ON SEQUENCES OF INTEGERS FOR HANKEL PLANES IN A LINEAR SPACE Σ OF \mathbb{P}^{m}

GIOIA FAILLA

> For a vector space $R \subseteq k^{m+1}$ of dimension $r+1$ on the algebraically closed field k we determine, for any $i \leq r$, the possible numbers of Hankel i-planes contained in the r-plane $\mathbb{P}(R)$, linear space in \mathbb{P}^{m}.

1. Introduction

Let \mathbb{P}^{m} be the projective space of dimension m defined on k, algebraically closed field. Let $R \subseteq k^{m+1}$ be a k-vector space of dimension $r+1$ and let $\mathbb{P}(R) \subseteq \mathbb{P}^{m}$ be the corresponding r-plane.
In [2] the theory of the Hankel planes was developed. The authors give the definition of Hankel r-plane, starting from a matrix (called Hankel matrix) of elements of k. They give necessary and sufficient conditions for an r-plane to be Hankel.
An interesting problem is to find invariants for an r-plane with respect to a change of coordinates leaving fixed the standard rational normal curve $X_{m} \subseteq \mathbb{P}^{m}$. Our investigation in the topic of Hankel planes brings us to deduce that invariants of a linear space are given by the positive integer numbers h_{i} defined in the following way: h_{i} denotes the number of the independent Hankel i-planes skew to the rational normal curve X_{m} of \mathbb{P}^{m} and contained in the linear space
$\mathbb{P}(R)$. We shall take the term h_{i} as the general term of a decreasing sequence, called h-sequence.
An open problem, given in [2], was to describe all the possible h-sequences in a given linear space. In this paper, the problem has been completely solved, so we obtain new invariants associated to a linear space Σ, in terms of a h-sequence.
To be precise, in section 2, we give some definitions and recall some notions and results useful in the sequel. In Sections 3 and 4, considering a linear space $\Sigma \subseteq \mathbb{P}^{m}$ of dimension r, skew to X_{m} and joining t maximal Hankel planes (that can also have the same dimension), we determine the relative h-sequence.
We obtain simplified h-sequences when all the maximal Hankel planes have the same dimension, or all of them have different dimensions.
In Section 5, we introduce the difference sequence Δh, with general term $\Delta h_{i}=$ $h_{i}-h_{i+1}$. We consider a decreasing sequence of positive integer numbers h_{i} and we show that it is the h-sequence of some space Σ if, and only if, Δh is not increasing. Finally, we find the maximum and minimum number of Hankel i-planes contained in a linear space $\Sigma \mathrm{i}$. e. the maximal and the minimal h-sequences.

2. Preliminaries and Notations

Let k be an algebraically closed field, $\operatorname{char}(k)=0$. Starting from a matrix $A \in$ $k^{(m+1) \times(n+1)}$, for any $p \geq 0$, we can construct a block Toeplitz matrix $T_{A}(p) \in$ $k^{(m+p+1),(n+1)(p+1)}$. Let $R \subseteq k^{m+1}$ be the $k-$ space of the relations among the rows of A and, $R(p) \subseteq k^{m+p+1}$ be the k-space of the relations among the rows of $T_{A}(p)$. In particular, any element of $R(p)$ gives a Hankel matrix whose rows belong to R (For more details see[2]). We recall the following:

Definition 2.1. Define Hankel Matrix a matrix of the following type:

$$
H=\left(\begin{array}{ccccc}
\lambda_{0} & \lambda_{1} & \ldots & \ldots & \lambda_{m} \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{m} & \lambda_{m+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\lambda_{p-1} & \lambda_{p} & \ldots & \ldots & \lambda_{m+p-1} \\
\lambda_{p} & \lambda_{p+1} & \ldots & \lambda_{m+p-1} & \lambda_{m+p}
\end{array}\right) \in k^{p+1, m+1}
$$

Denote by $X_{m} \subseteq \mathbb{P}^{m}$ the rational normal curve, locus of points $(a, b)^{m}=\left(a^{m}\right.$, $\left.a^{m-1} b, \ldots, b^{m}\right), a, b \in k$.

Definition 2.2. Define secant s-plane any s-dimensional linear subspace $\Sigma_{s} \subseteq$ \mathbb{P}^{m} that cuts X_{m} in $s+1$ points (counting their multiplicity). If Σ_{s} cuts X_{m} in the point P_{i} with multiplicity t_{i}, we write $\Sigma_{s}=<t_{0} P_{0}, t_{1} P_{1}, \ldots, t_{h} P_{h}>,(i=$ $\left.0, \ldots, h ; \sum t_{i}=s+1\right)$.

