, $\left(\mathrm{f}_{2}\right)$ is quite natural. Suppose further

$$
X:=X_{1} \oplus X_{2}
$$

where $\operatorname{dim}\left(X_{1}\right)>0$, while $0<\operatorname{dim}\left(X_{2}\right)<\infty$.
The following nonsmooth version of the famous Brézis-Nirenberg critical point theorem in presence of splitting is proved in [12].

Theorem 3.4. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$ are satisfied, $\inf _{x \in X} f(x)<f(0), f(0)=0$, and, moreover,
$\left(\mathrm{f}_{3}\right)$ the set $\{x \in X: f(x)<a\}$ is open for some constant $a>0$,
$\left(\mathrm{f}_{4}\right)$ there exists an $\left.r \in\right] 0, \frac{\left\|x_{0}\right\|}{2}\left[\right.$ such that $\left.f\right|_{\bar{B}(0, r) \cap X_{1}} \geq 0,\left.f\right|_{\bar{B}(0, r) \cap X_{2}} \leq 0$, and $\left.f\right|_{\partial B(0, r) \cap X_{2}}<0$,
then the function f possesses at least two nontrivial critical points.
Remark 3.5. Hypothesis $\left(f_{4}\right)$ is obviously fulfilled in the meaningful special case when

$$
\left(\mathrm{f}_{4}^{\prime}\right) \text { for some } r>0 \text { one has }\left.f\right|_{\bar{B}(0, r) \cap X_{1}} \geq 0 \text { as well as }\left.f\right|_{\bar{B}(0, r) \cap X_{2} \backslash\{0\}}<0 \text {, }
$$

namely 0 turns out a local minimum of $\left.f\right|_{X_{1}}$ and a proper local maximum for $\left.f\right|_{X_{2}}$.

Assuming that f is a locally Lipschitz continuous, i.e. $\psi \equiv 0$, and substituting hypothesis (f_{4}) with
$\left(\mathrm{f}_{4}^{*}\right)$ there exists a positive constant r such that $\left.f\right|_{\bar{B}(0, r) \cap X_{1}} \geq 0,\left.f\right|_{\bar{B}(0, r) \cap X_{2}} \leq 0$, one can get Theorem 2.3 of [15].

4. Application

Let Ω and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be as in the Introduction. The main purpose of this section is to investigate a variational-hemivariational inequality version of Problem (W). The symbol $H_{0}^{1}(\Omega)$ indicates the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1,2}(\Omega)$ with respect to the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Denote by 2^{*} the critical exponent for the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$. Recall that $2^{*}=\frac{2 N}{N-2}$, if $p \in\left[1,2^{*}\right]$ then there exists a positive constant c_{p} such that

$$
\begin{equation*}
\|u\|_{L^{p}(\Omega)} \leq c_{p}\|u\|, \quad u \in H_{0}^{1}(\Omega) \tag{5}
\end{equation*}
$$

and, in particular, the embedding is compact whenever $p \in\left[1,2^{*}[\right.$; see e.g.[14, Proposition B.7].
Consider the following eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \tag{6}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

It is well known [7, Section 8.12] that (6) possesses a sequence $\left\{\lambda_{n}\right\}$ of eigenvalues fulfilling $0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq \cdots$. The number of times an eigenvalue appears in the sequence equals its multiplicity.
Let $\left\{\varphi_{n}\right\}$ be a corresponding sequence of eigenfunctions normalized as follows:

$$
\begin{align*}
& \int_{\Omega}\left|\nabla \varphi_{n}(x)\right|^{2} d x=\lambda_{n} \int_{\Omega} \varphi_{n}(x)^{2} d x=\lambda_{n} \quad \forall n \in \mathbb{N} \tag{7}\\
& \int_{\Omega} \nabla \varphi_{m}(x) \cdot \nabla \varphi_{n}(x) d x=\int_{\Omega} \varphi_{m}(x) \varphi_{n}(x) d x=0 \tag{8}
\end{align*}
$$

