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STABILITY OF CONSTANT EQUILIBRIA IN A
KELLER–SEGEL SYSTEM WITH GRADIENT DEPENDENT

CHEMOTACTIC SENSITIVITY

S. KOHATSU - T. YOKOTA

This paper deals with the Keller–Segel system with gradient depen-
dent chemotactic sensitivity,

{
ut = ∆u−χ∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,
vt = ∆v− v+u, x ∈ Ω, t > 0,

where Ω ⊂ Rn (n ∈ N) is a bounded domain with smooth boundary, and
χ > 0, p ∈ (1,∞) are constants. The purpose of this paper is to establish
stability of constant equilibria under some smallness conditions for the
initial data.
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1. Introduction

In this paper we consider the following Keller–Segel system with gradient de-
pendent chemotactic sensitivity:

ut = ∆u−χ∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,
vt = ∆v− v+u, x ∈ Ω, t > 0,
∇u ·ν = ∇v ·ν = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ∈ N) is a bounded domain with smooth boundary ∂Ω, χ > 0,
p ∈ (1,∞) are constants, ν is the outward normal vector to ∂Ω, u0 and v0 satisfy{

u0 ∈C0(Ω), u0 ≥ 0 in Ω and u0 ̸= 0,
v0 ∈W 1,∞(Ω) and v0 ≥ 0 in Ω.

(1.2)

In recent years, chemotaxis systems with the term −χ∇ · (u|∇v|p−2∇v) have
been studied, where the unknown functions u and v describe the density of
biological species and the concentration of chemical substances, respectively.
When p = 2, the problem (1.1) is reduced to the classical Keller–Segel system
proposed in [6], and there are a lot of work on large-time behavior of solutions.
In the case n = 1, Osaki and Yagi [12] investigated asymptotic behavior of so-
lutions. When n ≥ 2, Winkler [15] and Cao [2] established large-time behavior
of solutions, that is,

∥u(·, t)−u0∥L∞(Ω) → 0 as t → ∞, (1.3)

under smallness conditions for ∥u0∥L
n
2 (Ω)

and ∥∇v0∥Ln(Ω), where u0 := 1
|Ω|

∫
Ω

u0.
For the case that Ω = Rn, see [10] and [3]. Considering these results, our focus
will here be on how do the solutions of (1.1) behave in the case p ̸= 2, especially
whether (1.3) holds true or not.

We first review previous works for some related systems with the chemo-
tactic term −χ∇ · (u|∇v|p−2∇v). To the best of our knowledge, such systems
were initially studied by Negreanu and Tello [11], where they considered the
simplified parabolic–elliptic system{

ut = ∆u−χ∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,
0 = ∆v−u0 +u, x ∈ Ω, t > 0.

(1.4)

They proved uniform boundedness of u(·, t) in L∞(Ω) when p ∈ (1,∞) (n = 1),
and p ∈ (1, n

n−1) (n ≥ 2). They also showed existence of infinitely many steady
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states in the case that p ∈ (1,2) (n = 1). On the other hand, Tello [13] proved
that a solution to (1.4) blows up in finite time when p ∈ ( n

n−1 ,2) (n ≥ 3). Wang
and Li [14] studied the parabolic–parabolic system{

ut = ∆u−∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,
vt = ∆v−uv, x ∈ Ω, t > 0,

where p ∈ (1,2). They showed global existence of weak solutions in the case
that 2 ≤ n < 8−2(p−1)

p−1 , and established global existence of renormalized solu-

tions in the complementary case n ≥ 8−2(p−1)
p−1 .

We next focus on the problem (1.1) and state known results and our purpose.
The problem (1.1) was studied by Yan and Li [17]. They obtained global exis-
tence and boundedness of weak solutions in the case p ∈ (1, n

n−1) (n ≥ 2). We
note that, following their proofs in [17], one can establish the same result in the
case p ∈ (1,2) (n = 1). However, large-time behavior of weak solutions to (1.1)
has not been investigated yet. The purpose of this paper is to reveal behavior
of solutions to the problem (1.1) for general p ∈ (1,∞), especially we focus on
the asymptotic stability (1.3). Inspired by [8, 9], since boundedness was already
obtained, we will impose some smallness conditions for ∥u0∥L1(Ω).

Before we state main results, we give a definition of weak solutions to (1.1)
introduced by Yan and Li [17, Definition 2.1].

Definition 1.1. Let u0 and v0 satisfy (1.2). Let T > 0. A pair (u,v) of functions
is called a weak solution of (1.1) in Ω× (0,T ) if

(i) u ∈ L∞(Ω× [0,T )), v ∈ L∞(Ω× [0,T ))∩L2([0,T );W 1,2(Ω)),

(ii) u ≥ 0 a.e. on Ω× (0,T ), v ≥ 0 a.e. on Ω× (0,T ),

(iii) |∇v|p−2∇v ∈ L2(Ω× [0,T )),

(iv) u has the mass conservation property∫
Ω

u(·, t) =
∫

Ω

u0 for a.a. t > 0,

(v) for any nonnegative ϕ ∈C∞
c (Ω× [0,T )),

−
∫ T

0

∫
Ω

uϕt −
∫

Ω

u0ϕ(·,0) =
∫ T

0

∫
Ω

u ·∆ϕ +χ

∫ T

0

∫
Ω

u|∇v|p−2
∇v ·∇ϕ

and

−
∫ T

0

∫
Ω

vϕt −
∫

Ω

v0ϕ(·,0) =−
∫ T

0

∫
Ω

∇v ·∇ϕ −
∫ T

0

∫
Ω

vϕ +
∫ T

0

∫
Ω

uϕ

hold true.
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If (u,v) : Ω×(0,∞)→R2 is a weak solution of (1.1) in Ω×(0,T ) for all T > 0,
then (u,v) is called a global weak solution of (1.1).

It would be possible to choose u0 ∈ L∞(Ω) in Definition 1.1, however, for
sake of simplicity, we here assume that u0 is continuous.

We now state the main theorems. The first theorem is concerned with sta-
bility of constant equlibria u0.

Theorem 1.2. Let n ∈N. Assume that u0 and v0 satisfy (1.2). Let u0 := 1
|Ω|

∫
Ω

u0

and m := ∥u0∥L1(Ω). Suppose thatp ∈ (1,2) if n = 1,

p ∈
(

1,
n

n−1

)
if n ≥ 2.

(1.5)

Then there exist a global weak solution (u,v) of (1.1) and t1 > 0 such that

∥u(·, t)−u0∥L∞(Ω) ≤Cmp(1+mα +mβ ) for all t ≥ t1, (1.6)

where C > 0, α > 0 and β > 0 are constants. In particular, one can find η0 > 0
such that for all η ∈ (0,η0), whenever u0 fulfills

∥u0∥L1(Ω) ≤ η ,

u satisfies
∥u(·, t)−u0∥L∞(Ω) ≤ η for all t ≥ t1.

