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ON SEQUENCES OF INTEGERS FOR HANKEL PLANES
IN A LINEAR SPACE X OF P

GIOIA FAILLA

For a vector space R C k™! of dimension r+ 1 on the algebraically
closed field k we determine, for any i < r, the possible numbers of Hankel
i—planes contained in the r—plane P(R), linear space in P™.

1. Introduction

Let P be the projective space of dimension m defined on k, algebraically closed
field. Let R C k™! be a k—vector space of dimension r+ 1 and let P(R) C P™
be the corresponding r—plane.

In [2] the theory of the Hankel planes was developed. The authors give the
definition of Hankel r—plane, starting from a matrix (called Hankel matrix) of
elements of k. They give necessary and sufficient conditions for an r—plane to
be Hankel.

An interesting problem is to find invariants for an r—plane with respect to a
change of coordinates leaving fixed the standard rational normal curve X, C P™.
Our investigation in the topic of Hankel planes brings us to deduce that invari-
ants of a linear space are given by the positive integer numbers /; defined in
the following way: h; denotes the number of the independent Hankel i—planes
skew to the rational normal curve X,, of P and contained in the linear space
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P(R). We shall take the term A; as the general term of a decreasing sequence,
called h—sequence.

An open problem, given in [2], was to describe all the possible z—sequences in a
given linear space. In this paper, the problem has been completely solved, so we
obtain new invariants associated to a linear space ¥, in terms of a h—sequence.

To be precise, in section 2, we give some definitions and recall some notions
and results useful in the sequel. In Sections 3 and 4, considering a linear space
¥ C P of dimension r, skew to X, and joining t maximal Hankel planes (that
can also have the same dimension), we determine the relative h—sequence.

We obtain simplified z—sequences when all the maximal Hankel planes have
the same dimension, or all of them have different dimensions.

In Section 5, we introduce the difference sequence Ah, with general term Ah; =
h; — h;;1. We consider a decreasing sequence of positive integer numbers /;
and we show that it is the h—sequence of some space X if, and only if, Ah is
not increasing. Finally, we find the maximum and minimum number of Han-
kel i—planes contained in a linear space X i. e. the maximal and the minimal
h—sequences.

2. Preliminaries and Notations

Let k be an algebraically closed field, char(k) = 0. Starting from a matrix A €
kim+Dx(n+1) for any p > 0, we can construct a block Toeplitz matrix Ty (p) €
fmtp+1). (it 1)(p+1) - et R C k™! be the k—space of the relations among the
rows of A and, R(p) C k" P*! be the k—space of the relations among the rows
of Ty(p). In particular, any element of R(p) gives a Hankel matrix whose rows
belong to R (For more details see[2]). We recall the following:

Definition 2.1. Define Hankel Matrix a matrix of the following type:

Ao M Am
A Ao A ),m+1
H= ekp+17m+l
).«p_l A,p )Lm-l-p—l
Ap Apri o Amip1 Amip

Denote by X,, C P the rational normal curve, locus of points (a,b)" = (a”,
a" 'b,...b"), a,b c k.

Definition 2.2. Define secant s—plane any s—dimensional linear subspace X; C
P that cuts X, in s+ 1 points (counting their multiplicity ). If X, cuts X,
in the point P; with multiplicity #;, we write £, =< toPo,t1P1,....thEP, >, (i =
0,...m;Yt;=s+1).
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Theorem 2.3. ([2], Theorem 3.7) Let w, C P be an r—plane spanned by points
of coordinates (dyp, .. .,dim), i =0,...,r. Then the number of independent Han-
kel p—planes contained in 7, is equal to the number of independent solutions of
the linear system associated to the matrix S, (), that is

dimR(p) = (p+1)(r+1) — rank S,(m,)

where
B, By Q Q Q
Spmy= | & B Broo @02 g
Q Q Q ... B, By
d()] di ... dn ’ d()() le ... dr()
BuB; — dp dip ... dp ; doi dip ... dn
dOm dlm v drm ’ dOm—l dlm—l drm—l

and Q € k™1 is the null matrix.

Remark 2.4. If rank S,(7,) = p(r+1), then dimR(p) = r+ 1. So dimR(p) =
dimR for any p > 0 and 7, is a secant r—plane.

Definition 2.5. Let V C k! be a k—vector space of dimension r+ 1. V is
called Hankel space if there exists a non zero Hankel matrix H € k17 +1,
whose (r+ 1) rows belong to V.