provided $m, n \in \mathbb{N}$ and $m \neq n$.
By $\left(\mathrm{h}_{1}\right)$ there are constants $\left.\varepsilon \in\right] 0, \lambda_{1}[$ and $r>0$ such that

$$
\begin{equation*}
g(x, t)<\left(\lambda_{1}-\varepsilon\right) t \tag{9}
\end{equation*}
$$

for all $|t| \geq r$ and $x \in \Omega$. Since g is locally bounded, we also have

$$
\begin{equation*}
M:=\sup _{(x, t) \in \Omega \times[-r, r]}|g(x, t)|<+\infty . \tag{10}
\end{equation*}
$$

Now, let $\kappa>0$. Define

$$
\begin{equation*}
r_{\kappa}:=\sqrt{\frac{\kappa+M r \mu(\Omega)}{\varepsilon} 2 \lambda_{1}} \tag{11}
\end{equation*}
$$

where $\mu(\Omega)$ is the Lebesgue measure of Ω. A set $K \subseteq H_{0}^{1}(\Omega)$ is called of type (K) provided
(K) K turns out to be nonempty, convex, closed in $H_{0}^{1}(\Omega)$. Moreover, there exists a $\kappa>0$ such that $\bar{B}\left(0, r_{\kappa}\right) \subset K$.

The following result provides an application of Theorem 3.3.
Theorem 4.1. Let g satisfy condition $\left(\mathrm{h}_{1}\right)$ and let K be of type (K). Assume that there exists an integer $k \geq 1$ such that

$$
\begin{equation*}
\lambda_{k}<\lambda_{k+1} \tag{12}
\end{equation*}
$$

If, moreover,

$$
\begin{equation*}
\liminf _{\xi \rightarrow 0} \frac{\int_{0}^{\xi} g(x, t) d t}{|\xi|^{2}}>\frac{\lambda_{k}}{2} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{|\xi| \rightarrow 0} \frac{g(x, \xi)}{\xi}<\lambda_{k+1} \tag{14}
\end{equation*}
$$

uniformly in $x \in \Omega$, then Problem $\left(\mathrm{P}_{K}\right)$ possesses at least two nontrivial solutions.

Proof. Pick $\left.X:=H_{0}^{1}(\Omega), p \in\right] 2,2^{*}[$ and define, whenever $u \in X$,

$$
\Phi(u):=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x+\mathscr{G}(u)
$$

as well as

$$
\psi(u):=\left\{\begin{array}{ll}
0 & \text { if } u \in K, \\
+\infty & \text { otherwise, }
\end{array} \quad f(u):=\Phi(u)+\psi(u)\right.
$$

Owing to $\left(\mathrm{h}_{1}\right)$ the function $\Phi: X \rightarrow \mathbb{R}$ turns out to be locally Lipschitz continuous. Consequently, f satisfies condition $\left(\mathrm{H}_{f}^{\prime}\right)$.
We shall prove that f is bounded from below and coercive. By (9) and (10) one has

$$
\begin{equation*}
\int_{0}^{\xi} g(x, t) d t \leq M r+\frac{1}{2}\left(\lambda_{1}-\varepsilon\right) \xi^{2} \quad \forall \xi \in \mathbb{R} \tag{15}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
f(u) \geq \Phi(u)= & \\
& \frac{1}{2}\|u\|^{2}-\int_{\Omega} d x \int_{0}^{u(x)} g(x, t) d t \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\Omega}\left[M r+\frac{1}{2}\left(\lambda_{1}-\varepsilon\right)|u(x)|^{2}\right] d x= \\
& =\frac{1}{2}\|u\|^{2}-\frac{1}{2}\left(\lambda_{1}-\varepsilon\right) \int_{\Omega}|u(x)|^{2} d x-\operatorname{Mr} \mu(\Omega) .
\end{aligned}
$$

From $\|u\|_{L^{2}(\Omega)} \leq \frac{1}{\sqrt{\lambda_{1}}}\|u\|$ (see for instance [7, p. 213]) it follows that

$$
f(u) \geq \frac{1}{2}\|u\|^{2}-\frac{1}{2}\left(1-\frac{\varepsilon}{\lambda_{1}}\right)\|u\|^{2}-\operatorname{Mr} \mu(\Omega)
$$