The second theorem gives asymptotic stability of u0.

Theorem 1.3. Suppose that

n = 1 and p ∈ [2,∞).

Assume that u0 and v0 satisfy (1.2), and u0 ∈
⋃

θ∈(0,1)C
θ (Ω). Then there exist a

global classical solution

(u,v) ∈
(
C0(Ω× [0,∞))∩C2,1(Ω× (0,∞))

)2

of (1.1) and t2 > 0 such that the estimate (1.6) holds for all t ≥ t2. Moreover,
one can find η0 > 0 such that for all η ∈ (0,η0), whenever u0 fulfills

∥u0∥L1(Ω) ≤ η ,

u satisfies

∥u(·, t)−u0∥L∞(Ω) ≤ ηe−h(t−t2) for all t ≥ t2, (1.7)

where h > 0 is a constant. In particular,

∥u(·, t)−u0∥L∞(Ω) → 0 as t → ∞.
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Remark 1.4. As we consider u−M and v−M instead of u and v in Theorem 1.3,
where M := minx∈Ω

u0(x), the stabilization (1.7) can be established even when
u0 fulfills

∥u0 −M∥L1(Ω) ≤ η

which means that the variation of u0 in Ω is sufficiently small.

Remark 1.5. It is unknown whether asymptotic stability of u0 under the condi-
tion (1.5) holds or not.

The proofs of the main theorems are based on [9]. As to the proof of Theo-
rem 1.2, we consider a regularized problem of which global classical solvability
is known, and construct a weak solution by taking the limit of solutions of the
regularized problem. In order to prove (1.6), we first obtain

∥uε(·, t)−u0∥L∞(Ω) ≤Cmp(1+mα +mβ ) for all t ≥ t1

with some t1 > 0 which is independent of ε , where uε is the first component
of solutions to a regularized problem. Then we let ε → 0 and construct a weak
solution which satisfies (1.6). However, unlike in [9], we cannot obtain the
estimate for ∥∇vε∥Lq(Ω) with large q (Lemma 3.2), so we need to modify their
proofs. With regard to the proof of Theorem 1.3, we first obtain the estimate
(1.6). Next, to prove (1.7), we put

S :=
{

T ≥ t2 | ∥u(·, t)−u0∥L∞(Ω) ≤ ηe−h(t−t2) ∀ t ∈ [t2,T ]
}

and define T ∗ := supS ∈ (t2,∞]. Then, since the power of mp in (1.6) is greater
than 1, we can obtain the sharper estimate ∥u(·, t)−u0∥L∞(Ω) ≤ 1

2 ηe−h(t−t2) for
t ∈ (t2,T ∗), and hence we have T ∗ = ∞, which shows exponential decay of
u(·, t)−u0.

This paper is organized as follows. In Section 2, we give some useful in-
equalities. Section 3 is devoted to the proofs of stability of u0 (Theorem 1.2). In
Section 4, we show asymptotic stability of u0 (Theorem 1.3).

Throughout this paper, we put m := ∥u0∥L1(Ω), and we denote by ci generic
positive constants.

2. Preliminaries

In this section we collect some inequalities which will be used later. The fol-
lowing lemma provides an estimate for certain integral, which is established in
[15, Lemma 1.2].



218 S. KOHATSU - T. YOKOTA

Lemma 2.1. Let κ < 1, δ < 1, γ > 0, µ > 0, and γ ̸= µ . Then there exists a
constant C =C(κ,δ ,γ,µ)> 0 such that∫ t

0
(1+(t − s)−κ)e−γ(t−s)(1+ s−δ )e−µs ds ≤C(1+ tmin{0,1−κ−δ})e−min{γ,µ}t

for all t > 0.

We next recall Lp-Lq estimates for the Neumann heat semigroup on bounded
domains. We refer to [15, Lemma 1.3] for the proofs (see also [2, Lemma 2.1]).

Lemma 2.2. Let (et∆)t≥0 be the Neumann heat semigroup in Ω, and denote by
λ1 > 0 the first nonzero eigenvalue of −∆ in Ω under the Neumann boundary
condition. Then there exist constants C1, . . . ,C4 > 0 which depend only on Ω

such that the following hold:

(i) If 1 ≤ q ≤ r ≤ ∞, then

∥et∆w∥Lr(Ω) ≤C1(1+ t−
n
2 (

1
q−

1
r ))e−λ1t∥w∥Lq(Ω) for all t > 0

holds for all w ∈ Lq(Ω) with
∫

Ω
w = 0.

(ii) If 1 ≤ q ≤ r ≤ ∞, then

∥∇et∆w∥Lr(Ω) ≤C2(1+ t−
1
2−

n
2 (

1
q−

1
r ))e−λ1t∥w∥Lq(Ω) for all t > 0

is valid for all w ∈ Lq(Ω).

(iii) If 2 ≤ q < ∞, then

∥∇et∆w∥Lq(Ω) ≤C3e−λ1t∥∇w∥Lq(Ω) for all t > 0

is true for all w ∈W 1,q(Ω).

(iv) If 1 < q ≤ r ≤ ∞, then

∥et∆
∇ ·w∥Lr(Ω) ≤C4(1+ t−

1
2−

n
2 (

1
q−

1
r ))e−λ1t∥w∥Lq(Ω) for all t > 0

holds for all w ∈ (Lq(Ω))n, where et∆∇· is the extension of the operator
et∆∇· on (C∞

c (Ω))n to (Lq(Ω))n.

We also recall the Gagliardo–Nirenberg inequality in the following lemma,
which is the special case of [4, Proposition A.1].

Lemma 2.3. Let q > 0, r ∈ (0,q), and s ∈ [1,∞] such that 1
s −

1
n < 1

q . Then
there exists a constant C = C(Ω,s,r,n) > 0 such that for all u ∈ Lr(Ω) with
∇u ∈ Ls(Ω),

∥u∥Lq(Ω) ≤C∥∇u∥a
Ls(Ω)∥u∥1−a

Lr(Ω)+C∥u∥Lr(Ω),

where a :=
1
r −

1
q

1
r +

1
n−

1
s
.
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3. Stability of u0 when p ∈ (1,2) if n = 1, and p ∈ (1, n
n−1) if n ≥ 2

In this section we will show Theorem 1.2. In the following, we let λ1 > 0 be the
first nonzero eigenvalue of −∆ in Ω under the Neumann boundary condition.
Also, we suppose that u0 and v0 satisfy (1.2), and p satisfies (1.5).

