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ON SEQUENCES OF INTEGERS FOR HANKEL PLANES
IN A LINEAR SPACE Σ OF Pm

GIOIA FAILLA

For a vector space R ⊆ km+1 of dimension r + 1 on the algebraically
closed field k we determine, for any i≤ r, the possible numbers of Hankel
i−planes contained in the r−plane P(R), linear space in Pm.

1. Introduction

Let Pm be the projective space of dimension m defined on k, algebraically closed
field. Let R⊆ km+1 be a k−vector space of dimension r +1 and let P(R)⊆ Pm

be the corresponding r−plane.
In [2] the theory of the Hankel planes was developed. The authors give the
definition of Hankel r−plane, starting from a matrix (called Hankel matrix) of
elements of k. They give necessary and sufficient conditions for an r−plane to
be Hankel.
An interesting problem is to find invariants for an r−plane with respect to a
change of coordinates leaving fixed the standard rational normal curve Xm⊆Pm.
Our investigation in the topic of Hankel planes brings us to deduce that invari-
ants of a linear space are given by the positive integer numbers hi defined in
the following way: hi denotes the number of the independent Hankel i−planes
skew to the rational normal curve Xm of Pm and contained in the linear space
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P(R). We shall take the term hi as the general term of a decreasing sequence,
called h−sequence.
An open problem, given in [2], was to describe all the possible h−sequences in a
given linear space. In this paper, the problem has been completely solved, so we
obtain new invariants associated to a linear space Σ, in terms of a h−sequence.
To be precise, in section 2, we give some definitions and recall some notions
and results useful in the sequel. In Sections 3 and 4, considering a linear space
Σ ⊆ Pm of dimension r, skew to Xm and joining t maximal Hankel planes (that
can also have the same dimension), we determine the relative h−sequence.
We obtain simplified h−sequences when all the maximal Hankel planes have
the same dimension, or all of them have different dimensions.
In Section 5, we introduce the difference sequence ∆h, with general term ∆hi =
hi− hi+1. We consider a decreasing sequence of positive integer numbers hi

and we show that it is the h−sequence of some space Σ if, and only if, ∆h is
not increasing. Finally, we find the maximum and minimum number of Han-
kel i−planes contained in a linear space Σ i. e. the maximal and the minimal
h−sequences.

2. Preliminaries and Notations

Let k be an algebraically closed field, char(k) = 0. Starting from a matrix A ∈
k(m+1)×(n+1), for any p ≥ 0, we can construct a block Toeplitz matrix TA(p) ∈
k(m+p+1),(n+1)(p+1). Let R ⊆ km+1 be the k−space of the relations among the
rows of A and, R(p)⊆ km+p+1 be the k−space of the relations among the rows
of TA(p). In particular, any element of R(p) gives a Hankel matrix whose rows
belong to R (For more details see[2]). We recall the following:

Definition 2.1. Define Hankel Matrix a matrix of the following type:

H =


λ0 λ1 ... ... λm

λ1 λ2 ... λm λm+1
... ... ... ... ...

λp−1 λp ... ... λm+p−1
λp λp+1 ... λm+p−1 λm+p

 ∈ kp+1,m+1

Denote by Xm ⊆ Pm the rational normal curve, locus of points (a,b)m = (am,
am−1b, ...,bm), a,b ∈ k.

Definition 2.2. Define secant s−plane any s−dimensional linear subspace Σs ⊆
Pm that cuts Xm in s + 1 points (counting their multiplicity ). If Σs cuts Xm

in the point Pi with multiplicity ti, we write Σs =< t0P0, t1P1, ..., thPh >, (i =
0, ...,h; ∑ ti = s+1).
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Theorem 2.3. ([2], Theorem 3.7) Let πr ⊆ Pm be an r−plane spanned by points
of coordinates (di0, . . . ,dim), i = 0, . . . ,r. Then the number of independent Han-
kel p−planes contained in πr is equal to the number of independent solutions of
the linear system associated to the matrix Sp(πr), that is

dimR(p) = (p+1)(r +1)− rank Sp(πr)

where

Sp(πr) =


Bh B f Ω . . . Ω Ω

Ω Bh B f . . . Ω Ω

. . . . . . . . . . . . . . . . . .
Ω Ω Ω . . . Bh B f

 ∈ kpm,(p+1)(r+1)

BhB f =


d01 d11 . . . dr1 | d00 d10 . . . dr0
d02 d12 . . . dr2 | d01 d11 . . . dr1
. . . . . . . . . . . . | . . . . . . . . . . . .
d0m d1m . . . drm | d0m−1 d1m−1 . . . drm−1


and Ω ∈ km,r+1 is the null matrix.