Theorem 2.3. ([2], Theorem 3.7) Let $\pi_{r} \subseteq \mathbb{P}^{m}$ be an r-plane spanned by points of coordinates $\left(d_{i 0}, \ldots, d_{i m}\right), i=0, \ldots, r$. Then the number of independent Hankel p-planes contained in π_{r} is equal to the number of independent solutions of the linear system associated to the matrix $S_{p}\left(\pi_{r}\right)$, that is

$$
\operatorname{dim} R(p)=(p+1)(r+1)-\operatorname{rank} S_{p}\left(\pi_{r}\right)
$$

where

$$
\begin{gathered}
S_{p}\left(\pi_{r}\right)=\left(\begin{array}{cccccc}
B_{h} & B_{f} & \Omega & \ldots & \Omega & \Omega \\
\Omega & B_{h} & B_{f} & \ldots & \Omega & \Omega \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\Omega & \Omega & \Omega & \ldots & B_{h} & B_{f}
\end{array}\right) \in k^{p m,(p+1)(r+1)} \\
B_{h} B_{f}=\left(\begin{array}{cccc|cccc}
d_{01} & d_{11} & \ldots & d_{r 1} & d_{00} & d_{10} & \ldots & d_{r 0} \\
d_{02} & d_{12} & \ldots & d_{r 2} & d_{01} & d_{11} & \ldots & d_{r 1} \\
\ldots & \ldots \\
d_{0 m} & d_{1 m} & \ldots & d_{r m} & d_{0 m-1} & d_{1 m-1} & \ldots & d_{r m-1}
\end{array}\right)
\end{gathered}
$$

and $\Omega \in k^{m, r+1}$ is the null matrix.
Remark 2.4. If rank $S_{p}\left(\pi_{r}\right)=p(r+1)$, then $\operatorname{dim} R(p)=r+1$. So $\operatorname{dim} R(p)=$ $\operatorname{dim} R$ for any $p \geq 0$ and π_{r} is a secant r-plane.
Definition 2.5. Let $V \subseteq k^{m+1}$ be a k-vector space of dimension $r+1$. V is called Hankel space if there exists a non zero Hankel matrix $H \in k^{r+1, m+1}$, whose $(r+1)$ rows belong to V.
Definition 2.6. An r-plane $\pi_{r} \subseteq \mathbb{P}^{m}$ is called Hankel plane if $\pi_{r}=\mathbb{P}(V)$, where V is a Hankel space. The r-plane π_{r} is called non trivial if $\pi_{r} \cap X_{m}=\emptyset$. In particular the Hankel 1-planes are called Hankel lines.

Remark 2.7. Any point $P \in \mathbb{P}^{m}$ is a Hankel 0 -plane. In fact we can always construct a $1 \times(m+1)$-matrix that can be considered as a Hankel matrix.
Definition 2.8. Let $\Sigma \subseteq \mathbb{P}^{m}$ be a linear space. A Hankel r-plane $\pi_{r} \subseteq \Sigma$ is called maximal in Σ if it is not contained in any Hankel $(r+1)$-plane of Σ.

Remark 2.9. If $P \in \pi_{r} \cap X_{m}, P \equiv(a, b)^{m}$, then π_{r} is trivially Hankel since it is always possible to write a Hankel matrix of rank 1 just using coordinates of P :

$$
H=\left(\begin{array}{cccc}
a^{m+r} & a^{m+r-1} b & \ldots & a^{r} b^{m} \\
a^{m+r-1} b & a^{m+r-2} b^{2} & \ldots & a^{r-1} b^{m+1} \\
\ldots & \ldots & \ldots & \\
a^{m} b^{r} & a^{m-1} b^{r+1} & \ldots & b^{m+r}
\end{array}\right)
$$

Therefore it is more interesting to study Hankel r-planes which are skew to X_{m}.

Remark 2.10. ([2], Remark 4.12) Let $\pi_{r}=\mathbb{P}(R)$ be a Hankel r-plane such that $\pi_{r} \cap X_{m}=\emptyset$, where $\operatorname{dim} R=r+1$. Let $H={ }^{t}\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ be the Hankel matrix correspondent to $\pi_{r} . H$ has maximal rank by Theorem 2.11 and π_{r} contains:two Hankel independent $(r-1)$ - planes ${ }^{t}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{r-1}\right),{ }^{t}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$, three Hankel independent $(r-2)$-planes ${ }^{t}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{r-2}\right),{ }^{t}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r-1}\right),{ }^{t}\left(\mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right), \ldots, r$ Hankel independent lines ${ }^{t}\left(\mathbf{v}_{0}, \mathbf{v}_{1}\right),{ }^{t}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \ldots,{ }^{t}\left(\mathbf{v}_{r-1}, \mathbf{v}_{r}\right),(r+1)$ Hankel $0-$ planes $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$.

The following theorem characterizes the non trivial Hankel planes.
Theorem 2.11. (See [2], Theorem 4.11) Let $\pi_{r} \subseteq \mathbb{P}^{m}$ be a Hankel r-plane. Then $\pi_{r} \cap X_{m}=\emptyset$ if, and only if, you can construct a unique maximal rank Hankel matrix with $r+1$ rows, coordinates of points of π_{r}.

3. Hankel maximal r-planes

We want to focus our study on Hankel maximal r-planes of a linear space $\Sigma \subseteq \mathbb{P}^{m}$. We need these preliminary results:

Proposition 3.1. Let $R \subseteq k^{m+1}$ be a vector space, $\operatorname{dim} R=r+1$, such that $\mathbb{P}(R)$ is skew to $X_{m} \subseteq \mathbb{P}^{m}$. If $\operatorname{dim} R(1)=r$, then $\operatorname{dim} R(2)=r-1, \ldots, \operatorname{dim} R(r)=1$, $\operatorname{dim} R(r+1)=0$ and $\pi_{r}=\mathbb{P}(R) \subseteq \mathbb{P}^{m}$ is a Hankel $r-$ plane.