Thus,

$$
\begin{equation*}
f(u) \geq \frac{\varepsilon}{2 \lambda_{1}}\|u\|^{2}-\operatorname{Mr} \mu(\Omega) \forall u \in X \tag{16}
\end{equation*}
$$

which shows the claim.
Let us next show that the function f satisfies condition $(\mathrm{PS})_{f}$. So, pick a sequence $\left\{u_{n}\right\} \subseteq X$ such that $\left\{f\left(u_{n}\right)\right\}$ is bounded and

$$
\begin{equation*}
\Phi^{0}\left(u_{n} ; v-u_{n}\right)+\psi(v)-\psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \tag{17}
\end{equation*}
$$

for all $n \in \mathbb{N}, v \in X$, where $\varepsilon_{n} \rightarrow 0^{+}$. One evidently has $\left\{u_{n}\right\} \subseteq K$. Since f is coercive, the sequence $\left\{u_{n}\right\}$ turns out bounded. Thus, passing to a subsequence if necessary, we may suppose both $u_{n} \rightharpoonup u$ in X and $u_{n} \rightarrow u$ in $L^{2}(\Omega)$. The point u belongs to K because this set is weakly closed. Exploiting (17) with $v:=u$ we then get

$$
\begin{equation*}
\int_{\Omega} \nabla u_{n}(x) \cdot \nabla\left(u-u_{n}\right)(x) d x+\mathscr{G}^{0}\left(u_{n} ; u-u_{n}\right) \geq-\varepsilon_{n}\left\|u-u_{n}\right\| \quad \forall n \in \mathbb{N} \tag{18}
\end{equation*}
$$

The upper semicontinuity of \mathscr{G}^{0} on $L^{2}(\Omega) \times L^{2}(\Omega)$ forces

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \mathscr{G}^{0}\left(u_{n} ; u-u_{n}\right) \leq \mathscr{G}^{0}(u ; 0)=0 \tag{19}
\end{equation*}
$$

By (19), besides the weak convergence of $\left\{u_{n}\right\}$ to u, inequality (18) yields, as $n \rightarrow+\infty$,

$$
\limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}(x)\right|^{2} d x \leq \int_{\Omega}|\nabla u(x)|^{2} d x
$$

Hence, thanks to [1, Proposition III.30], $u_{n} \rightarrow u$ in X, i.e., hypothesis (f_{1}) of Theorem 3.3 is fulfilled.

The next step is to verify $\left(\mathrm{f}_{3}\right)$. Since K is of type (K), there exists a $\kappa>0$ such that the set $\{u \in X: f(u)<\kappa\}$ is open. Indeed, through (16) we obtain

$$
\{u \in X: f(u)<\kappa\} \subseteq B\left(0, r_{\kappa}\right) \subseteq K
$$

Consequently,

$$
\{u \in X: f(u)<\kappa\}=\{u \in K: \Phi(u)<\kappa\}=\{u \in X: \Phi(u)<\kappa\}
$$

which is open.
Let $X_{2}:=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ and let $X_{1}:=X_{2}^{\perp}$, where the orthogonal complement is taken in $H_{0}^{1}(\Omega)$. One clearly has $X=X_{1} \oplus X_{2}, \operatorname{dim}\left(X_{1}\right)>0$, and $0<\operatorname{dim}\left(X_{2}\right)<+\infty$. Due to (13) there exists a $\delta>0$ such that