Definition 2.6. An r—plane 7, CP" is called Hankel plane if m, =P(V), where
V is a Hankel space. The r—plane =, is called non trivial if 1. NX,, = 0. In
particular the Hankel 1—planes are called Hankel lines.

Remark 2.7. Any point P € P is a Hankel O—plane. In fact we can always
construct a 1 x (m+ 1)—matrix that can be considered as a Hankel matrix.

Definition 2.8. Let ¥ C IP" be a linear space. A Hankel r—plane 7, C X is called
maximal in X if it is not contained in any Hankel (r+ 1)—plane of X.

Remark 2.9. If P € n,NX,,, P = (a,b)™, then 7, is trivially Hankel since it is
always possible to write a Hankel matrix of rank 1 just using coordinates of P:

artt gty L d'"
am+r—1b am+r—2b2 L ar—lbm—i-l
H =
anb’ am—lbr—i-l bm—l—r

Therefore it is more interesting to study Hankel r—planes which are skew to X,,,.
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Remark 2.10. ([2], Remark 4.12) Let 7, = P(R) be a Hankel r—plane such that
7N Xy =0, where dimR =r+ 1. Let H ='(vo, vy, ..., V,) be the Hankel matrix
correspondent to 7. H has maximal rank by Theorem 2.11 and 7, contains:two
Hankel independent (r — 1)—planes ’(vo,...,v,—1),"(V1,...,V,), three Hankel

independent (r — 2)—planes "(vo,...,V,—2), "(Vi,.. o, V1), (V2yeo ey Vi)seooy T
Hankel independent lines /(vo,vy), (vi, v2), ..., "(V,—1, V), (r+ 1) Hankel
O—planes vg,vy,...,V,.

The following theorem characterizes the non trivial Hankel planes.

Theorem 2.11. (See [2], Theorem 4.11) Let ., C P be a Hankel r—plane.
Then . N X, = 0 if, and only if, you can construct a unique maximal rank
Hankel matrix with r + 1 rows, coordinates of points of ,.

3. Hankel maximal r—planes

We want to focus our study on Hankel maximal r—planes of a linear space
Y C P". We need these preliminary results:

Proposition 3.1. Let R C k™! be a vector space, dimR = r+ 1, such that P(R)
is skew to X,, CP". If dimR(1) = r, then dimR(2) =r—1, ..., dimR(r) =1,
dimR(r+1) =0 and n, = P(R) C P™ is a Hankel r—plane.

Proof. Consider a basis of R(1):

(B (P (P
L1_<Q1>,L2_<Q2>,...,Lr_(Qr>

with B = (@i, ---,@im), Qi = (ai1,---,aj(m+1)) elements of R. Since the line
L; corresponds to the point (i, ..., dim+1)) € P+ ([2], Remark 4.15), we
look for the Hankel 2—planes as solutions of the homogeneous linear system
associated to the matrix

(Bth):<Q]Q2..7Qr ’P]Pz...,Pr>.

We have that r <rank (B,By) < r+ 1. rank (B;By) cannot be r otherwise P(R)
should be a secant r—plane (Remark 2.4). Then it is r+ 1 and the linear sys-
tem has 2r — (r+ 1) = r — 1 independent solutions. To determine the Hankel
3—planes, we know that R(1) has dimension equal to r and R(2) has dimen-
sion r — 1. By the same argument, R(3) = R(2)(1) has dimension r — 2, and
so on. In particular there exists a non-zero element of R(r). So 7. contains
(r — 1) independent Hankel 2—planes, (r — 2) independent Hankel 3—planes,
..., 2 independent Hankel (r — 1)—planes, 1 Hankel r— Hankel plane. Then 7,
is a Hankel r—plane. O
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Example 3.2. Consider in P® a Hankel 2—plane 7, with Hankel matrix:

Vi 10 0 0 —-11 2
vw |={00 0 -1 1 2 0 ,
V3 00 -1 1 0 —1

and a Hankel line 7; with Hankel matrix:

vs y\ (1 0 -1 0 2 1

vs /L0 -1 0 2 3 0 )"
We observe that m; and 7, are not skew since v4 = vi +vy +v3. Let 1 = m; +
m, be their joining space, dimz = 3. 7 contains 3 independent Hankel lines

(1,0,0,0,—-1,1,2,0), (0,0,0,—1,1,2,0,1), (1,0,—1,0,2,3,1,0). Consider the
matrix (B;By) to compute the Hankel

—_ W

2—planes:

0O o0 o0 1 0 1
0o o -1 0 0 O
O -1 0 0 0 -1

BwBf)=| -1 1 2 0 -1 0
1 2 3 -1 1 2
2 0 1 1 2 3
0o -1 0 2 0 1

By simple computation, we have that rank (B;B) = 4 and there are two Hankel
independent 2—planes in 7. Hence 7; is not maximal in 7.