Proof. Consider a basis of $R(1)$:

$$
L_{1}=\binom{P_{1}}{Q_{1}}, L_{2}=\binom{P_{2}}{Q_{2}}, \ldots, L_{r}=\binom{P_{r}}{Q_{r}}
$$

with $P_{i}=\left(a_{i 0}, \ldots, a_{i m}\right), Q_{i}=\left(a_{i 1}, \ldots, a_{i(m+1)}\right)$ elements of R. Since the line L_{i} corresponds to the point $\left(a_{i 0}, \ldots, a_{i(m+1)}\right) \in \mathbb{P}^{m+1}$ ([2], Remark 4.15), we look for the Hankel $2-$ planes as solutions of the homogeneous linear system associated to the matrix

$$
\left(B_{h} B_{f}\right)=\left(Q_{1} Q_{2} \ldots, Q_{r} \mid P_{1} P_{2} \ldots, P_{r}\right)
$$

We have that $r \leq \operatorname{rank}\left(B_{h} B_{f}\right) \leq r+1$. rank $\left(B_{h} B_{f}\right)$ cannot be r otherwise $\mathbb{P}(R)$ should be a secant r-plane (Remark 2.4). Then it is $r+1$ and the linear system has $2 r-(r+1)=r-1$ independent solutions. To determine the Hankel 3-planes, we know that $R(1)$ has dimension equal to r and $R(2)$ has dimension $r-1$. By the same argument, $R(3) \cong R(2)(1)$ has dimension $r-2$, and so on. In particular there exists a non-zero element of $R(r)$. So π_{r} contains $(r-1)$ independent Hankel 2-planes, $(r-2)$ independent Hankel 3-planes, $\ldots, 2$ independent Hankel $(r-1)$-planes, 1 Hankel r-Hankel plane. Then π_{r} is a Hankel r-plane.

Example 3.2. Consider in \mathbb{P}^{6} a Hankel 2-plane π_{2} with Hankel matrix:

$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & 1 & 2 \\
0 & 0 & 0 & -1 & 1 & 2 & 0 \\
0 & 0 & -1 & 1 & 2 & 0 & -1
\end{array}\right)
$$

and a Hankel line π_{1} with Hankel matrix:

$$
\binom{v_{4}}{v_{5}}=\left(\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 2 & 3 & 1 \\
0 & -1 & 0 & 2 & 3 & 1 & 0
\end{array}\right)
$$

We observe that π_{1} and π_{2} are not skew since $v_{4}=v_{1}+v_{2}+v_{3}$. Let $\pi=\pi_{1}+$ π_{2} be their joining space, $\operatorname{dim} \pi=3$. π contains 3 independent Hankel lines $(1,0,0,0,-1,1,2,0),(0,0,0,-1,1,2,0,1),(1,0,-1,0,2,3,1,0)$. Consider the matrix $\left(B_{h} B_{f}\right)$ to compute the Hankel
2-planes:

$$
\left(B_{h} B_{f}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & -1 \\
-1 & 1 & 2 & 0 & -1 & 0 \\
1 & 2 & 3 & -1 & 1 & 2 \\
2 & 0 & 1 & 1 & 2 & 3 \\
0 & -1 & 0 & 2 & 0 & 1
\end{array}\right)
$$

By simple computation, we have that rank $\left(B_{h} B_{f}\right)=4$ and there are two Hankel independent $2-$ planes in π. Hence π_{1} is not maximal in π.

Corollary 3.3. Let $\pi_{r}, \pi_{s} \subseteq \Sigma$ be maximal Hankel planes in the linear space Σ. Then $\pi_{r} \cap \pi_{s}=\emptyset$.

Proof. If π_{s} is a Hankel s-plane, then for any point $P \in \pi_{s}$ there exists a Hankel line L, passing through P. In fact, π_{s} contains two Hankel $(s-1)$-planes; in the sheaf generated by these two Hankel $(s-1)$ - planes consider the Hankel π_{s-1} plane passing through $P . \pi_{s-1}$ contains two Hankel $(s-2)$-planes. In the sheaf generated by these two Hankel $(s-2)$ - planes consider the Hankel π_{s-2} plane passing through P and so on. Finally we find a Hankel line L passing through P. Suppose $\pi_{r} \cap \pi_{s} \neq \emptyset$ and $P \in \pi_{r} \cap \pi_{s}$. Since for any point of π_{s} there is a Hankel line L, then $\pi_{r} \cap L \neq \emptyset$. Consider the Hankel matrix that represents the Hankel π_{r}-plane:

$$
H_{1}=\left(\begin{array}{c}
A_{0} \\
A_{1} \\
\ldots \\
A_{r}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{m} \\
a_{1} & a_{2} & \ldots & a_{m+1} \\
\ldots & \ldots & \ldots & \ldots \\
a_{r} & a_{r+1} & \ldots & a_{m+r}
\end{array}\right)
$$

and the Hankel line

$$
L=\binom{B_{0}}{B_{1}}=\left(\begin{array}{cccc}
b_{0} & b_{1} & \ldots & b_{m} \\
b_{1} & b_{2} & \ldots & b_{m+1}
\end{array}\right)
$$