3.1. Regularized problem of (1.1)

According to the idea from [17], we consider the regularized problem
(uε)t = ∆uε −χ∇ ·

(
uε(|∇vε |2 + ε)

p−2
2 ∇vε

)
, x ∈ Ω, t > 0,

(vε)t = ∆vε − vε +uε , x ∈ Ω, t > 0,
∇uε ·ν = ∇vε ·ν = 0, x ∈ ∂Ω, t > 0,
uε(x,0) = u0(x), vε(x,0) = v0(x), x ∈ Ω,

(3.1)

where ε ∈ (0,1). Global existence of classical solutions to (3.1) has already
been proved in [17, Lemma 2.2 and Lemma 4.1]. Hereinafter, we let (uε ,vε) be
the global classical solution of (3.1). We first note that uε satisfies

∥uε(·, t)∥L1(Ω) = ∥u0∥L1(Ω) = m for all t > 0 and ε ∈ (0,1). (3.2)

The next lemma asserts that the solution of (3.1) is uniformly bounded with
respect to time and ε . For the proof, see [17, Lemma 4.1].

Lemma 3.1. Suppose that p satisfies (1.5). Then there exists a constant C > 0
such that

∥uε(·, t)∥L∞(Ω) ≤C (3.3)

for all t > 0 and ε ∈ (0,1).

3.2. Lr-estimate for uε in terms of mass

We give an Lr-estimate for uε in terms of mass m which will be used later
(Lemma 3.4). To this end, we first employ semigroup techniques to estimate
∇vε in Lq(Ω) for some q.

Lemma 3.2. Let q satisfyq ∈ [1,∞) if n = 1,

q ∈
[

1,
n

n−1

)
if n ≥ 2.

(3.4)

Then there exists a constant C > 0 such that

∥∇vε(·, t)∥Lq(Ω) ≤C(1+ t−
1
2 )e−(1+λ1)t +Cm

for all t > 0 and ε ∈ (0,1).
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Proof. Since vε solves the second equation of (3.1), it follows that

vε(·, t) = et(∆−1)v0 +
∫ t

0
e(t−σ)(∆−1)uε(·,σ)dσ

for all t > 0 and ε ∈ (0,1). Thus,

∥∇vε(·, t)∥Lq(Ω) ≤ e−t∥∇et∆v0∥Lq(Ω)+
∫ t

0
e−(t−σ)∥∇e(t−σ)∆uε(·,σ)∥Lq(Ω) dσ

(3.5)

for all t > 0 and ε ∈ (0,1). Here, according to Lemma 2.2 (ii), we have

e−t∥∇et∆v0∥Lq(Ω) ≤ c1(1+ t−
1
2 )e−(1+λ1)t∥v0∥Lq(Ω) (3.6)

for all t > 0. Moreover, invoking Lemma 2.2 (ii) and (3.2), we can see that∫ t

0
e−(t−σ)∥∇e(t−σ)∆uε(·,σ)∥Lq(Ω) dσ

≤ c2

∫ t

0

(
1+(t −σ)−

1
2−

n
2(1− 1

q)
)
e−(1+λ1)(t−σ)∥uε(·,σ)∥L1(Ω) dσ

= c2m
∫ t

0

(
1+σ

− 1
2−

n
2(1− 1

q)
)
e−(1+λ1)σ dσ

≤ c2m
∫

∞

0

(
1+σ

− 1
2−

n
2(1− 1

q)
)
e−(1+λ1)σ dσ (3.7)

for all t > 0 and ε ∈ (0,1). Since the integral
∫

∞

0 (1+σ
− 1

2−
n
2 (1−

1
q ))e−(1+λ1)σ dσ

is finite according to (3.4), the claim follows from (3.5), (3.6) and (3.7).

From Lemma 3.2 we prove an Lr-estimate for uε in terms of mass m.

Lemma 3.3. Suppose that p satisfies (1.5). Let r ∈ (1,∞). Then there exists a
constant C > 0 such that

∥uε(·, t)∥Lr(Ω) ≤Ce−
t−1

r +Cm
(

1+m
2(p−1)

r +m
2(p−1)
r(1−a)

)
for all t > 1 and ε ∈ (0,1), with some a ∈ (0,1).

Proof. Let r ∈ (1,∞). Multiplying the first equation of (3.1) by ur−1
ε , integrating

by parts yield, and noting that p < 2, we obtain

1
r

d
dt

∫
Ω

ur
ε +

4(r−1)
r2

∫
Ω

∣∣∇u
r
2
ε

∣∣2 = (r−1)χ
∫

Ω

(|∇vε |2 + ε)
p−2

2 (∇vε ·∇uε)ur−1
ε

≤ (r−1)χ
∫

Ω

|∇vε |p−1|∇uε |ur−1
ε

=
2(r−1)χ

r

∫
Ω

|∇vε |p−1∣∣∇u
r
2
ε

∣∣u r
2
ε (3.8)
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for all t > 0 and ε ∈ (0,1). Here thanks to the Young inequality, we can see that

2(r−1)χ
r

∫
Ω

|∇vε |p−1∣∣∇u
r
2
ε

∣∣u r
2
ε

≤ r−1
r2

∫
Ω

∣∣∇u
r
2
ε

∣∣2 +(r−1)χ2
∫

Ω

|∇vε |2(p−1)ur
ε . (3.9)

Besides, by the Hölder inequality, we infer that

∫
Ω

|∇vε |2(p−1)ur
ε ≤

[∫
Ω

|∇vε |s
] 2(p−1)

s
[∫

Ω

u
sr

s−2(p−1)
ε

] s−2(p−1)
s

, (3.10)

where

s ∈ (2(p−1),∞). (3.11)

From (3.8), (3.9), and (3.10) we have

1
r

d
dt

∫
Ω

ur
ε +

3(r−1)
r2

∫
Ω

∣∣∇u
r
2
ε

∣∣2
≤ (r−1)χ2

[∫
Ω

|∇vε |s
] 2(p−1)

s
[∫

Ω

u
sr

s−2(p−1)
ε

] s−2(p−1)
s

and hence,

d
dt

∫
Ω

ur
ε +

∫
Ω

ur
ε +

3(r−1)
r

∫
Ω

∣∣∇u
r
2
ε

∣∣2
≤ r(r−1)χ2

[∫
Ω

|∇vε |s
] 2(p−1)

s
[∫

Ω

u
sr

s−2(p−1)
ε

] s−2(p−1)
s

+
∫

Ω

ur
ε (3.12)

for all t > 0 and ε ∈ (0,1), with s satisfying (3.11). We now estimate the first
term on the right-hand side of (3.12). According to Lemma 3.2, we know that[∫