Remark 2.4. If rank Sp(πr) = p(r +1), then dimR(p) = r +1. So dimR(p) =
dimR for any p≥ 0 and πr is a secant r−plane.

Definition 2.5. Let V ⊆ km+1 be a k−vector space of dimension r + 1. V is
called Hankel space if there exists a non zero Hankel matrix H ∈ kr+1,m+1,
whose (r +1) rows belong to V .

Definition 2.6. An r−plane πr ⊆Pm is called Hankel plane if πr = P(V ), where
V is a Hankel space. The r−plane πr is called non trivial if πr ∩Xm = /0. In
particular the Hankel 1−planes are called Hankel lines.

Remark 2.7. Any point P ∈ Pm is a Hankel 0−plane. In fact we can always
construct a 1× (m+1)−matrix that can be considered as a Hankel matrix.

Definition 2.8. Let Σ⊆Pm be a linear space. A Hankel r−plane πr ⊆ Σ is called
maximal in Σ if it is not contained in any Hankel (r +1)−plane of Σ.

Remark 2.9. If P ∈ πr ∩Xm, P ≡ (a,b)m, then πr is trivially Hankel since it is
always possible to write a Hankel matrix of rank 1 just using coordinates of P:

H =


am+r am+r−1b ... arbm

am+r−1b am+r−2b2 ... ar−1bm+1

... ... ...
ambr am−1br+1 ... bm+r

 .

Therefore it is more interesting to study Hankel r−planes which are skew to Xm.
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Remark 2.10. ([2], Remark 4.12) Let πr = P(R) be a Hankel r−plane such that
πr∩Xm = /0, where dimR = r+1. Let H = t(v0,v1, . . . ,vr) be the Hankel matrix
correspondent to πr. H has maximal rank by Theorem 2.11 and πr contains:two
Hankel independent (r− 1)−planes t(v0, . . . ,vr−1), t(v1, . . . ,vr), three Hankel
independent (r− 2)−planes t(v0, . . . ,vr−2), t(v1, . . . ,vr−1), t(v2, . . . ,vr),. . ., r
Hankel independent lines t(v0,v1), t(v1, v2), . . . , t(vr−1, vr), (r + 1) Hankel
0−planes v0,v1, . . . ,vr.

The following theorem characterizes the non trivial Hankel planes.

Theorem 2.11. (See [2], Theorem 4.11) Let πr ⊆ Pm be a Hankel r−plane.
Then πr ∩ Xm = /0 if, and only if, you can construct a unique maximal rank
Hankel matrix with r +1 rows, coordinates of points of πr.

3. Hankel maximal r−planes

We want to focus our study on Hankel maximal r−planes of a linear space
Σ⊆ Pm. We need these preliminary results:

Proposition 3.1. Let R⊆ km+1 be a vector space, dimR = r+1, such that P(R)
is skew to Xm ⊆ Pm. If dimR(1) = r, then dimR(2) = r− 1, . . . , dimR(r) = 1,
dimR(r +1) = 0 and πr = P(R)⊆ Pm is a Hankel r−plane.

Proof. Consider a basis of R(1):

L1 =
(

P1
Q1

)
,L2 =

(
P2
Q2

)
, ...,Lr =

(
Pr

Qr

)
with Pi = (ai0, . . . ,aim),Qi = (ai1, . . . ,ai(m+1)) elements of R. Since the line
Li corresponds to the point (ai0, . . . ,ai(m+1)) ∈ Pm+1 ([2], Remark 4.15), we
look for the Hankel 2−planes as solutions of the homogeneous linear system
associated to the matrix

(Bh B f ) = (Q1 Q2 . . . , Qr | P1 P2 . . . , Pr).