Suppose that $B_{0} \in<A_{0}, \ldots, A_{r}, B_{1}>$. Consider the joining space $\pi_{r}+L=$ $<A_{0}, A_{1}, \ldots, A_{r}, B_{1}>$. By Proposition 2.3, consider the matrix $\left(B_{h} B_{f}\right)$ to find the Hankel lines:

$$
\left(\begin{array}{cccccccccc}
a_{1} & a_{2} & \ldots & a_{r+1} & b_{2} & a_{0} & a_{1} & \ldots & a_{r} & b_{1} \\
\ldots & & \\
a_{m} & a_{m+1} & \ldots & a_{m+r} & b_{m+1} & a_{m-1} & a_{m} & \ldots & a_{m+r-1} & b_{m}
\end{array}\right) \in k^{m, 2 r+4}
$$

In the matrix $\left(B_{h} B_{f}\right)$ the columns arising from the Hankel matrix H_{1} are $2(r+1)$ whose $r+2$ are independent. Since the column ${ }^{t}\left(b_{1}, \ldots, b_{m}\right) \in\left\langle{ }^{t}\left(a_{1}, \ldots, a_{m}\right)\right.$, $\left.\ldots,{ }^{t}\left(a_{r+1}, \ldots, a_{m+r}\right),{ }^{t}\left(b_{2}, \ldots, b_{m+1}\right)\right\rangle$, then rank $\left(B_{h} B_{f}\right)=r+3$. Thus, there are $r+1$ Hankel independent lines in $\pi_{r}+L$ and so, by Proposition 3.1, $\pi_{r}+L$ is a Hankel $(r+1)$-plane that contains a Hankel maximal r-plane. Contradiction.

Remark 3.4. Let π_{r} and π_{s} be two Hankel planes contained in a linear space Σ, then the Hankel h-planes that they contain can be dependent $(h<\min (r, s))$. In this case π_{r} and π_{s} are not maximal in their joining space.

Theorem 3.5. Let $\Sigma \subseteq \mathbb{P}^{m}$ be a linear space of dimension r. Consider t Hankel maximal r_{i}-planes $\pi_{i}=\mathbb{P}\left(V_{i}\right) \subseteq \Sigma, \operatorname{dim} \pi_{i}=r_{i}$, such that $\pi_{i} \cap X_{m}=\emptyset(i=$ $1, \ldots, t)$. Then $V_{1}+\ldots+V_{t}=V_{1} \oplus \ldots \oplus V_{t}, i . e ., \operatorname{dim}<\pi_{1}, \ldots, \pi_{t}>=\sum_{i=1}^{t} \operatorname{dim} V_{i}-1$.

Proof. Consider the sum space $V=\sum_{i=1}^{t} V_{i}$. Let $\mathbb{P}(V)$ be the joining linear space of all the Hankel π_{i}-planes. In π_{i} there are r_{i}-Hankel lines and $\left(r_{i}-1\right)$ Hankel 2 -planes (Remark 2.10). Then in $\mathbb{P}(V)$ there are at most $\sum_{i=1}^{t} r_{i}-t$ Hankel $2-$ planes. On the other hand, the Hankel r_{i}-lines in π_{i} are:

$$
\binom{P_{i 1}}{Q_{i 1}},\binom{P_{i 2}}{Q_{i 2}}, \ldots,\binom{P_{i r_{i}}}{Q_{i r_{i}}} \quad P_{i j}, Q_{i j} \in V_{i} \quad j=1, \ldots, r_{i}, i=1, \ldots, t
$$

Compute the Hankel $2-$ planes in $\mathbb{P}(V)$ writing the matrix $\left(B_{h} B_{f}\right)$. Since $R(2) \cong$ $R(1)(1)$, then we have $S_{1}(\mathbb{P}(R(2)))=$

$$
\left({ }^{t} Q_{11} \ldots{ }^{t} Q_{1 r_{1}}{ }^{t} Q_{21} \ldots{ }^{t} Q_{2 r_{2}} \ldots{ }^{t} Q_{t 1} \ldots{ }^{t} Q_{t r_{t}} \mid{ }^{t} P_{11} \ldots{ }^{t} P_{1 r_{1}}{ }^{t} P_{21} \ldots{ }^{t} P_{2 r_{2}} \ldots{ }^{t} P_{t 1} \ldots{ }^{t} P_{t r_{t}}\right)
$$

In general, we have $\operatorname{dim} \sum_{i=1}^{t} V_{i} \leq \sum_{i=1}^{t}\left(r_{i}+1\right)$. Suppose, by absurd, that the sum of subspaces V_{i} is not direct. It follows that rank $S_{1}(\mathbb{P}(R(2))) \leq \sum_{i=1}^{t} r_{i}+t-1$. On the other hand, the number of independent solutions of the homogeneous linear system, having as associated matrix $S_{1}(\mathbb{P}(R(2)))$, is

$$
\operatorname{dim} R(2) \geq 2 \sum_{i=1}^{t} r_{i}-\sum_{i=1}^{t} r_{i}-t+1=\sum_{i=1}^{t} r_{i}-t+1
$$

Since $\operatorname{dim} R(2)$ represents the dimension of $2-$ planes, we find a contradiction. In fact, we know that the number of $2-$ planes is at most $\sum_{i=1}^{t} r_{i}-t$.