$$
\int_{0}^{\xi} g(x, t) d t>\frac{\lambda_{k}}{2}|\xi|^{2}
$$

provided $0<|\xi|<\delta$. Since X_{2} is finite dimensional, we can find a positive constant $\rho_{1}<r_{\kappa}$ such that if $u \in X_{2}$ and $\|u\| \leq \rho_{1}$, then $\|u\|_{L^{\infty}(\Omega)}<\delta$. So, $0<$ $\|u\|_{L^{\infty}(\Omega)}<\delta$ for all $u \in \bar{B}\left(0, \rho_{1}\right) \cap X_{2} \backslash\{0\}$, which forces $0 \leq|u(x)|<\delta$ almost everywhere in Ω as well as $0<|u(x)|$ in $\Omega_{0} \subseteq \Omega$ with $\mu\left(\Omega_{0}\right)>0$. Consequently,

$$
\int_{0}^{u(x)} g(x, t) d t \geq \frac{\lambda_{k}}{2}|u(x)|^{2}
$$

for almost all $x \in \Omega$ and with a strict inequality in Ω_{0}. Now if $u \in X_{2}, u=$ $\sum_{i=1}^{k} \alpha_{i} \varphi_{i}$, for suitable $\alpha_{i} \in \mathbb{R}, i=1, \ldots, k$. Owing (7) and (8) one has

$$
\|u\|^{2}=\sum_{i=1}^{k} \alpha_{i}^{2} \int_{\Omega}\left|\nabla \varphi_{i}(x)\right|^{2} d x=\sum_{i=1}^{k} \alpha_{i}^{2} \lambda_{i} \int_{\Omega} \varphi_{i}(x)^{2} d x \leq \lambda_{k} \int_{\Omega}|u(x)|^{2} d x
$$

This implies

$$
\begin{aligned}
f(u)=\frac{1}{2}\|u\|^{2}+\int_{\Omega} G(x, u(x)) d x & \\
& \leq \frac{\lambda_{k}}{2} \int_{\Omega}|u(x)|^{2} d x-\int_{\Omega}\left[\int_{0}^{u(x)} g(x, t) d t\right] d x \\
& =\int_{\Omega}\left[\frac{\lambda_{k}}{2}|u(x)|^{2}-\int_{0}^{u(x)} g(x, t) d t\right] d x<0
\end{aligned}
$$

which clearly means

$$
\begin{equation*}
f(u)<0 \quad \forall u \in \bar{B}\left(0, \rho_{1}\right) \cap X_{2} \backslash\{0\} \tag{20}
\end{equation*}
$$

By (14) there exist $\lambda \in] 0, \lambda_{k+1}[$ and $\sigma \in] 0, r\left[\right.$ such that $\frac{g(x, t)}{t}<\lambda$ for every $|t| \in] 0, \sigma[$ and $x \in \Omega$. Hence

$$
\begin{equation*}
\int_{|u(x)|<\sigma}\left[\int_{0}^{u(x)} g(x, t) d t\right] d x \leq \frac{\lambda}{2} \int_{\Omega}|u(x)|^{2} d x \tag{21}
\end{equation*}
$$

Due to (15), one has

$$
\begin{equation*}
G(x, \xi) \geq-M r-\frac{1}{2}\left(\lambda_{1}-\varepsilon\right) \xi^{2} \geq-\left(\frac{M r}{\sigma^{p}}+\frac{\lambda_{1}-\varepsilon}{\sigma^{p-2}}\right)|\xi|^{p} \tag{22}
\end{equation*}
$$

provided $|\xi| \geq \sigma$. The Sobolev embedding theorem gives

$$
\begin{equation*}
\int_{|u(x)| \geq \sigma} G(x, u(x)) d x \geq-\left(\frac{M r}{\sigma^{p}}+\frac{\lambda_{1}-\varepsilon}{\sigma^{p-2}}\right)\|u\|_{L^{p}(\Omega)} \geq-c^{*}\|u\|^{p} \tag{23}
\end{equation*}
$$

where $c^{*}:=\left(\frac{M r}{\sigma^{p}}+\frac{\lambda_{1}-\varepsilon}{\sigma^{p-2}}\right) c_{p}^{p}$. Now if $u \in X_{1}, u=\sum_{j=k+1}^{+\infty} \beta_{j} \varphi_{j}$, for suitable $\beta_{j} \in \mathbb{R}, j=k+1, \ldots$ Owing (7) and (8), one has