We have that r ≤ rank (BhB f )≤ r +1. rank (BhB f ) cannot be r otherwise P(R)
should be a secant r−plane (Remark 2.4). Then it is r + 1 and the linear sys-
tem has 2r− (r + 1) = r− 1 independent solutions. To determine the Hankel
3−planes, we know that R(1) has dimension equal to r and R(2) has dimen-
sion r− 1. By the same argument, R(3) ∼= R(2)(1) has dimension r− 2, and
so on. In particular there exists a non-zero element of R(r). So πr contains
(r− 1) independent Hankel 2−planes, (r− 2) independent Hankel 3−planes,
. . ., 2 independent Hankel (r−1)−planes, 1 Hankel r− Hankel plane. Then πr

is a Hankel r−plane.
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Example 3.2. Consider in P6 a Hankel 2−plane π2 with Hankel matrix: v1
v2
v3

=

 1 0 0 0 −1 1 2
0 0 0 −1 1 2 0
0 0 −1 1 2 0 −1

 ,

and a Hankel line π1 with Hankel matrix:(
v4
v5

)
=
(

1 0 −1 0 2 3 1
0 −1 0 2 3 1 0

)
.

We observe that π1 and π2 are not skew since v4 = v1 + v2 + v3. Let π = π1 +
π2 be their joining space, dimπ = 3. π contains 3 independent Hankel lines
(1,0,0,0,−1,1,2,0), (0,0,0,−1,1,2,0,1), (1,0,−1,0,2,3,1,0). Consider the
matrix (BhB f ) to compute the Hankel
2−planes:

(BhB f ) =



0 0 0 1 0 1
0 0 −1 0 0 0
0 −1 0 0 0 −1
−1 1 2 0 −1 0
1 2 3 −1 1 2
2 0 1 1 2 3
0 −1 0 2 0 1


.

By simple computation, we have that rank (BhB f ) = 4 and there are two Hankel
independent 2−planes in π . Hence π1 is not maximal in π .

Corollary 3.3. Let πr,πs ⊆ Σ be maximal Hankel planes in the linear space Σ.
Then πr ∩πs = /0.

Proof. If πs is a Hankel s−plane, then for any point P∈ πs there exists a Hankel
line L, passing through P. In fact, πs contains two Hankel (s−1)−planes; in the
sheaf generated by these two Hankel (s−1)− planes consider the Hankel πs−1
plane passing through P. πs−1 contains two Hankel (s−2)−planes. In the sheaf
generated by these two Hankel (s−2)− planes consider the Hankel πs−2 plane
passing through P and so on. Finally we find a Hankel line L passing through P.
Suppose πr∩πs 6= /0 and P ∈ πr∩πs. Since for any point of πs there is a Hankel
line L, then πr ∩L 6= /0. Consider the Hankel matrix that represents the Hankel
πr−plane:

H1 =


A0
A1
. . .
Ar

=


a0 a1 . . . am

a1 a2 . . . am+1
. . . . . . . . . . . .
ar ar+1 . . . am+r
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and the Hankel line

L =
(

B0
B1

)
=
(

b0 b1 . . . bm

b1 b2 . . . bm+1

)
.

Suppose that B0 ∈< A0, . . . ,Ar,B1 >. Consider the joining space πr +L =
< A0,A1, . . . ,Ar,B1 >. By Proposition 2.3, consider the matrix (BhB f ) to find
the Hankel lines: a1 a2 . . . ar+1 b2 a0 a1 . . . ar b1

. . . . . . . . . . . . . . . . . . . . . . . .
am am+1 . . . am+r bm+1 am−1 am . . . am+r−1 bm

 ∈ km,2r+4.

In the matrix (BhB f ) the columns arising from the Hankel matrix H1 are 2(r+1)
whose r + 2 are independent. Since the column t(b1, . . . ,bm) ∈ 〈t(a1, . . . ,am),
. . . , t(ar+1, . . . ,am+r), t(b2, . . . ,bm+1)〉, then rank (BhB f ) = r + 3. Thus, there
are r + 1 Hankel independent lines in πr + L and so, by Proposition 3.1, πr + L
is a Hankel (r +1)−plane that contains a Hankel maximal r−plane. Contradic-
tion.