4. h-sequences

For a generic linear space $\Sigma \subseteq \mathbb{P}^{m}$ we want to find all the possible decreasing sequences $h_{0}, h_{1}, \ldots, h_{i}, \ldots$, where h_{i} is the maximal number of Hankel $i-$ planes contained in Σ. In this direction we give the following definitions:

Definition 4.1. Define h-sequence, relative to a linear space $\Sigma \subseteq \mathbb{P}^{m}$, a sequence of integers, whose term h_{i} denotes the maximal number of independent non trivial Hankel $i-$ planes contained in Σ.

Theorem 4.2. Let $\Sigma \subseteq \mathbb{P}^{m}$ be a linear space of dimension $r, \Sigma \cap X_{m}=\emptyset$. Suppose that Σ is the joining space of Hankel maximal planes $\pi_{\beta} \subseteq \Sigma(\beta=1, \ldots, t)$, with $\operatorname{dim} \pi_{1} \leq \operatorname{dim} \pi_{2} \leq \ldots \leq \operatorname{dim} \pi_{t}$. Then, the h-sequence relative to Σ is

$$
h_{i}= \begin{cases}\sum_{j=1}^{s} a_{j} \alpha_{j}-t(i-1) & 0 \leq i \leq 1+\alpha_{1} \\ \sum_{j=2}^{s} a_{j} \alpha_{j}-\left(t-a_{1}\right)(i-1) & 2+\alpha_{1} \leq i \leq 1+\alpha_{2} \\ \sum_{j=3}^{s} a_{j} \alpha_{j}-\left(t-a_{1}-a_{2}\right)(i-1) & 2+\alpha_{2} \leq i \leq 1+\alpha_{3} \\ \cdots \cdots & \cdots \cdots \\ \sum_{j=l}^{s} a_{j} \alpha_{j}-\left(t-a_{1}-\cdots-a_{l-1}\right)(i-1) & 2+\alpha_{l-1} \leq i \leq 1+\alpha_{l}<\alpha_{s} \\ a_{s} & 2+\alpha_{s-1} \leq i \leq \alpha_{s} \\ 0 & i>\alpha_{s}\end{cases}
$$

where α_{l} is the generic term in the sequence

$$
1 \leq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{l}<\ldots<\alpha_{s}=\operatorname{dim} \pi_{t}
$$

of the dimensions of the Hankel π_{β}-planes that have different dimensions, and a_{l} is the number of the independent Hankel α_{l} - planes.

Proof. By Theorem 3.5, the t maximal planes π_{β} contained in Σ are mutually skew. We begin to compute the number h_{0} of $0-$ Hankel planes contained in Σ. It is given by the sum of the generators of Hankel maximal π_{β} - planes. To be precise, by hypothesis we have a_{1} maximal Hankel α_{1}-planes, a_{2} maximal Hankel α_{2}-planes, \ldots, a_{s} Hankel maximal α_{s}-planes, where $a_{1}+a_{2}+\ldots+a_{s}=t$. A Hankel maximal α_{1}-plane contains $\left(\alpha_{1}+1\right)$ Hankel $0-$ planes (Remark 2.10). So we have $a_{1}\left(\alpha_{1}+1\right)$ Hankel 0 -planes in π_{1}. Then, for all Hankel maximal α_{j}-planes, we have $h_{0}=\sum_{j=1}^{s} a_{j} \alpha_{j}+t$. By the same procedure, we obtain $h_{i}=\sum_{j=1}^{s} a_{j} \alpha_{j}-t(i-1)$ up to $i=\alpha_{1}+1$. In fact, when we compute the Hankel i-planes contained in Σ, any Hankel maximal α_{j}-plane gives a contribution that decreases by one at any step. The Hankel maximal α_{1}-planes are the first to finish, that is, they cannot produce Hankel r-planes for $r>\alpha_{1}$. Each α_{1}-plane gives contribution 1 at level $h_{\alpha_{1}}$ and contribution 0 at level $h_{\alpha_{1}+1}$, just one less than the previous step. The α_{1}-planes produce no Hankel i-planes for $i=\alpha_{1}+2$.
If $s=1$, then $a_{1}=t$ and all Hankel planes have the same dimension α_{1}.
Suppose that $a_{1}<t$ and consider the set made up by the Hankel $i-$ planes that have dimension $i>\alpha_{1}+1$. Compute the Hankel $\left(\alpha_{1}+2\right)$ planes. Any maximal α_{j}-plane contains Hankel $\left(\alpha_{1}+2\right)$-planes in number equal to $\left(\alpha_{2}-\right.$ $\left.\left(\alpha_{1}+2-1\right)\right)\left(\right.$ Remark 2.10). Since the Hankel maximal $\alpha_{2}-$ planes are a_{2}, then there are

$$
a_{2}\left[\alpha_{2}-\left(\alpha_{1}+1\right)\right] \quad\left(\alpha_{1}+2\right)-\text { Hankel planes. }
$$