Corollary 3.3. Let w,, my C ¥ be maximal Hankel planes in the linear space .
Then m,Nm, = 0.

Proof. 1f my is a Hankel s—plane, then for any point P € 7, there exists a Hankel
line L, passing through P. In fact, 7; contains two Hankel (s — 1)—planes; in the
sheaf generated by these two Hankel (s — 1)— planes consider the Hankel 7,_;
plane passing through P. m;_; contains two Hankel (s —2)—planes. In the sheaf
generated by these two Hankel (s —2)— planes consider the Hankel 7,_, plane
passing through P and so on. Finally we find a Hankel line L passing through P.
Suppose 7, N7, # @ and P € m, N 7. Since for any point of 7, there is a Hankel
line L, then &, N L # 0. Consider the Hankel matrix that represents the Hankel
m,—plane:
Ag a ay ... ap
H1 _ A] _ aj a B |

A, ar  Arsl .- Ay



118 GIOIA FAILLA

and the Hankel line

L_(Bo>_<b0 by ... bn )
B bi by ... bpir )

Suppose that By €< Ao, ...,A,,B; >. Consider the joining space 7, +L =
< Ag,At,...,Ar,B; >. By Proposition 2.3, consider the matrix (B,By) to find
the Hankel lines:

a a ... a1 by a a ... a, by
6km,2r+4.

m  Amy1 - Guir bmyl Guo1 Gm ... Gmir—1 b

In the matrix (B,By) the columns arising from the Hankel matrix H; are 2(r+1)
whose r + 2 are independent. Since the column ’(by,...,b,) € ((ai,...,an),
o a1y amer), (b2, . b)), then rank (ByBy) = r+ 3. Thus, there
are r + 1 Hankel independent lines in 7, 4+ L and so, by Proposition 3.1, 7w, + L
is a Hankel (r+ 1)—plane that contains a Hankel maximal r—plane. Contradic-
tion. O

Remark 3.4. Let 7, and 7, be two Hankel planes contained in a linear space X,
then the Hankel 2—planes that they contain can be dependent (7 < min(r,s)). In
this case 7, and 7; are not maximal in their joining space.

Theorem 3.5. Let ¥ C P be a linear space of dimension r. Consider t Han-
kel maximal ri—planes m; = P(V;) C X, dimm; = r;, such that ;N X, =0 (i =
l,....t). Then Vi +..+V, =Vi&...®V,ie, dim< my,...,m >=Y_  dimV;— 1.

t
Proof. Consider the sum space V = Z V;. Let P(V) be the joining linear space
i=1
of all the Hankel m;—planes. In 7; there are r;,— Hankel lines and (r; — 1) Han-
t

kel 2—planes (Remark 2.10). Then in P(V) there are at most Z r; —t Hankel
i=1
2—planes. On the other hand, the Hankel r;—lines in 7; are:

P, P, P, . .
(Qzl>,<Q:2>,,<Q::> P, Qi eV, j=1,..,ri=1,...1t

Compute the Hankel 2—planes in P(V') writing the matrix (B,By). Since R(2) =
R(1)(1), then we have S;(P(R(2))) =

(01101 021 Qopy Ot Qi | TP P TPy L Py P LR,
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t t
In general, we have dim Z V. < Z(ri + 1). Suppose, by absurd, that the sum of

i=1 i=1
1

subspaces V; is not direct. It follows that rank S; (P Z +t—1. On

the other hand, the number of independent solutions of the hom_ogeneous linear
system, having as associated matrix S; (P(R(2))), is

dimR(2 >22r, Zr,—t—i—l—Zr,—t—i—l

Since dimR(2) represents the dimension of 2—planes, we find a contradiction.
1

In fact, we know that the number of 2—planes is at most Z ri—t. O
i=1

4. h-—sequences

For a generic linear space £ C P we want to find all the possible decreasing
sequences hg, hy, ..., h;, ..., where h; is the maximal number of Hankel i—planes
contained in X. In this direction we give the following definitions:

Definition 4.1. Define h-sequence, relative to a linear space X C [P, a sequence
of integers, whose term A; denotes the maximal number of independent non
trivial Hankel i—planes contained in X.