Remark 3.4. Let πr and πs be two Hankel planes contained in a linear space Σ,
then the Hankel h−planes that they contain can be dependent (h < min(r,s)). In
this case πr and πs are not maximal in their joining space.

Theorem 3.5. Let Σ ⊆ Pm be a linear space of dimension r. Consider t Han-
kel maximal ri−planes πi = P(Vi) ⊆ Σ, dimπi = ri, such that πi ∩Xm = /0 (i =
1, ..., t). Then V1 + ...+Vt =V1⊕ ...⊕Vt ,i.e., dim < π1, ...,πt >= ∑

t
i=1 dimVi−1.

Proof. Consider the sum space V =
t

∑
i=1

Vi. Let P(V ) be the joining linear space

of all the Hankel πi−planes. In πi there are ri− Hankel lines and (ri−1) Han-

kel 2−planes (Remark 2.10). Then in P(V ) there are at most
t

∑
i=1

ri− t Hankel

2−planes. On the other hand, the Hankel ri−lines in πi are:(
Pi1
Qi1

)
,

(
Pi2
Qi2

)
, ...,

(
Piri

Qiri

)
Pi j,Qi j ∈Vi j = 1, ...,ri, i = 1, . . . , t.

Compute the Hankel 2−planes in P(V ) writing the matrix (BhB f ). Since R(2)∼=
R(1)(1), then we have S1(P(R(2))) =

(tQ11 ...tQ1r1
tQ21 ...tQ2r2 ...tQt1 ...tQtrt | tP11 ...tP1r1

tP21 ...tP2r2 ...tPt1 ...tPtrt ).
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In general, we have dim
t

∑
i=1

Vi ≤
t

∑
i=1

(ri +1). Suppose, by absurd, that the sum of

subspaces Vi is not direct. It follows that rank S1(P(R(2))) ≤
t

∑
i=1

ri + t− 1. On

the other hand, the number of independent solutions of the homogeneous linear
system, having as associated matrix S1(P(R(2))), is

dimR(2)≥ 2
t

∑
i=1

ri−
t

∑
i=1

ri− t +1 =
t

∑
i=1

ri− t +1.

Since dimR(2) represents the dimension of 2−planes, we find a contradiction.

In fact, we know that the number of 2−planes is at most
t

∑
i=1

ri− t.

4. h−sequences

For a generic linear space Σ ⊆ Pm we want to find all the possible decreasing
sequences h0,h1, . . . ,hi, . . ., where hi is the maximal number of Hankel i−planes
contained in Σ. In this direction we give the following definitions:

Definition 4.1. Define h-sequence, relative to a linear space Σ⊆ Pm, a sequence
of integers, whose term hi denotes the maximal number of independent non
trivial Hankel i−planes contained in Σ.

Theorem 4.2. Let Σ⊆Pm be a linear space of dimension r, Σ∩Xm = /0. Suppose
that Σ is the joining space of Hankel maximal planes πβ ⊆ Σ (β = 1, ..., t), with
dimπ1 ≤ dimπ2 ≤ . . .≤ dimπt . Then, the h−sequence relative to Σ is

hi =



s

∑
j=1

a jα j− t(i−1) 0≤ i≤ 1+α1

s

∑
j=2

a jα j− (t−a1)(i−1) 2+α1 ≤ i≤ 1+α2

s

∑
j=3

a jα j− (t−a1−a2)(i−1) 2+α2 ≤ i≤ 1+α3

. . . . . . . . . . . .
s

∑
j=l

a jα j− (t−a1−·· ·−al−1)(i−1) 2+αl−1 ≤ i≤ 1+αl < αs

as 2+αs−1 ≤ i≤ αs

0 i > αs

where αl is the generic term in the sequence
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1≤ α1 < α2 < .. . < αl < .. . < αs = dimπt

of the dimensions of the Hankel πβ−planes that have different dimensions, and
al is the number of the independent Hankel αl− planes.