Ω

|∇vε |s
] 2(p−1)

s

= ∥∇vε(·, t)∥2(p−1)
Ls(Ω)

≤ c1
(
(1+ t−

1
2 )e−(1+λ1)t +m

)2(p−1)

≤ c2(1+m2(p−1)) (3.13)

for all t > 1 and ε ∈ (0,1), where s satisfies (3.11) and

s ∈ [1,∞) if n = 1, and s ∈
[

1,
n

n−1

)
if n ≥ 2. (3.14)
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Moreover, the Gagliardo–Nirenberg inequality (Lemma 2.3) shows that[∫
Ω

u
sr

s−2(p−1)
ε

] s−2(p−1)
s

= ∥u
r
2
ε ∥2

L
2s

s−2(p−1) (Ω)

≤ c3∥∇u
r
2
ε ∥2a

L2(Ω)∥u
r
2
ε ∥

2(1−a)

L
2
r (Ω)

+ c3∥u
r
2
ε ∥2

L
2
r (Ω)

= c3∥∇u
r
2
ε ∥2a

L2(Ω)m
r(1−a)+ c3mr, (3.15)

where s fulfills (3.11), (3.14) and

s ∈ (n(p−1),∞), (3.16)

and a :=
r
2−

s−2(p−1)
2s

r
2+

1
n−

1
2

∈ (0,1). Here we can choose s satisfying (3.11), (3.14) and
(3.16), because the condition (1.5) implies

n(p−1)<
n

n−1
for n ≥ 2. (3.17)

Now, invoking (3.13), (3.15) and the Young inequality, we obtain

r(r−1)χ2
[∫

Ω

|∇vε |s
] 2(p−1)

s
[∫

Ω

u
sr

s−2(p−1)
ε

] s−2(p−1)
s

≤ c4(1+m2(p−1))∥∇u
r
2
ε ∥2a

L2(Ω)m
r(1−a)+ c4(1+m2(p−1))mr

≤ 2(r−1)
r

∫
Ω

∣∣∇u
r
2
ε

∣∣2 + c5(1+m2(p−1))
1

1−a mr + c4(1+m2(p−1))mr

≤ 2(r−1)
r

∫
Ω

∣∣∇u
r
2
ε

∣∣2 + c6mr(1+m2(p−1)+m
2(p−1)

1−a
)

(3.18)

for all t > 1 and ε ∈ (0,1), with s satisfying (3.11), (3.14) and (3.16). Next,
again by using Lemma 2.3 and the Young inequality, we have∫

Ω

ur
ε = ∥u

r
2
ε ∥2

L2(Ω)

≤ c7∥∇u
r
2
ε ∥2b

L2(Ω)∥u
r
2
ε ∥

2(1−b)

L
2
r (Ω)

+ c7∥u
r
2
ε ∥2

L
2
r (Ω)

= c7∥∇u
r
2
ε ∥2b

L2(Ω)m
r(1−b)+ c7mr

≤ r−1
r

∫
Ω

∣∣∇u
r
2
ε

∣∣2 + c8mr (3.19)

for all t > 0 and ε ∈ (0,1), where b :=
r
2−

1
2

r
2+

1
n−

1
2
∈ (0,1). Plugging (3.18) and

(3.19) into (3.12), we finally derive the differential inequality

d
dt

∫
Ω

ur
ε +

∫
Ω

ur
ε ≤ c9mr(1+m2(p−1)+m

2(p−1)
1−a

)
(3.20)
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for all t > 1 and ε ∈ (0,1). Integrating (3.20) over (1, t) and applying (3.3), we
have ∫

Ω

ur
ε(·, t)≤ e−(t−1)

∫
Ω

ur
ε(·,1)+ c9mr(1+m2(p−1)+m

2(p−1)
1−a

)
≤ c10|Ω|e−(t−1)+ c9mr(1+m2(p−1)+m

2(p−1)
1−a

)
for all t > 1 and ε ∈ (0,1), which leads to the conclusion.

3.3. Boundedness of uε −u0 in the large-time limit

We now derive an L∞-estimate for uε − u0, which is crucial to obtain (1.6). In
order to compute more directly, we introduce{

Uε(x, t) := uε(x, t)−u0,

Vε(x, t) := vε(x, t)−u0

for ε ∈ (0,1), x ∈ Ω and t > 0. Then (Uε ,Vε) satisfies the following problem:
(Uε)t = ∆Uε −χ∇ ·

(
uε(|∇Vε |2 + ε)

p−2
2 ∇Vε

)
, x ∈ Ω, t > 0,

(Vε)t = ∆Vε −Vε +Uε , x ∈ Ω, t > 0,
∇Uε ·ν = ∇Vε ·ν = 0, x ∈ ∂Ω, t > 0,
Uε(x,0) = u0(x)−u0, Vε(x,0) = v0(x)−u0, x ∈ Ω.

(3.21)

Lemma 3.4. Suppose that p satisfies (1.5). Then there exist C > 0 and t1 > 0
such that

∥Uε(·, t)∥L∞(Ω) ≤Cmp(1+mα +mβ ) for all t ≥ t1 and ε ∈ (0,1)

with some α > 0 and β > 0.

Proof. Rewriting the first equation in (3.21) as

Uε(·, t) = e(t−1)∆Uε(·,1)

−χ

∫ t

1
e(t−σ)∆

∇ ·
(
uε(·,σ)(|∇Vε(·,σ)|2 + ε)

p−2
2 ∇Vε(·,σ)

)
dσ ,

we have

∥Uε(·, t)∥L∞(Ω)

≤ ∥e(t−1)∆Uε(·,1)∥L∞(Ω)

+χ

∫ t

1
∥e(t−σ)∆

∇ ·
(
uε(·,σ)(|∇Vε(·,σ)|2 + ε)

p−2
2 ∇Vε(·,σ)

)
∥L∞(Ω) dσ

(3.22)



224 S. KOHATSU - T. YOKOTA

for all t > 1 and ε ∈ (0,1). Here, in view of (3.2) we employ Lemma 2.2 (i) and
(3.3) to derive

∥e(t−1)∆Uε(·,1)∥L∞(Ω) ≤ c1e−λ1(t−1)∥Uε(·,1)∥L∞(Ω)

≤ c2e−λ1(t−1) (3.23)

for all t > 1 and ε ∈ (0,1). From now on, we estimate the second term on
the right-hand side of (3.22). We can apply Lemma 2.2 (iv) and the Hölder
inequality to see that