$$
\|u\|_{L^{2}(\Omega)}^{2}=\sum_{j=k+1}^{+\infty} \beta_{j}^{2} \int_{\Omega} \varphi_{j}(x)^{2} d x=\sum_{j=k+1}^{+\infty} \frac{\beta_{j}^{2}}{\lambda_{j}} \int_{\Omega}\left|\nabla \varphi_{j}(x)\right|^{2} d x \leq \frac{1}{\lambda_{k+1}}\|u\|^{2}
$$

i.e.,

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq \frac{1}{\sqrt{\lambda_{k+1}}}\|u\| \tag{24}
\end{equation*}
$$

for each $u \in X_{1}$. Then, by (21), (23) and (24) we get

$$
\begin{gather*}
f(u)=\frac{1}{2}\|u\|^{2}+\int_{\Omega} G(x, u(x)) d x= \\
=\frac{1}{2}\|u\|^{2}-\int_{|u(x)|<\sigma}\left[\int_{0}^{u(x)} g(x, t) d t\right] d x+\int_{|u(x)| \geq \sigma} G(x, u(x)) d x \geq \tag{25}\\
\geq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)\|u\|^{2}-c^{*}\|u\|^{p} .
\end{gather*}
$$

Since $p>2$, putting $\rho_{2}:=\left[\frac{1}{2 c^{*}}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)\right]^{1 /(p-2)}$, from (25) it follows that

$$
\begin{equation*}
f(u) \geq 0 \quad \forall u \in \bar{B}\left(0, \rho_{2}\right) \cap X_{1} \tag{26}
\end{equation*}
$$

Choose $\rho:=\min \left\{\rho_{1}, \rho_{2}\right\}$. Then

$$
f(u)<0 \quad \forall u \in \bar{B}(0, \rho) \cap X_{2}
$$

and

$$
f(u) \geq 0 \quad \forall u \in \bar{B}(0, \rho) \cap X_{1} .
$$

Bearing in mind Remark 3.5, this immediately yields (f_{4}).
Finally, observe that by (20) one has $\inf _{u \in X} f(u)<0$. We are in a position now to apply Theorem 3.3. Thus there exist at least two points $u_{1}, u_{2} \in X \backslash\{0\}$ such that

$$
\Phi^{0}\left(u_{i} ; v-u_{i}\right)+\psi(v)-\psi\left(u_{i}\right) \geq 0
$$

for all $v \in X, i=1,2$. The choice of ψ gives both $u_{i} \in K$ and $\Phi^{0}\left(u_{i} ; v-u_{i}\right) \geq 0$, $v \in K, i=1,2$, namely u_{1}, u_{2} turn out to be nontrivial solutions of Problem $\left(\mathrm{P}_{K}\right)$, which completes the proof.

Example 4.2. The aim of this example is to exhibit a non-trivial case of set in $H_{0}^{1}(\Omega)$ of type (K). Let $h: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ be a weakly continuous and convex function. For $\bar{\kappa}>0$ fixed, put

$$
\begin{equation*}
r_{\bar{\kappa}}:=\sqrt{\frac{\bar{\kappa}+M r \mu(\Omega)}{\varepsilon} 2 \lambda_{1}} \tag{27}
\end{equation*}
$$

with the same notation as before. The ball $\bar{B}\left(0, r_{\bar{K}}\right)$ is a weakly compact subset of $H_{0}^{1}(\Omega)$, hence $\left.h\right|_{\bar{B}\left(0, r_{\bar{K}}\right)}$ admits a global maximum. Then the set

$$
K:=\left\{u \in H_{0}^{1}(\Omega): h(u) \leq \alpha+1\right\}
$$

where $\alpha:=\max _{u \in \bar{B}\left(0, r_{\bar{\kappa}}\right)} h(u)$, is a subset of $H_{0}^{1}(\Omega)$ of type (K).
Remark 4.3. Recall that a function $q: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is called superposition measurable when $x \mapsto q(x, u(x))$ is measurable for all measurable $u: \Omega \rightarrow \mathbb{R}$. Let $K:=H_{0}^{1}(\Omega)$. Assume that:
$\left(\mathrm{h}_{2}\right)$ The functions