Proof. By Theorem 3.5, the t maximal planes πβ contained in Σ are mutually
skew. We begin to compute the number h0 of 0−Hankel planes contained in Σ. It
is given by the sum of the generators of Hankel maximal πβ−planes. To be pre-
cise, by hypothesis we have a1 maximal Hankel α1−planes, a2 maximal Hankel
α2−planes, . . ., as Hankel maximal αs−planes, where a1 +a2 + . . .+as = t. A
Hankel maximal α1−plane contains (α1 +1) Hankel 0−planes (Remark 2.10).
So we have a1(α1 + 1) Hankel 0−planes in π1. Then, for all Hankel maxi-

mal α j−planes, we have h0 =
s

∑
j=1

a jα j + t. By the same procedure, we obtain

hi =
s

∑
j=1

a jα j− t(i− 1) up to i = α1 + 1. In fact, when we compute the Han-

kel i−planes contained in Σ, any Hankel maximal α j−plane gives a contribu-
tion that decreases by one at any step. The Hankel maximal α1−planes are the
first to finish, that is, they cannot produce Hankel r−planes for r > α1. Each
α1−plane gives contribution 1 at level hα1 and contribution 0 at level hα1+1, just
one less than the previous step. The α1−planes produce no Hankel i−planes for
i = α1 +2.
If s = 1, then a1 = t and all Hankel planes have the same dimension α1.

Suppose that a1 < t and consider the set made up by the Hankel i− planes
that have dimension i > α1 + 1. Compute the Hankel (α1 + 2) planes. Any
maximal α j−plane contains Hankel (α1 +2)−planes in number equal to (α2−
(α1 +2−1)) (Remark 2.10). Since the Hankel maximal α2−planes are a2, then
there are

a2[α2− (α1 +1)] (α1 +2)− Hankel planes.

The procedure is valid for j = 2, . . . ,s and so we have hα1+2 = a2[α2− (α1 +

1)]+ . . .+as[αs− (α1 +1)] =
s

∑
j=2

a jα j− (t−a1)(α1 +1). In the same way, we

obtain

hi =
s

∑
j=2

a jα j− (t−a1)(i−1) 2+α1 ≤ i≤ 1+α2.

hi =
s

∑
j=l

a jα j− (t−a1−·· ·−al−1)(i−1) 2+αl−1 ≤ i≤ αl +1 < αs.
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The last term of the sequence is given by the number as of Hankel maximal
αs−planes. We obtain a decreasing sequence whose general term is hi.

Corollary 4.3. If the Hankel maximal planes have all the same dimension,
dimπi = r ≥ 1(i = 1, . . . , t), then the sequence hi is the following:

hi = t(r− i+1) 0≤ i≤ r

Supposing that dimπ1 < dimπ2 < .. . < dimπt , we have the following corol-
lary. The simplification is obtained putting a j = 1 and i = 1, . . . ,s = t.

Corollary 4.4. With the hypothesis of Theorem 4.2, suppose that s = t. Then
the sequence of hi is the following:

hi =



t

∑
j=1

α j− t(i−1) 0≤ i≤ 1+α1

t

∑
j=2

α j− (t−1)(i−1) 2+α1 ≤ i≤ 1+α2

t

∑
j=3

α j− (t−2)(i−1) 2+α2 ≤ i≤ 1+α3

. . . . . . . . . . . .
t

∑
j=l

α j− (t− l +1)(i−1) 2+αl−1 ≤ i≤ 1+αl

. . . . . . . . . . . .
1 i = αt

0 i > αt

5. Maximal and minimal sequence

In this section first we establish when a sequence of positive integers can be a
h−sequence. Then, for a given linear space Σ, we characterize the h−sequences,
in particular the maximal and the minimal ones.

Definition 5.1. Given a sequence of integers h0, . . .hi, define ∆h the sequence
with the general term ∆hi = hi−hi+1.