χ

∫ t

1
∥e(t−σ)∆

∇ ·
(
uε(·,σ)(|∇Vε(·,σ)|2 + ε)

p−2
2 ∇Vε(·,σ)

)
∥L∞(Ω) dσ

≤ c3

∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ)

∥∥uε(·,σ)|∇Vε(·,σ)|p−1∥∥
Lk(Ω)

dσ

≤ c3

∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ)∥∇Vε(·,σ)∥p−1

Lk1(p−1)(Ω)
∥uε(·,σ)∥Lk2 (Ω)

(3.24)

for all t > 1 and ε ∈ (0,1), with k1 > n and k2 > n to be fixed later, and k > n
satisfying 1

k = 1
k1
+ 1

k2
. In view of the obvious identity ∇Vε = ∇vε , Lemma 3.2

implies that

∥∇Vε(·, t)∥p−1
Lk1(p−1)(Ω)

≤ c4(e−λ1(p−1)(t−1)+mp−1) (3.25)

for all t > 1 and ε ∈ (0,1), where

k1 ∈
[

1
p−1

,∞

)
if n = 1, and k1 ∈

[
1

p−1
,

n
(p−1)(n−1)

)
if n ≥ 2.

(3.26)

We can actually choose k1 > n as in (3.26), since the relation (3.17) ensures that

n <
n

(p−1)(n−1)
for n ≥ 2.

Recalling Lemma 3.3, we have

∥uε(·, t)∥Lk2 (Ω) ≤ c5

[
e−

t−1
k2 +m

(
1+m

2(p−1)
k2 +m

2(p−1)
k2(1−a)

)]
(3.27)

for all t > 1, ε ∈ (0,1), with some a ∈ (0,1). Using (3.25) and (3.27) in (3.24),
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we derive that

χ

∫ t

1
∥e(t−σ)∆

∇ ·
(
uε(·,σ)(|∇Vε(·,σ)|2 + ε)

p−2
2 ∇Vε(·,σ)

)
∥L∞(Ω) dσ

≤ c6

∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ)e−

(
λ1(p−1)+ 1

k2

)
(σ−1) dσ

+ c6m
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
×

∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ)e−λ1(p−1)(σ−1) dσ

+ c6mp−1
∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ)e−

σ−1
k2 dσ

+ c6mp
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)∫ t

1

(
1+(t −σ)−

1
2−

n
2k
)
e−λ1(t−σ) dσ

=: c6I1(·, t)+ c6m
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
I2(·, t)

+ c6mp−1I3(·, t)+ c6mp
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
I4(·, t) (3.28)

for all t > 1 and ε ∈ (0,1), with some a ∈ (0,1). Here, by virtue of Lemma 2.1,
we deduce

I1(·, t) =
∫ t−1

0

(
1+(t −1− τ)−

1
2−

n
2k
)
e−λ1(t−1−τ)e−

(
λ1(p−1)+ 1

k2

)
τ dτ

≤ c7
(
1+(t −1)min{0,1− 1

2−
n
2k }

)
e−min

{
λ1,λ1(p−1)+ 1

k2

}
(t−1)

= 2c7e−min
{

λ1,λ1(p−1)+ 1
k2

}
(t−1) (3.29)

for all t > 1, with k2 satisfying

λ1 ̸= λ1(p−1)+
1
k2
. (3.30)

Since λ1(p− 1) < λ1 according to (1.5), we can also estimate I2(·, t) by using
Lemma 2.1 as

I2(·, t) =
∫ t−1

0

(
1+(t −1− τ)−

1
2−

n
2k
)
e−λ1(t−1−τ)e−λ1(p−1)τ dτ

≤ c8
(
1+(t −1)min{0,1− 1

2−
n
2k }

)
e−min{λ1,λ1(p−1)}(t−1)

= 2c8e−λ1(p−1)(t−1) (3.31)
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for all t > 1. Similarly, we utilize Lemma 2.1 again to obtain

I3(·, t) =
∫ t−1

0

(
1+(t −1− τ)−

1
2−

n
2k
)
e−λ1(t−1−τ)e−

1
k2

τ dτ

≤ c9
(
1+(t −1)min{0,1− 1

2−
n
2k }

)
e−min

{
λ1,

1
k2

}
(t−1)

= 2c9e−min
{

λ1,
1

k2

}
(t−1) (3.32)

for all t > 1, provided that

λ1 ̸=
1
k2
. (3.33)

On the other hand, recalling that k > n, we see that

I4(·, t)≤
∫

∞

0
(1+σ

− 1
2−

n
2k )e−λ1σ dσ < ∞ (3.34)

for all t > 1. Now, let k1 > n be as in (3.26), and take k2 > n large enough so
that k2 satisfies (3.30), (3.33) and 1

k1
+ 1

k2
< 1

n . Then, by plugging (3.29), (3.31),
(3.32) and (3.34) into (3.28) we can derive that

χ

∫ t

1
∥e(t−σ)∆

∇ ·
(
uε(·,σ)(|∇Vε(·,σ)|2 + ε)

p−2
2 ∇Vε(·,σ)

)
∥L∞(Ω) dσ

≤ c10e−min
{

λ1,λ1(p−1)+ 1
k2

}
(t−1)

+ c10m
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
e−λ1(p−1)(t−1)

+ c10mp−1e−min
{

λ1,
1

k2

}
(t−1)

+ c10mp
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
(3.35)

for all t > 1 and ε ∈ (0,1), with some a ∈ (0,1). Combining (3.23) and (3.35)
with (3.22) yields

∥Uε(·, t)∥L∞(Ω) ≤ c2e−λ1(t−1)+ c10e−min
{

λ1,λ1(p−1)+ 1
k2

}
(t−1)

+ c10m
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
e−λ1(p−1)(t−1)

+ c10mp−1e−min
{

λ1,
1

k2

}
(t−1)

+ c10mp
(

1+m
2(p−1)

k2 +m
2(p−1)
k2(1−a)

)
for all t > 1 and ε ∈ (0,1), with some a ∈ (0,1), and hence we arrive at the
conclusion.
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3.4. Proof of Theorem 1.2

The following lemma provides global existence of weak solutions to (1.1) and
some convergence results, which were already shown in [17, Theorem 1.1 and
Lemma 4.3].

Lemma 3.5. Suppose that p satisfies (1.5). Then there exist a global weak
solution (u,v) of (1.1) as well as a sequence (εk)k∈N such that

uε

∗
⇀ u in L∞(Ω× (0,∞)) (3.36)

and

uε → u in C0
loc

(
[0,∞);(W 2,2

0 (Ω))∗
)

(3.37)

as ε = εk ↘ 0.