Theorem 4.2. Let Y. CP" be a linear space of dimension r, XN X, = 0. Suppose
that ¥ is the joining space of Hankel maximal planes g C X (B = 1,...,t), with
dimm <dimm < ... <dimm. Then, the h—sequence relative to ¥ is

Zala} t(i—1) 0<i<l+ao
Zajaj—(t—al)(i—l) 240 <i<l+mw
s

e — Za‘,‘OCj— al—az)(l—l) 24 <i<l+og

i = P
L
Zajo‘j—(f—al—"'—al—l)(i—l) 241 <i<l4+oy <o
=
a 24051 <i< o
0 >0

where Qy is the generic term in the sequence
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I<ag<m<..<gy<...<o,=dmm

of the dimensions of the Hankel 7g—planes that have different dimensions, and
ay is the number of the independent Hankel oy — planes.

Proof. By Theorem 3.5, the  maximal planes 7g contained in ¥ are mutually
skew. We begin to compute the number /g of 0—Hankel planes contained in X. It
is given by the sum of the generators of Hankel maximal 7g —planes. To be pre-
cise, by hypothesis we have a; maximal Hankel o —planes, a, maximal Hankel
opr—planes, ..., a; Hankel maximal oz—planes, where a; +a>+...+a; =t. A
Hankel maximal @ —plane contains (¢ + 1) Hankel O—planes (Remark 2.10).
So we have a; (o + 1) Hankel O—planes in 7;. Then, for all Hankel maxi-
N

mal oj—planes, we have hy = Z a;a;+t. By the same procedure, we obtain
j=1

N
hi = Zaj(xj —t(i—1)uptoi=a; + 1. In fact, when we compute the Han-

=1
kel iiplanes contained in X, any Hankel maximal o;—plane gives a contribu-
tion that decreases by one at any step. The Hankel maximal a;—planes are the
first to finish, that is, they cannot produce Hankel r—planes for » > «;. Each
oy —plane gives contribution 1 at level iy, and contribution O at level hg, 41, just
one less than the previous step. The o —planes produce no Hankel i—planes for
i=0o;+2.
If s =1, then a; = ¢ and all Hankel planes have the same dimension Q.

Suppose that a; < ¢ and consider the set made up by the Hankel i— planes
that have dimension i > ¢ + 1. Compute the Hankel (o4 + 2) planes. Any
maximal &;—plane contains Hankel (¢ +2)—planes in number equal to (o, —
(a1 +2—1)) (Remark 2.10). Since the Hankel maximal o, —planes are a,, then
there are
az[on — (o +1)] (ay +2) — Hankel planes.

The procedure is valid for j =2,...,s and so we have hq 12 = az[0p — (0 +
S

D]+...+asla;— (o +1)] = Zajocj— (t—ay)(o + 1). In the same way, we
=2

obtain

S
j=2

s
h,-:ZajOtj—(t—al —--.—al,l)(i—l) 2401 <i<o+1<ao.
=
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The last term of the sequence is given by the number a; of Hankel maximal
o —planes. We obtain a decreasing sequence whose general term is /;. O

Corollary 4.3. If the Hankel maximal planes have all the same dimension,
dimm; =r>1(i=1,...,t), then the sequence h; is the following:

hi=t(r—i+1) 0<i<r

Supposing that dim ; < dim @, < ... < dim 7;, we have the following corol-
lary. The simplification is obtained puttinga; =l andi=1,...,s =1.

Corollary 4.4. With the hypothesis of Theorem 4.2, suppose that s =t. Then
the sequence of h; is the following:

t
Y oj—1(i-1) 0<i<l4ao
j=1

t
Yo —@-1)i-1) 2+u<i<l+om
j=2

t

o —(r—2)(i—1 240 <i<l+4og
Y o (

Zaj—(t—l+1)(i—l) 2+ 1 <i<l+oy

5. Maximal and minimal sequence

In this section first we establish when a sequence of positive integers can be a
h—sequence. Then, for a given linear space X, we characterize the h—sequences,
in particular the maximal and the minimal ones.

Definition 5.1. Given a sequence of integers hy, .. .h;, define Ah the sequence
with the general term Ah; = h; — h;4 .