Theorem 5.2. Let h = h0, h1, . . . , hα , 0, . . . be a sequence of integers such that
hi > hi+1 for i≤ α,hi = 0 for i > α and ∆h0 = ∆h1. Then h is the h−sequence
of a linear space Σ ⊆ Pm spanned by t = ∆h0 mutually skew Hankel planes of
positive dimension if and only if ∆h is not increasing.
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Proof. (⇒) Since ∆h0 = ∆h1, Σ is the joining space of t maximal planes of
positive dimension and we can choose as generators of Σ h0 points such that
none of them is a Hankel maximal 0−plane.
By hypothesis, we have a h−sequence determined by t mutually skew Hankel
planes. Suppose that they are so organized: a1 Hankel α1−planes, a2 Hankel
α2−planes, . . . ,as Hankel αs−planes.

By simple computation, you see that ∆h0 = ∆h1 = . . . = ∆hα1 = t and in the
h−sequence the contribution a1 of Hankel maximal α1−planes is missing from
hα1+2. Then hα1+2 = hα1+1− (t−a1) and ∆hα1+1 = t−a1, that implies ∆hα1 >
∆hα1+1. By the same procedure, we compute the other terms of the h−sequence
and finally we obtain ∆hαs−1 = t −∑

s−1
i=0 ai = ∆hαs = hαs that is the last non

zero term of the sequence ∆h. In fact ∆hαs+1 = 0 = t−∑
s
i=0 ai = ∆hαs−as and

∆hαs > ∆hαs+1.

Since the last non zero term of the h−sequence is hαs , ∆hαs+1 = 0 and ∆hi =
0 for i > αs. Therefore ∆h is a non increasing finite sequence.
(⇐) Suppose that ∆h0 = ∆h1 = . . . = ∆hα1 = t and ∆hα1 > ∆hα1+1. We can
build a linear space Σ spanned by t mutually skew Hankel planes: a1 = ∆hα1 −
∆hα1+1 of them are α1−planes. Assuming ∆hα1+1 = . . . = ∆hα2 > ∆hα2+1 we
have a2 = ∆hα2 −∆hα2+1 Hankel α2−planes and so on, up to αs = α; we have
hαs = ∆hαs gives the number of Hankel αs−planes. Altogether the above Hankel
planes build the required linear space Σ.

Example 5.3. Consider the mutually skew Hankel planes π2, π ′2, π3, π4, π ′4, π6,
π ′6 in the linear space they span: two 2−planes, one 3−plane, two 4−planes,
two 6−planes. Therefore s = 4, αs = 6 and t = 7.
Then the h−sequence is: h0 = 34, h1 = 27, h2 = 20, h3 = 13, h4 = 8, h5 = 4,
h6 = 2.
Conversely, given the above sequence, the ∆h sequence is ∆h0 = 7, ∆h1 = 7,
∆h2 = 7, ∆h3 = 5, ∆h4 = 4,∆h5 = 2, ∆h6 = 2. Since ∆h1 = ∆h2 > ∆h3 > ∆h4 >
∆h5 = ∆h6 > ∆h7, there exist two Hankel maximal 2−planes, one Hankel max-
imal 3−plane, two Hankel maximal 4−planes, two Hankel maximal 6−planes.
There are not maximal Hankel lines and maximal Hankel 5−planes.

Now, we study cases relative to a chosen linear space Σ, not necessarily
skew to Xm.

Theorem 5.4. Let Σ⊆Pm be a linear space of dimension r and deg(Σ∩Xm) = s.
Suppose that in Σ there are t Hankel maximal planes of positive dimension, and
that Σ′ is their joining space. Then the h−sequence hi relative to Σ and the
h−sequence h′i relative to Σ′ are different only for the first term: h0 = h′0 + β ,

where β ≤ m
2

denotes the number of the maximal 0−planes contained in Σ.
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Proof. Consider the linear space Σ′ ⊆ Σ, skew to Xm and joining the maximal
t−planes in Σ. The h−sequence relative to Σ′ is h′0,h

′
1, . . . ,h

′
γ ,0, . . . ,0, . . .0,

where h′i is given by Theorem 3.5 (i = 0, . . .γ) and h′γ is the last term of the se-
quence, where there exist Hankel i−planes skew to Xm. The two h−sequences
relative to Σ and to Σ′ are different for the maximal 0−planes skew to Xm con-
tained in Σ. Then h0 = h′0 + β hi = h′i i ≥ 1, where β is the number of the
maximal 0−planes skew to Xm. We observe that they do not produce Hankel
i-planes in the other terms of the h−sequence. Then the linear system with asso-
ciated matrix (BhB f ) has no solution. As a consequence, since (BhB f ) ∈ km,2β ,
it must be β ≤ m

2
.