We are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. The first half of the proof is similar to that of [16, Lemma
4.2]. By Lemma 3.4 and (3.36), there exists a null set N ⊂ [t1,∞) such that

∥u(·, t)−u0∥L∞(Ω) ≤ c1mp(1+mα +mβ ) for all t ∈ [t1,∞)\N (3.38)

for some α > 0 and β > 0. Indeed, from (3.36) it follows that

uε −u0
∗
⇀ u−u0 in L∞(Ω× [t1,∞))

as ε = εk ↘ 0, and then due to the weak lower semicontinuity of the norm (see
e.g., [1, Proposition 3.13 (iii)]), we infer from Lemma 3.4 that

∥u−u0∥L∞(Ω×[t1,∞)) ≤ liminf
ε=εk↘0

∥uε −u0∥L∞(Ω×[t1,∞))

≤ c1mp(1+mα +mβ )

for some α > 0 and β > 0, and moreover the measure theory ensures the exis-
tence of a null set N ⊂ [t1,∞) such that

u(·, t)−u0 ∈ L∞(Ω) and ∥u(·, t)−u0∥L∞(Ω) ≤ ∥u−u0∥L∞(Ω×[t1,∞))

for all t ∈ [t1,∞)\N. We claim that the inequality (3.38) actually holds for every
t ∈ [t1,∞). To see this, first, for each t ∈ [t1,∞) we can find (̃tk)k∈N ⊂ [t1,∞)\N
such that t̃k → t as k → ∞, and extracting a subsequence if necessary we also
have

u(·, t̃k)
∗
⇀ ũ in L∞(Ω) as k → ∞
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with some ũ∈ L∞(Ω) (see [1, Theorem 3.18]). On the other hand, (3.37) implies

u(·, t̃k)→ u(·, t) in (W 2,2
0 (Ω))∗ as k → ∞.

We thus get ũ = u(·, t), and due to the weak lower semicontinuity of the norm,
we arrive at

∥u(·, t)−u0∥L∞(Ω) ≤ liminf
k→∞

∥u(·, t̃k)−u0∥L∞(Ω)

≤ c1mp(1+mα +mβ ) for all t ∈ [t1,∞),

which proves the claim, and hence establishes (1.6). For the latter part of the
theorem, let η0 be such that

c1η
p−1
0 (1+η

α
0 +η

β

0 )≤ 1,

and for each η ∈ (0,η0) fix m = ∥u0∥L1(Ω) such that m ≤ η . Then we have

∥u(·, t)−u0∥L∞(Ω) ≤ η · c1η
p−1
0 (1+η

α
0 +η

β

0 )

≤ η

for all t ≥ t1, and the proof is complete.

4. Asymptotic stability of u0 when p ∈ [2,∞) and n = 1

In this section we will prove Theorem 1.3. Throughout this section, we let n= 1,
and denote by λ1 > 0 the first nonzero eigenvalue of −∆ in Ω. Also, we suppose
that u0 and v0 satisfy (1.2), u0 ∈

⋃
θ∈(0,1)C

θ (Ω) and p ∈ [2,∞).

We first give a result on global existence and boundedness of classical so-
lutions to (1.1) without a proof. Thanks to the regularity for u0, local existence
can be proved by standard arguments based on Schauder’s fixed point theorem
(see e.g., [5, 7]); boundedness, and hence globality, can be shown similarly as
in [11, Lemma 2.5] and [17, Lemma 4.1].

Lemma 4.1. Suppose that n = 1 and p ∈ [2,∞). Then there exists a global
classical solution

(u,v) ∈
(
C0(Ω× [0,∞))∩C2,1(Ω× (0,∞))

)2

of (1.1) which is bounded in the sense that there exists C > 0 such that

∥u(·, t)∥L∞(Ω) ≤C for all t > 0. (4.1)
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In the following, we denote by (u,v) the classical solution of (1.1) given in
Lemma 4.1. We next establish an Lr-estimate for u, which will be used to show
(1.6).

Lemma 4.2. Suppose that n = 1. Let q ∈ [1,∞). Then there exists a constant
C > 0 such that

limsup
t→∞

∥∇v(·, t)∥Lq(Ω) ≤Cm. (4.2)

Proof. According to the variation-of-constants formula associated with v, we
see that

v(·, t) = et(∆−1)v0 +
∫ t

0
e(t−σ)(∆−1)u(·,σ)dσ for all t > 0.

Repeating the proof of Lemma 3.2 with uε and vε replaced by u and v, we can
obtain

∥∇v(·, t)∥Lq(Ω) ≤ c1(1+ t−
1
2 )e−(1+λ1)t∥v0∥Lq(Ω)+ c1m

≤ c1|Ω|
1
q (1+ t−

1
2 )e−(1+λ1)t∥v0∥W 1,∞(Ω)+ c1m for all t > 0.

The claim therefore results by the fact that (1+t−
1
2 )e−(1+λ1)t → 0 as t → ∞.

Lemma 4.3. Suppose that n= 1 and p∈ [2,∞). Let r ∈ (1,∞). Then there exists
a constant C > 0 such that

limsup
t→∞

∥u(·, t)∥Lr(Ω) ≤Cm
(

1+m
2(p−1)

r +m
2(p−1)
r(1−a)

)
(4.3)

with some a ∈ (0,1).

Proof. Let r ∈ (1,∞). Testing the first equation of (1.1) with ur−1 and integrat-
ing by parts give

1
r

d
dt

∫
Ω

ur +
4(r−1)

r2

∫
Ω

∣∣∇u
r
2
∣∣2

= (r−1)χ
∫

Ω

|∇v|p−2(∇v ·∇u)ur−1

≤ (r−1)χ
∫

Ω

|∇v|p−1|∇u|ur−1

=
2(r−1)χ

r

∫
Ω

|∇v|p−1∣∣∇u
r
2
∣∣u r

2 for all t > 0.
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We will modify the argument of Lemma 3.3. Indeed, instead of Lemma 3.2 we
will use the fact that the estimate (4.2) guarantees existence of t0 > 0 such that

∥∇v(·, t)∥Lq(Ω) ≤ c1m for all t > t0 and q ∈ [1,∞),

and we can follow the proof as in Lemma 3.3 to observe that

d
dt

∫
Ω

ur +
∫

Ω

ur ≤ c2mr(1+m2(p−1)+m
2(p−1)

1−a
)

for all t > t0

with some a ∈ (0,1). This will lead to the conclusion.

As just as in Section 3, we introduce{
U(x, t) := u(x, t)−u0,

V (x, t) := v(x, t)−u0

for x ∈ Ω and t > 0. Then (U,V ) satisfies the following problem:
Ut = ∆U −χ∇ · (u|∇V |p−2∇V ), x ∈ Ω, t > 0,
Vt = ∆V −V +U, x ∈ Ω, t > 0,
∇U ·ν = ∇V ·ν = 0, x ∈ ∂Ω, t > 0,
U(x,0) = u0(x)−u0, V (x,0) = v0(x)−u0, x ∈ Ω.