The procedure is valid for $j=2, \ldots, s$ and so we have $h_{\alpha_{1}+2}=a_{2}\left[\alpha_{2}-\left(\alpha_{1}+\right.\right.$ $1)]+\ldots+a_{s}\left[\alpha_{s}-\left(\alpha_{1}+1\right)\right]=\sum_{j=2}^{s} a_{j} \alpha_{j}-\left(t-a_{1}\right)\left(\alpha_{1}+1\right)$. In the same way, we obtain

$$
\begin{gathered}
h_{i}=\sum_{j=2}^{s} a_{j} \alpha_{j}-\left(t-a_{1}\right)(i-1) \quad 2+\alpha_{1} \leq i \leq 1+\alpha_{2} . \\
h_{i}=\sum_{j=l}^{s} a_{j} \alpha_{j}-\left(t-a_{1}-\cdots-a_{l-1}\right)(i-1) \quad 2+\alpha_{l-1} \leq i \leq \alpha_{l}+1<\alpha_{s} .
\end{gathered}
$$

The last term of the sequence is given by the number a_{s} of Hankel maximal $\alpha_{s}-$ planes. We obtain a decreasing sequence whose general term is h_{i}.

Corollary 4.3. If the Hankel maximal planes have all the same dimension, $\operatorname{dim} \pi_{i}=r \geq 1(i=1, \ldots, t)$, then the sequence h_{i} is the following:

$$
h_{i}=t(r-i+1) \quad 0 \leq i \leq r
$$

Supposing that $\operatorname{dim} \pi_{1}<\operatorname{dim} \pi_{2}<\ldots<\operatorname{dim} \pi_{t}$, we have the following corollary. The simplification is obtained putting $a_{j}=1$ and $i=1, \ldots, s=t$.

Corollary 4.4. With the hypothesis of Theorem 4.2 , suppose that $s=t$. Then the sequence of h_{i} is the following:

$$
h_{i}= \begin{cases}\sum_{j=1}^{t} \alpha_{j}-t(i-1) & 0 \leq i \leq 1+\alpha_{1} \\ \sum_{j=2}^{t} \alpha_{j}-(t-1)(i-1) & 2+\alpha_{1} \leq i \leq 1+\alpha_{2} \\ \sum_{j=3}^{t} \alpha_{j}-(t-2)(i-1) & 2+\alpha_{2} \leq i \leq 1+\alpha_{3} \\ \cdots \cdots & \cdots \cdots \\ \sum_{j=l}^{t} \alpha_{j}-(t-l+1)(i-1) & 2+\alpha_{l-1} \leq i \leq 1+\alpha_{l} \\ \cdots \cdots & \ldots \ldots \\ 1 & i=\alpha_{t} \\ 0 & i>\alpha_{t}\end{cases}
$$

5. Maximal and minimal sequence

In this section first we establish when a sequence of positive integers can be a h-sequence. Then, for a given linear space Σ, we characterize the h-sequences, in particular the maximal and the minimal ones.

Definition 5.1. Given a sequence of integers $h_{0}, \ldots h_{i}$, define Δh the sequence with the general term $\Delta h_{i}=h_{i}-h_{i+1}$.

Theorem 5.2. Let $h=h_{0}, h_{1}, \ldots, h_{\alpha}, 0, \ldots$ be a sequence of integers such that $h_{i}>h_{i+1}$ for $i \leq \alpha, h_{i}=0$ for $i>\alpha$ and $\Delta h_{0}=\Delta h_{1}$. Then h is the h-sequence of a linear space $\Sigma \subseteq \mathbb{P}^{m}$ spanned by $t=\Delta h_{0}$ mutually skew Hankel planes of positive dimension if and only if Δh is not increasing.

Proof. (\Rightarrow) Since $\Delta h_{0}=\Delta h_{1}, \Sigma$ is the joining space of t maximal planes of positive dimension and we can choose as generators of Σh_{0} points such that none of them is a Hankel maximal 0 -plane.
By hypothesis, we have a h-sequence determined by t mutually skew Hankel planes. Suppose that they are so organized: a_{1} Hankel α_{1}-planes, a_{2} Hankel α_{2}-planes, \ldots, a_{s} Hankel $\alpha_{s}-$ planes.

By simple computation, you see that $\Delta h_{0}=\Delta h_{1}=\ldots=\Delta h_{\alpha_{1}}=t$ and in the h-sequence the contribution a_{1} of Hankel maximal α_{1}-planes is missing from $h_{\alpha_{1}+2}$. Then $h_{\alpha_{1}+2}=h_{\alpha_{1}+1}-\left(t-a_{1}\right)$ and $\Delta h_{\alpha_{1}+1}=t-a_{1}$, that implies $\Delta h_{\alpha_{1}}>$ $\Delta h_{\alpha_{1}+1}$. By the same procedure, we compute the other terms of the h-sequence and finally we obtain $\Delta h_{\alpha_{s}-1}=t-\sum_{i=0}^{s-1} a_{i}=\Delta h_{\alpha_{s}}=h_{\alpha_{s}}$ that is the last non zero term of the sequence Δh. In fact $\Delta h_{\alpha_{s}+1}=0=t-\sum_{i=0}^{s} a_{i}=\Delta h_{\alpha_{s}}-a_{s}$ and $\Delta h_{\alpha_{s}}>\Delta h_{\alpha_{s}+1}$.