$$
g^{-}(x, t):=\lim _{\delta \rightarrow 0} \inf _{|\xi-t|<\delta} g(x, \xi), g^{+}(x, t):=\lim _{\delta \rightarrow 0} \sup _{|\xi-t|<\delta} g(x, \xi)
$$

are superposition measurable.
If $u \in H_{0}^{1}(\Omega)$ complies with

$$
-\int_{\Omega} \nabla u(x) \cdot \nabla(v-u)(x) d x \leq \mathscr{G}^{0}(u ; v-u) \quad \forall v \in H_{0}^{1}(\Omega)
$$

then

$$
\int_{\Omega}-\Delta u(x) \cdot w(x) d x \leq(-\mathscr{G})^{0}(u ; w), \quad w \in H_{0}^{1}(\Omega)
$$

This implies
$-\Delta u \in \partial(-\mathscr{G})(u) \subseteq\left\{w \in L^{2}(\Omega): g^{-}(x, u(x)) \leq w(x) \leq g^{+}(x, u(x))\right.$ a.e. in $\left.\Omega\right\}$,
i.e.,

$$
-\Delta u(x) \in\left[g^{-}(x, u(x)), g^{+}(x, u(x))\right] \quad \text { for almostall } x \in \Omega
$$

Hence, Theorem 4.1 gives at least two nontrivial solutions of Problem (W).
Remark 4.4. Very recently, in [15], an existence result has been obtained by using hypotheses $\left(\mathrm{h}_{1}\right),\left(\mathrm{h}_{2}\right),(14)$, and the following one:
There exists a $\delta>0$ such that

$$
\lambda_{k} \leq \frac{g(x, t)}{t}
$$

for all $0<|t|<\delta$ and almost all $x \in \Omega$; cf. [15, Theorem 3.1]. It is simple matter to see that this result and Theorem 4.1 above are mutually independent.

Remark 4.5. Let Ω and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be as in the Introduction and let A be a uniformly elliptic operator of the form

$$
A u=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(a^{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+c(x) u,
$$

where $a^{i j}: \Omega \rightarrow \mathbb{R}, i, j=1, \ldots, N$, satisfy the following conditions:
А 1$) a^{i j}=a^{j i} \in L^{\infty}(\Omega)$;
$\left.\mathrm{A}_{2}\right) c \in L^{\infty}(\Omega)$ and $c \geq 0$ almost everywhere in Ω;
$\left.\mathrm{A}_{3}\right)$ There is a $\gamma>0$ such that

$$
\sum_{i, j=1}^{N} a^{i j}(x) \xi_{i} \xi_{j} \geq \gamma|\xi|^{2} \quad \forall x \in \Omega, \xi \in \mathbb{R}^{N}
$$

On $H_{0}^{1}(\Omega)$ we consider the norm (equivalent to the usual one)

$$
\|u\|:=\langle A u, u\rangle^{1 / 2}
$$

induced by the inner product

$$
\langle A u, v\rangle=\int_{\Omega}\left[\sum_{i, j=1}^{N} a^{i j}(x) \frac{\partial u(x)}{\partial x_{i}} \frac{\partial v(x)}{\partial x_{j}}+c(x) u(x) v(x)\right] d x
$$

see for instance [6, p. 650]. It is well known (vide Proposition 6.1.15, p. 652, and Theorem 6.1.21, p. 654, of [6]) that the eigenvalue Dirichlet problem

$$
\begin{cases}A u=\lambda u & \text { in } \Omega \tag{28}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

possesses a sequence $\left\{\lambda_{n}\right\}$ of eigenvalues fulfilling

$$
0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq \cdots
$$

and a corresponding sequence $\left\{\varphi_{n}\right\}$ of eigenfunctions normalized as follows:

$$
\begin{gather*}
\left\langle A \varphi_{n}, \varphi_{n}\right\rangle=\lambda_{n} \int_{\Omega} \varphi_{n}(x)^{2} d x=\lambda_{n} \quad \forall n \in \mathbb{N} \tag{29}\\
\left\langle A \varphi_{n}, \varphi_{m}\right\rangle=\int_{\Omega} \varphi_{m}(x) \varphi_{n}(x) d x=0 \tag{30}
\end{gather*}
$$

provided $m, n \in \mathbb{N}$ and $m \neq n$; see [6, Proposition 6.1.19, p. 653].
Arguing as in the proof of Theorem 4.1, but with $A u$ in place of $-\Delta u, u \in H_{0}^{1}(\Omega)$, it is possible to obtain two nontrivial solutions of the following variationalhemivariational inequality problem:

$$
\left\{\begin{array}{l}
u \in K \tag{A,K}\\
\langle A u, v-u\rangle+\mathscr{G}^{0}(u ; v-u) \geq 0 \quad \forall v \in K
\end{array}\right.
$$

where K is of type (K) in $H_{0}^{1}(\Omega)$. Recently, in [16], X. Wu and T. Leng studied the existence of two nontrivial solutions in $H_{0}^{1}(\Omega)$ to the problem

$$
\begin{cases}A u=g(x, u) & \text { in } \Omega \tag{31}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where g is a locally bounded Carathéodory function, under assumption $\left(\mathrm{h}_{1}\right)$ and the following one:
There exists an integer $k \geq 1$ such that

$$
\begin{equation*}
\lambda_{k} \leq \liminf _{t \rightarrow 0} \frac{g(x, t)}{t} \leq \limsup _{t \rightarrow 0} \frac{g(x, t)}{t}<\lambda_{k+1} \tag{32}
\end{equation*}
$$

uniformly for a.e. $x \in \Omega$.
We point out that if the first inequality in (32) is strict, then Theorem 1.1 of [16] is a very special case of Theorem 4.1 written for $\left(\mathrm{P}_{A, K}\right)$. For example, we require only that g be a locally bounded measurable function.

REFERENCES

[1] H. Brézis, Analyse Fonctionnelle - Théorie et Applications, Masson, Paris, 1983.
[2] H. Brézis - L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963.
[3] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102129.
[4] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math., vol. 5, SIAM, Philadelphia, 1990.
[5] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[6] L. Gasiński - N.S. Papageourgiou, Nonlinear Analysis, Chapman \& Hall/CRC, 2006.
[7] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn, Springer-Verlag, Berlin, 1983.
[8] N. Ghoussoub, A min-max principle with a relaxed boundary condition, Proc. Amer. Math. Soc. 117 (1993), 439-447.
[9] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math., 107, Cambridge Univ. Press, Cambridge, 1993.
[10] A. Kristály - Cs. Varga, Cerami (C) condition and mountain pass theorem for multivalued mapping, Serdica Math. J. 28 (2002), 95-108.
[11] R. Livrea - S. A. Marano, A min-max principle fon nondifferentiable functions with a weak compactness condition, Comm. Pure Appl. Anal. 8 (2009), in press.
[12] R. Livrea, S.A. Marano - D. Motreanu, Critical points for nondifferentiable functions in presence of splitting, J. Differential Equations 226 (2006), 704-725.
[13] R. Livrea - S. A. Marano, Existence and classification of critical points for nondifferentiable functions, Adv. Differential Equations 9 (2004), 961-978.
[14] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Mat. Soc., Providence, 1986.
[15] X. Wu, A new critical point theorem for locally Lipschitz functionals with applications to differential equations, Nonlinear Anal. 66 (2007), 624-638.
[16] X. Wu - T. Leng, On multiplicity of solutions of Dirichlet problem for uniformly elliptic operator equations, J. Math. Anal. Appl. 324 (2006), 216-224.

GIOVANNI MOLICA BISCI
Dipartimento P.A.U.
Università Mediterranea di Reggio Calabria,
Salita Melissari - Feo di Vito 89100 Reggio Calabria, Italy. e-mail: gmolica@unirc.it