Theorem 5.2. Let h = hg, hy,..., hg, 0,... be a sequence of integers such that
hi > hiy fori < o, h; =0 fori > o and Ahy = Ahy. Then h is the h—sequence
of a linear space ¥ C P spanned by t = Ahy mutually skew Hankel planes of
positive dimension if and only if Ah is not increasing.
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Proof. (=) Since Ahy = Ahj, X is the joining space of r maximal planes of
positive dimension and we can choose as generators of ¥ /g points such that
none of them is a Hankel maximal O—plane.

By hypothesis, we have a h—sequence determined by ¢ mutually skew Hankel
planes. Suppose that they are so organized: a; Hankel o —planes, a, Hankel
o —planes, . ..,a; Hankel o —planes.

By simple computation, you see that Ahg = Ah; = ... = Ahgy, =t and in the
h—sequence the contribution a; of Hankel maximal o —planes is missing from
hey+2. Then he, 4o = hg, 41— (t —a1) and Ahg, 1 =t — ay, that implies Ahg, >
Ahg, +1. By the same procedure, we compute the other terms of the #—sequence
and finally we obtain Ahg,_1 =1t — Zf;(; a; = Ahg, = hq, that is the last non
zero term of the sequence Ah. In fact Ahg 1 =0=1t—Y; (a; = Ahg, —a, and
Ahax > Ahaﬁ_l .

Since the last non zero term of the h—sequence is hq, , Ahg 1 =0 and Ah; =
0 for i > o. Therefore Ah is a non increasing finite sequence.

(«<=) Suppose that Ahg = Ahy = ... = Ahg, =t and Ahg > Ahg,+1. We can
build a linear space X spanned by ¢ mutually skew Hankel planes: a; = Ahg, —
Ahg, 41 of them are o —planes. Assuming Ahg, 41 = ... = Ahg, > Ahg,11 We

have ay = Ahgy, — Ahg,+1 Hankel o —planes and so on, up to ¢, = ¢¢; we have
ha, = Ahg, gives the number of Hankel o, —planes. Altogether the above Hankel
planes build the required linear space X. O

Example 5.3. Consider the mutually skew Hankel planes m,, 7}, 73, 74, 7}, T,
m; in the linear space they span: two 2—planes, one 3—plane, two 4—planes,
two 6—planes. Therefore s =4, o, =6 andr = 7.

Then the h—sequence is: hg =34, hy =27, hy =20, h3 =13, hy =8, hs =4,
he = 2.

Conversely, given the above sequence, the Ak sequence is Ahy =7, Ahy =17,
Ahy =17, Ahy =5, Ahy = 4,Ahs = 2, Ahg = 2. Since Ahy = Ahy > Ahs > Ahy >
Ahs = Ahg > Ah7, there exist two Hankel maximal 2—planes, one Hankel max-
imal 3—plane, two Hankel maximal 4—planes, two Hankel maximal 6—planes.
There are not maximal Hankel lines and maximal Hankel 5—planes.

Now, we study cases relative to a chosen linear space ¥, not necessarily
skew to Xj,.

Theorem 5.4. Let X C P" be a linear space of dimension r and deg(ENX,,) = s.
Suppose that in X there are t Hankel maximal planes of positive dimension, and
that ¥ is their joining space. Then the h—sequence h; relative to ¥ and the
h—sequence h, relative to X' are different only for the first term: hy = hy+ 3,

where B < 5 denotes the number of the maximal O—planes contained in ¥.
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Proof. Consider the linear space ¥’ C ¥, skew to X,, and joining the maximal
t—planes in X. The h—sequence relative to X' is h, h, ..., h,,0,...,0,...0,
where /! is given by Theorem 3.5 (i =0,...y) and h;, is the last term of the se-
quence, where there exist Hankel i—planes skew to X,,. The two h—sequences
relative to X and to ¥/ are different for the maximal 0—planes skew to X, con-
tained in X. Then hg = hy+ B h;=h; i>1, where f is the number of the
maximal O—planes skew to X,,. We observe that they do not produce Hankel
i-planes in the other terms of the z—sequence. Then the linear system with asso-

ciated matrix (B,B;) has no solution. As a consequence, since (Bj,By) € k™2P,

itmustbe f < %
OJ

Theorem 5.5. (maximal sequence) Let X C P be a linear space of dimension
r. Suppose that deg(XNX,,) = s. Then the maximal h-sequence relative to ¥ is

hy=r+1l—shh=r—s,...;h—s=1h_1=0,....