Since the last non zero term of the h-sequence is $h_{\alpha_{s}}, \Delta h_{\alpha_{s}+1}=0$ and $\Delta h_{i}=$ 0 for $i>\alpha_{s}$. Therefore Δh is a non increasing finite sequence.
(\Leftarrow) Suppose that $\Delta h_{0}=\Delta h_{1}=\ldots=\Delta h_{\alpha_{1}}=t \quad$ and $\quad \Delta h_{\alpha_{1}}>\Delta h_{\alpha_{1}+1}$. We can build a linear space Σ spanned by t mutually skew Hankel planes: $a_{1}=\Delta h_{\alpha_{1}}-$ $\Delta h_{\alpha_{1}+1}$ of them are α_{1}-planes. Assuming $\Delta h_{\alpha_{1}+1}=\ldots=\Delta h_{\alpha_{2}}>\Delta h_{\alpha_{2}+1}$ we have $a_{2}=\Delta h_{\alpha_{2}}-\Delta h_{\alpha_{2}+1}$ Hankel α_{2}-planes and so on, up to $\alpha_{s}=\alpha$; we have $h_{\alpha_{s}}=\Delta h_{\alpha_{s}}$ gives the number of Hankel α_{s}-planes. Altogether the above Hankel planes build the required linear space Σ.

Example 5.3. Consider the mutually skew Hankel planes $\pi_{2}, \pi_{2}^{\prime}, \pi_{3}, \pi_{4}, \pi_{4}^{\prime}, \pi_{6}$, π_{6}^{\prime} in the linear space they span: two 2 -planes, one $3-$ plane, two 4 -planes, two 6-planes. Therefore $s=4, \alpha_{s}=6$ and $t=7$.
Then the h-sequence is: $h_{0}=34, h_{1}=27, h_{2}=20, h_{3}=13, h_{4}=8, h_{5}=4$, $h_{6}=2$.
Conversely, given the above sequence, the Δh sequence is $\Delta h_{0}=7, \Delta h_{1}=7$, $\Delta h_{2}=7, \Delta h_{3}=5, \Delta h_{4}=4, \Delta h_{5}=2, \Delta h_{6}=2$. Since $\Delta h_{1}=\Delta h_{2}>\Delta h_{3}>\Delta h_{4}>$ $\Delta h_{5}=\Delta h_{6}>\Delta h_{7}$, there exist two Hankel maximal 2-planes, one Hankel maximal 3-plane, two Hankel maximal 4-planes, two Hankel maximal 6-planes. There are not maximal Hankel lines and maximal Hankel 5-planes.

Now, we study cases relative to a chosen linear space Σ, not necessarily skew to X_{m}.

Theorem 5.4. Let $\Sigma \subseteq \mathbb{P}^{m}$ be a linear space of dimension r and $\operatorname{deg}\left(\Sigma \cap X_{m}\right)=s$. Suppose that in Σ there are t Hankel maximal planes of positive dimension, and that Σ^{\prime} is their joining space. Then the h-sequence h_{i} relative to Σ and the h-sequence h_{i}^{\prime} relative to Σ^{\prime} are different only for the first term: $h_{0}=h_{0}^{\prime}+\beta$, where $\beta \leq \frac{m}{2}$ denotes the number of the maximal 0 -planes contained in Σ.

Proof. Consider the linear space $\Sigma^{\prime} \subseteq \Sigma$, skew to X_{m} and joining the maximal t-planes in Σ. The h-sequence relative to Σ^{\prime} is $h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{\gamma}^{\prime}, 0, \ldots, 0, \ldots 0$, where h_{i}^{\prime} is given by Theorem $3.5(i=0, \ldots \gamma)$ and h_{γ}^{\prime} is the last term of the sequence, where there exist Hankel $i-$ planes skew to X_{m}. The two h-sequences relative to Σ and to Σ^{\prime} are different for the maximal $0-$ planes skew to X_{m} contained in Σ. Then $h_{0}=h_{0}^{\prime}+\beta \quad h_{i}=h_{i}^{\prime} \quad i \geq 1$, where β is the number of the maximal $0-$ planes skew to X_{m}. We observe that they do not produce Hankel i-planes in the other terms of the h-sequence. Then the linear system with associated matrix $\left(B_{h} B_{f}\right)$ has no solution. As a consequence, since $\left(B_{h} B_{f}\right) \in k^{m, 2 \beta}$, it must be $\beta \leq \frac{m}{2}$.

Theorem 5.5. (maximal sequence) Let $\Sigma \subseteq \mathbb{P}^{m}$ be a linear space of dimension r. Suppose that $\operatorname{deg}\left(\Sigma \cap X_{m}\right)=s$. Then the maximal h-sequence relative to Σ is

$$
h_{0}=r+1-s, h_{1}=r-s, \ldots, h_{r-s}=1, h_{r-s+1}=0, \ldots
$$

Proof. The maximal h-sequence is obtained when Σ is the join of a non-trivial Hankel $(r-s)$-plane π and s points of X_{m}. Of course π has $r-s+1$ generators, contains $r-s$ Hankel lines, and so on.