(4.4)

We are now in a position to establish the estimate (1.6).

Lemma 4.4. Suppose that n = 1 and p ∈ [2,∞). Then there exists a constant
C > 0 such that

limsup
t→∞

∥U(·, t)∥L∞(Ω) ≤Cmp(1+mα +mβ ) (4.5)

with some α > 0 and β > 0.

Proof. In light of the identity ∇V = ∇v, for all q ∈ [1,∞) and r ∈ (1,∞), the
estimates (4.2) and (4.3) provide t1 = t1(r)> 0 such that

∥∇V (·, t)∥Lq(Ω) ≤ c1m for all t > t1 (4.6)

and

∥u(·, t)∥Lr(Ω) ≤ c1m
(

1+m
2(p−1)

r +m
2(p−1)
r(1−a)

)
for all t > t1 (4.7)
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with some a ∈ (0,1). We now make use of the representation formula for U to
see that

U(·, t) = e(t−t1)∆U(·, t1)

−χ

∫ t

t1
e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)

dσ ,

and hence,

∥U(·, t)∥L∞(Ω) ≤ ∥e(t−t1)∆U(·, t1)∥L∞(Ω)

+χ

∫ t

t1
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ

(4.8)

for all t > t1. Here, in view of the fact
∫

Ω
U = 0, we employ Lemma 2.2 (i) and

(4.1) to confirm that

∥e(t−t1)∆U(·, t1)∥L∞(Ω) ≤ c2e−λ1(t−t1)∥U(·, t1)∥L∞(Ω)

≤ c3e−λ1(t−t1) (4.9)

for all t > t1. Moreover, we see from Lemma 2.2 (iv), the Hölder inequality, and
(4.6) in conjunction with (4.7) that

χ

∫ t

t1
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ

≤ c4

∫ t

t1

(
1+(t −σ)−

1
2−

1
4
)
e−λ1(t−σ)

∥∥u(·,σ)|∇V (·,σ)|p−1∥∥
L2(Ω)

dσ

≤ c4

∫ t

t1

(
1+(t −σ)−

3
4
)
e−λ1(t−σ)∥u(·,σ)∥L4(Ω)∥∇V (·,σ)∥p−1

L4(p−1)(Ω)
dσ

≤ c5mp
(

1+m
p−1

2 +m
p−1

2(1−b)

)∫
∞

0
(1+σ

− 3
4 )e−λ1σ dσ (4.10)

for all t > t1, with some b ∈ (0,1). Therefore, a combination of (4.9) and (4.10)
with (4.8) ensures that this lemma holds.

In light of (4.2) and (4.5), we can pick t2 = t2(u,v)> 0 such that

∥∇V (·, t)∥Lq(Ω) ≤ c1m for all t ≥ t2 and q ∈ [1,∞), (4.11)

and

∥U(·, t)∥L∞(Ω) ≤ c1mp(1+mα +mβ ) for all t ≥ t2 (4.12)
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with some α > 0 and β > 0. We now select η0 > 0 such that

2c1η
p−1
0 (1+η

α
0 +η

β

0 )≤ 1, (4.13)

and for each η ∈ (0,η0) fix m = ∥u0∥L1(Ω) such that m ≤ η . Then we infer from
(4.12) and (4.13) that

∥U(·, t)∥L∞(Ω) ≤
1
2

η ·2c1η
p−1
0 (1+η

α
0 +η

β

0 )≤
1
2

η (4.14)

for all t ≥ t2. Consequently, we have that

S :=
{

T ≥ t2 | ∥U(·, t)∥L∞(Ω) ≤ ηe−h(t−t2) ∀ t ∈ [t2,T ]
}

is nonempty, where h ∈ (0, λ1
p ). Indeed, we see from the continuity of the

function t 7→ e−h(t−t2) that there exists T > t2 such that ηe−h(t−t2) > 1
2 η for all

t ∈ [t2,T ], and by (4.14) we have ∥U(·, t)∥L∞(Ω) ≤ ηe−h(t−t2) for all t ∈ [t2,T ],
which means that T ∈ S.

Now we define
T ∗ := supS ∈ (t2,∞]

and taking account of the definition of S, we observe that

∥U(·, t)∥L∞(Ω) ≤ ηe−h(t−t2) for all t ∈ [t2,T ∗). (4.15)

Then, in order to establish asymptotic stability of u0, it is sufficient to show that
T ∗ = ∞.

We first derive exponential decay of ∇V (·, t) in the following lemma.

Lemma 4.5. Suppose that n = 1 and p ∈ [2,∞). Let q ∈ [2,∞). Assume that
η0 > 0 satisfies the condition (4.13). Let h ∈ (0, λ1

p ). Then for all η ∈ (0,η0),
whenever u0 fulfills that m = ∥u0∥L1(Ω) ≤ η , V satisfies that

∥∇V (·, t)∥Lq(Ω) ≤Cηe−h(t−t2) for all t ∈ (t2,T ∗)

with some C > 0, where t2 > 0 is the time appearing in (4.11) and (4.12).

Proof. On account of the representation

V (·, t) = e(t−t2)(∆−1)V (·, t2)+
∫ t

t2
e(t−σ)(∆−1)U(·,σ)dσ , t ∈ (t2,T ∗),

we infer that

∥∇V (·, t)∥Lq(Ω)

≤ e−(t−t2)∥∇e(t−t2)∆V (·, t2)∥Lq(Ω)+
∫ t

t2
e−(t−σ)∥∇e(t−σ)∆U(·,σ)∥Lq(Ω)

(4.16)
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for all t ∈ (t2,T ∗). We derive from Lemma 2.2 (iii), (4.11) and the relation
m ≤ η that

e−(t−t2)∥∇e(t−t2)∆V (·, t2)∥Lq(Ω) ≤ c1e−(1+λ1)(t−t2)∥∇V (·, t2)∥Lq(Ω)

≤ c2ηe−(1+λ1)(t−t2) (4.17)

for all t ∈ (t2,T ∗). Moreover, from the fact h < λ1
p < 1+λ1, we can estimate

the second term on the right-hand side of (4.16) by using Lemma 2.2 (ii), (4.15)
and Lemma 2.1 as∫ t

t2
e−(t−σ)∥∇e(t−σ)∆U(·,σ)∥Lq(Ω)

≤ c3

∫ t

t2

(
1+(t −σ)−

1
2
)
e−(1+λ1)(t−σ)∥U(·,σ)∥Lq(Ω) dσ

≤ c3|Ω|
1
q

∫ t

t2

(
1+(t −σ)−

1
2
)
e−(1+λ1)(t−σ)∥U(·,σ)∥L∞(Ω) dσ

≤ c3|Ω|
1
q η

∫ t

t2

(
1+(t −σ)−

1
2
)
e−(1+λ1)(t−σ)e−h(σ−t2) dσ

= c3|Ω|
1
q η

∫ t−t2

0

(
1+(t − t2 − τ)−

1
2
)
e−(1+λ1)(t−t2−τ)e−hτ dτ

≤ c4η
(
1+(t − t2)min{0,1− 1

2}
)
e−min{1+λ1,h}(t−t2)

= 2c4ηe−h(t−t2) (4.18)

for all t ∈ (t2,T ∗). The claim follows from (4.16), (4.17) and (4.18).