Proof. The maximal h—sequence is obtained when X is the join of a non-trivial
Hankel (r—s)—plane 7 and s points of X,,,. Of course 7 has r— s+ 1 generators,
contains r — s Hankel lines, and so on. O

Remark 5.6. In any term of the h—sequence it appears a contribution equal to
s, if ¥ cuts the rational normal curve X, in s points, or equal to zero, if X is skew
to X,,.

Theorem 5.7. (minimal sequence) Let £ = P(R) C P™ be an r— plane skew
with X,,. Let s be the maximum integer such that (s+1)(r+1) —sm > 0, then
the minimal h—sequence relative to ¥ is:

i) h0:r+1,h1:0,...if m22(r+1)

i) ho=r+1,h =2(r+1)—m, ..., hy=(s+1)(r+1)—sm,0,... if m<
2(r+1).

In particular, ¥ contains Ahs_; — Ahy Hankel maximal (s — 1)—planes and hy
Hankel maximal s— planes.

Proof. Of course the minimal h—sequence is obtained when ¥ is a general
r—plane. Consider the matrix (B, By) € k™2 +1) relative to a minimal set of
generators of X. So we can suppose that (B, By) has maximal rank. If m >
2(r+1), then there are no Hankel lines. As a consequence, there are no Hankel
2—planes and so on, then the h—sequence is zero for i > 1. If m < 2(r+1), there
exist 2(r+ 1) —m Hankel lines. Then R(1) = (wy,...,wor42-p) and dimR(1) =
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2r+2 —m. Now we can consider a general matrix H € k""+1):("=7) such that R
is the space of the row relations; of course the rank of H is m — r. Consider the
block Toeplitz matrix Ty (1) € kU"+2):20m=7) " Since m 42 > 2(m — r), we have
2(r+ 1) — m Hankel lines in P(R), as we know. Consider Ty (2) € k("+3):3(m=r)
to establish how many 2—planes there must be in X. If m+3 > 3(m — r), there
are at least 3(r+ 1) — 2m Hankel 2—planes. Hankel i—planes necessarily ap-
pear until the number of rows is greater than the number of columns, i. e.
(i+1)(r+1)—im < 0. Note that in the matrix Ty(s) there are more rows then
columns, but this is not true for Ty (s+1): (s+2)(r+1) — (s+1)m <0.

As a consequence, we deduce that there must be in £ at least (s+ 1)(r +
1) — sm = hy Hankel s—planes and Ah,_; — Ahg Hankel (s — 1) —planes. Finally,
starting from any choice of such (mutually skew) Hankel planes, we can con-
struct the linear space X spanned by these Hankel planes: this gives the required
h—sequence; moreover, this A—sequence is obtained for a general r—plane in
pP" O

Example 5.8. In P° consider a space R of dimension 7. We construct a Hankel
matrix of maximal rank, H € k'%3. To be precise, we have hg =7, then Ty (1) €
K''6and hy =5, Ty (2) € k'?° hy =3, Ty(3) € k'312 and h3 = 1, Ty (4) € k'415
and 54 = 0. In this case s = 3 since the number of the rows is less than the
number of the columns in Ty (4) € k'*!3, Then we have one Hankel maximal
3—plane and one Hankel maximal 2—plane. In fact Ahy = Ah; = Ahy but Ahy =
h3 =1 and Ahy = 0.

Acknowledgements

I am grateful to Prof. S. Giuffrida for stimulating discussions and useful com-
ments. I thank the referee for his careful reading of this paper, his deep under-
standing and the useful suggestions that helped me in improving the paper.



SEQUENCES OF INTEGERS FOR HANKEL PLANES ... 125

REFERENCES

[1] G. Failla, Varieta di Hankel, sottovarieta di G(r,m), Tesi di Dottorato di Ricerca
in Matematica, Messina, 2008.

[2] S. Giuffrida, R. Maggioni, Hankel Planes, J. of Pure and Appl. Algebra 209
(2007), 119-138.

[3] J. Harris, First Course of Algebraic Geometry, Springer, 1992.

GIOIA FAILLA

Department of Mathematics
University of Messina,

C.da Papardo, salita Sperone, 31,
98166 Messina, Italy

e-mail: gioiafailla@hotmail.it