Remark 5.6. In any term of the h-sequence it appears a contribution equal to s, if Σ cuts the rational normal curve X_{m} in s points, or equal to zero, if Σ is skew to X_{m}.

Theorem 5.7. (minimal sequence) Let $\Sigma=\mathbb{P}(R) \subseteq \mathbb{P}^{m}$ be an r - plane skew with X_{m}. Let s be the maximum integer such that $(s+1)(r+1)-s m>0$, then the minimal h-sequence relative to Σ is:
i) $h_{0}=r+1, h_{1}=0, \ldots$ if $m \geq 2(r+1)$
ii) $h_{0}=r+1, h_{1}=2(r+1)-m, \ldots, h_{s}=(s+1)(r+1)-s m, 0, \ldots$ if $m<$ $2(r+1)$.

In particular, Σ contains $\Delta h_{s-1}-\Delta h_{s}$ Hankel maximal $(s-1)$-planes and h_{s} Hankel maximal $s-$ planes.

Proof. Of course the minimal h-sequence is obtained when Σ is a general r-plane. Consider the matrix $\left(B_{h} B_{f}\right) \in k^{m, 2(r+1)}$ relative to a minimal set of generators of Σ. So we can suppose that $\left(B_{h} B_{f}\right)$ has maximal rank. If $m \geq$ $2(r+1)$, then there are no Hankel lines. As a consequence, there are no Hankel $2-$ planes and so on, then the h-sequence is zero for $i \geq 1$. If $m<2(r+1)$, there exist $2(r+1)-m$ Hankel lines. Then $R(1)=\left\langle w_{1}, \ldots, w_{2 r+2-m}\right\rangle$ and $\operatorname{dim} R(1)=$
$2 r+2-m$. Now we can consider a general matrix $H \in k^{(m+1),(m-r)}$ such that R is the space of the row relations; of course the rank of H is $m-r$. Consider the block Toeplitz matrix $T_{H}(1) \in k^{(m+2), 2(m-r)}$. Since $m+2>2(m-r)$, we have $2(r+1)-m$ Hankel lines in $\mathbb{P}(R)$, as we know. Consider $T_{H}(2) \in k^{(m+3), 3(m-r)}$ to establish how many $2-$ planes there must be in Σ. If $m+3>3(m-r)$, there are at least $3(r+1)-2 m$ Hankel $2-$ planes. Hankel $i-$ planes necessarily appear until the number of rows is greater than the number of columns, i. e. $(i+1)(r+1)-i m \leq 0$. Note that in the matrix $T_{H}(s)$ there are more rows then columns, but this is not true for $T_{H}(s+1):(s+2)(r+1)-(s+1) m \leq 0$.

As a consequence, we deduce that there must be in Σ at least $(s+1)(r+$ $1)-s m=h_{s}$ Hankel $s-$ planes and $\Delta h_{s-1}-\Delta h_{s}$ Hankel $(s-1)-$ planes. Finally, starting from any choice of such (mutually skew) Hankel planes, we can construct the linear space Σ spanned by these Hankel planes: this gives the required h-sequence; moreover, this h-sequence is obtained for a general r-plane in \mathbb{P}^{m}

Example 5.8. In \mathbb{P}^{9} consider a space R of dimension 7. We construct a Hankel matrix of maximal rank, $H \in k^{10,3}$. To be precise, we have $h_{0}=7$, then $T_{H}(1) \in$ $k^{11,6}$ and $h_{1}=5, T_{H}(2) \in k^{12,9} h_{2}=3, T_{H}(3) \in k^{13,12}$ and $h_{3}=1, T_{H}(4) \in k^{14,15}$ and $h_{4}=0$. In this case $s=3$ since the number of the rows is less than the number of the columns in $T_{H}(4) \in k^{14,15}$. Then we have one Hankel maximal $3-$ plane and one Hankel maximal $2-$ plane. In fact $\Delta h_{0}=\Delta h_{1}=\Delta h_{2}$ but $\Delta h_{3}=$ $h_{3}=1$ and $\Delta h_{4}=0$.

Acknowledgements

I am grateful to Prof. S. Giuffrida for stimulating discussions and useful comments. I thank the referee for his careful reading of this paper, his deep understanding and the useful suggestions that helped me in improving the paper.

REFERENCES

[1] G. Failla, Varietà di Hankel, sottovarietà di $\mathbb{G}(r, m)$, Tesi di Dottorato di Ricerca in Matematica, Messina, 2008.
[2] S. Giuffrida, R. Maggioni, Hankel Planes, J. of Pure and Appl. Algebra 209 (2007), 119-138.
[3] J. Harris, First Course of Algebraic Geometry, Springer, 1992.

GIOIA FAILLA
Department of Mathematics
University of Messina, C.da Papardo, salita Sperone, 31, 98166 Messina, Italy e-mail: gioiafailla@hotmail.it