Theorem 5.5. (maximal sequence) Let Σ ⊆ Pm be a linear space of dimension
r. Suppose that deg(Σ∩Xm) = s. Then the maximal h-sequence relative to Σ is

h0 = r +1− s, h1 = r− s, . . . , hr−s = 1, hr−s+1 = 0, . . . .

Proof. The maximal h−sequence is obtained when Σ is the join of a non-trivial
Hankel (r−s)−plane π and s points of Xm. Of course π has r−s+1 generators,
contains r− s Hankel lines, and so on.

Remark 5.6. In any term of the h−sequence it appears a contribution equal to
s, if Σ cuts the rational normal curve Xm in s points, or equal to zero, if Σ is skew
to Xm.

Theorem 5.7. (minimal sequence) Let Σ = P(R) ⊆ Pm be an r− plane skew
with Xm. Let s be the maximum integer such that (s + 1)(r + 1)− sm > 0, then
the minimal h−sequence relative to Σ is:

i) h0 = r +1, h1 = 0, . . . if m≥ 2(r +1)

ii) h0 = r+1, h1 = 2(r+1)−m, . . . , hs = (s+1)(r+1)−sm, 0, . . . if m <
2(r +1).

In particular, Σ contains ∆hs−1−∆hs Hankel maximal (s− 1)−planes and hs

Hankel maximal s− planes.

Proof. Of course the minimal h−sequence is obtained when Σ is a general
r−plane. Consider the matrix (Bh B f ) ∈ km,2(r+1) relative to a minimal set of
generators of Σ. So we can suppose that (Bh B f ) has maximal rank. If m ≥
2(r +1), then there are no Hankel lines. As a consequence, there are no Hankel
2−planes and so on, then the h−sequence is zero for i≥ 1. If m < 2(r+1), there
exist 2(r+1)−m Hankel lines. Then R(1) = 〈w1, . . . ,w2r+2−m〉 and dimR(1) =
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2r +2−m. Now we can consider a general matrix H ∈ k(m+1),(m−r) such that R
is the space of the row relations; of course the rank of H is m− r. Consider the
block Toeplitz matrix TH(1) ∈ k(m+2),2(m−r). Since m + 2 > 2(m− r), we have
2(r +1)−m Hankel lines in P(R), as we know. Consider TH(2) ∈ k(m+3),3(m−r)

to establish how many 2−planes there must be in Σ. If m+3 > 3(m− r), there
are at least 3(r + 1)− 2m Hankel 2−planes. Hankel i−planes necessarily ap-
pear until the number of rows is greater than the number of columns, i. e.
(i+1)(r +1)− im≤ 0. Note that in the matrix TH(s) there are more rows then
columns, but this is not true for TH(s+1): (s+2)(r +1)− (s+1)m≤ 0.

As a consequence, we deduce that there must be in Σ at least (s + 1)(r +
1)−sm = hs Hankel s−planes and ∆hs−1−∆hs Hankel (s−1)−planes. Finally,
starting from any choice of such (mutually skew) Hankel planes, we can con-
struct the linear space Σ spanned by these Hankel planes: this gives the required
h−sequence; moreover, this h−sequence is obtained for a general r−plane in
Pm

Example 5.8. In P9 consider a space R of dimension 7. We construct a Hankel
matrix of maximal rank, H ∈ k10,3. To be precise, we have h0 = 7, then TH(1) ∈
k11,6 and h1 = 5, TH(2) ∈ k12,9 h2 = 3, TH(3) ∈ k13,12 and h3 = 1, TH(4) ∈ k14,15

and h4 = 0. In this case s = 3 since the number of the rows is less than the
number of the columns in TH(4) ∈ k14,15. Then we have one Hankel maximal
3−plane and one Hankel maximal 2−plane. In fact ∆h0 = ∆h1 = ∆h2 but ∆h3 =
h3 = 1 and ∆h4 = 0.
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