Finally we derive T ∗ = ∞, which yields that u(·, t) converges to u0 as t → ∞.

Lemma 4.6. Suppose that n = 1 and p ∈ [2,∞). Let h ∈ (0, λ1
p ). Then there

exists η0 > 0 such that for all η ∈ (0,η0), whenever u0 satisfies the relation
m = ∥u0∥L1(Ω) ≤ η , we have

∥U(·, t)∥L∞(Ω) ≤ ηe−h(t−t2)

for all t ≥ t2, where t2 > 0 is the time appearing in (4.11) and (4.12).

Proof. We choose η0 as in (4.13). According to the variation-of-constants for-
mula for U in (4.4), we have

∥U(·, t)∥L∞(Ω) ≤ ∥e(t−t2)∆U(·, t2)∥L∞(Ω)

+χ

∫ t

t2
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ

(4.19)
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for all t ∈ (t2,T ∗). In view of the fact
∫

Ω
U = 0 and the assumption m ≤ η , a

combination of Lemma 2.2 (i) and (4.12) ensures that

∥e(t−t2)∆U(·, t2)∥L∞(Ω) ≤ c1e−λ1(t−t2)∥U(·, t2)∥L∞(Ω)

≤ c2η
p(1+η

α +η
β )e−λ1(t−t2) (4.20)

for all t ∈ (t2,T ∗), with some α > 0 and β > 0. We now estimate the second
term on the right-hand side of (4.19). An application of Lemma 2.2 (iv) entails
that

χ

∫ t

t2
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ

≤ c3

∫ t

t2

(
1+(t −σ)−

1
2−

1
4
)
e−λ1(t−σ)

∥∥u(·,σ)|∇V (·,σ)|p−1∥∥
L2(Ω)

dσ

≤ c3

∫ t

t2

(
1+(t −σ)−

3
4
)
e−λ1(t−σ)∥u(·,σ)∥L∞(Ω)∥∇V (·,σ)∥p−1

L2(p−1)(Ω)
dσ

(4.21)

for all t ∈ (t2,T ∗). Here, from the identity u(·, t) = U(·, t)+ u0, (4.15) and the
relation m ≤ η , we see that

∥u(·, t)∥L∞(Ω) ≤ ∥U(·, t)∥L∞(Ω)+u0

≤ ηe−h(t−t2)+
η

|Ω|
(4.22)

for all t ∈ (t2,T ∗). Also, Lemma 4.5 implies

∥∇V (·, t)∥L2(p−1)(Ω) ≤ c4ηe−h(t−t2) (4.23)

for all t ∈ (t2,T ∗). Inserting (4.22) and (4.23) into (4.21), we can derive that

χ

∫ t

t2
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ

≤ c5

∫ t

t2

(
1+(t −σ)−

3
4
)
e−λ1(t−σ)

×
(

ηe−h(σ−t2)+
η

|Ω|

)
η

p−1e−h(p−1)(σ−t2) dσ

= c5η
p
∫ t

t2

(
1+(t −σ)−

3
4
)
e−λ1(t−σ)e−hp(σ−t2) dσ

+
c5

|Ω|
η

p
∫ t

t2

(
1+(t −σ)−

3
4
)
e−λ1(t−σ)e−h(p−1)(σ−t2) dσ

=: c5η
pJ1(·, t)+

c5

|Ω|
η

pJ2(·, t) (4.24)
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for all t ∈ (t2,T ∗). We estimate the terms J1(·, t) and J2(·, t). Lemma 2.1 yields

J1(·, t) =
∫ t−t2

0

(
1+(t − t2 − τ)−

3
4
)
e−λ1(t−t2−τ)e−hpτ dτ

≤ c6
(
1+(t − t2)min{0,1− 3

4}
)
e−min{λ1,hp}(t−t2)

= 2c6e−hp(t−t2) (4.25)

for all t ∈ (t2,T ∗), where we have used the fact hp < λ1 since h ∈ (0, λ1
p ). Simi-

larly, we can apply Lemma 2.1 again and get

J2(·, t) =
∫ t−t2

0

(
1+(t − t2 − τ)−

3
4
)
e−λ1(t−t2−τ)e−h(p−1)τ dτ

≤ c7
(
1+(t − t2)min{0,1− 3

4}
)
e−min{λ1,h(p−1)}(t−t2)

= 2c7e−h(p−1)(t−t2) (4.26)

for all t ∈ (t2,T ∗). Plugging (4.25) and (4.26) into (4.24), we obtain

χ

∫ t

t2
∥e(t−σ)∆

∇ ·
(
u(·,σ)|∇V (·,σ)|p−2

∇V (·,σ)
)
∥L∞(Ω) dσ ≤ c8η

pe−h(p−1)(t−t2)

(4.27)

for all t ∈ (t2,T ∗). From the fact h ≤ h(p−1) since p ∈ [2,∞), and the relation
h < λ1

p < λ1, we combine (4.20) and (4.27) with (4.19) to confirm that

∥U(·, t)∥L∞(Ω) ≤ c9η
p(1+η

α +η
β )e−h(t−t2)

for all t ∈ (t2,T ∗). Now, taking η0 in (4.13) such that

2c9η
p−1
0 (1+η

α
0 +η

β

0 )≤ 1,

we can see that for all η ∈ (0,η0), whenever m ≤ η we have

∥U(·, t)∥L∞(Ω) ≤
1
2

ηe−h(t−t2)

for all t ∈ (t2,T ∗). Therefore, in light of the definition of T ∗, we conclude from
the continuity of U that T ∗ = ∞. This proves the lemma.

Proof of Theorem 1.3. In light of (4.12) we see that the estimate (1.6) holds for
all t ≥ t2. The stabilization (1.7) is a result of Lemma 4.6.
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