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A STUDY ON k-COALESCENCE OF TWO GRAPHS

V. K. NAJIYA - A. V. CHITHRA

The k-coalescence of two graphs is obtained by merging a k-clique
of each graph. The Aα -matrix of a graph is the convex combination of
its degree matrix and adjacency matrix. In this paper, we present some
structural properties of a non-regular graph which is obtained from the
k-coalescence of two graphs. Also, we derive the Aα -characteristic poly-
nomial of k-coalescence of two graphs and then compute the Aα -spectra
of k-coalescence of two complete graphs. In addition, we estimate the Aα -
energy of k-coalescence of two complete graphs. Furthermore, we obtain
some topological indices of vertex coalescence of two graphs, and as an
application, we determine the Wiener, hyper-Wiener and Zagreb indices
of Lollipop and Dumbbell graphs.

1. Introduction

Let G be a simple graph on n vertices with vertex set v1,v2, . . . ,vn and m edges.
The adjacency matrix[1] A(G) = [ai j] of G is defined as an n× n matrix with
ai j = 1 if vi and v j are adjacent, 0 otherwise. The signless Laplacian matrix
Q(G) of G has the form D(G)+A(G), where D(G) is a diagonal matrix with
aii = deg(vi). In [10], Nikiforov introduced a new matrix, which is a convex
combination of D(G) and A(G), defined as Aα(G) = αD(G) + (1−α)A(G),
where α ∈ [0,1]. The Aα matrix, Aα(G) coincides with A(G), D(G) and 1

2 Q(G)
when α = 0,1, 1

2 respectively.
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For a matrix M, Φ(M,λ ) denotes the characteristic polynomial of M. The
solution for this polynomial constitutes the spectrum of M. The adjacency en-
ergy ε(G) of a graph G is defined as the sum of absolute values of its adja-
cency eigenvalues. If λi(Aα(G)) denotes the Aα -eigenvalues of G, then the

Aα -energy[7] is defined as εα =
n

∑
i=1

∣∣∣∣λi(Aα(G))− 2αm
n

∣∣∣∣. If G is a regular graph

then Aα -energy is (1−α)ε(G).
Let G1 and G2 be two graphs on n1,n2 vertices and m1,m2 edges. The k-

coalescence[9] G1 ◦k G2 of G1 and G2 is the graph obtained by merging a clique
of order k of both G1 and G2. The graph G1 ◦k G2 is non-regular with n1+n2−k
vertices and m1 +m2 − k(k−1)

2 edges. If k = 1, it is called the vertex coalescence
and if k = 2, it is called the edge coalescence[8]. The merged clique of order k
is represented by Q. It is difficult to calculate a general formula for Aα -energy
of non-regular graphs. In this paper, we obtain a formula for the Aα -energy of
vertex coalescence and edge coalescence of two complete graphs.

A topological index is a real number that is invariant under graph isomor-
phism and is derived from the structure of a graph. They have become prevalent
due to their applications in several areas, including chemistry and networks.
The most famous indices are Zagreb, Randić, Wiener, harmonic indices and
their variants. Many chemists and mathematicians have extensively studied the
Wiener index. In this paper, we compute certain topological indices, such as the
Wiener index, hyper Wiener index, etc., of k-coalescence of two graphs.

Throughout this paper, Kn denotes the complete graph of order n. The matrix
In denotes the identity matrix of order n, Om×n denotes the 0 matrix of order
m×n and Jm×n is the matrix of order m×n with all entries equal to one.

This paper is organised as follows. Section 2 presents some definitions and
results used for our work. In Section 3, we determine some structural properties
of k-coalescence of two graphs. In Section 4, we estimate the Aα -characteristic
polynomial of k-coalescence of two graphs. In Section 5, Aα -spectrum and Aα -
energy of k-coalescence of two complete graphs are determined. In Section 6,
some topological indices of vertex coalescence of two graphs are computed.

2. Preliminaries

This section presents some definitions and theorems used to prove the main
results. For basic graph theoretical definitions, the reader can refer to [1].

Definition 2.1. [1] The distance d(u,v) between two vertices u and v in G is the
length of the shortest path joining them, if any; otherwise, d(u,v) = ∞.

Definition 2.2. [1] A complete subgraph of G is called a clique of G, and a
clique of G is a maximal clique of G if it is not properly contained in another
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clique of G. The clique number of a graph G is the number of vertices in a
maximal clique of G, denoted by ω(G).

Theorem 2.3. [1] A nontrivial connected graph G is Eulerian if and only if
every vertex of G has an even degree.

Definition 2.4. [2] Let G be a finite, undirected, connected simple graph. Wiener
index W (G) of a graph G is a distance based topological index, defined as the
sum of the distance between all pairs of vertices in a graph G. Let dG(v) be the
sum of distance between v and all other vertices of G, then

W (G) = ∑
{u,v}⊆V (G)

d(u,v) =
1
2 ∑

v∈V (G)

dG(v).

Definition 2.5. [4] Let G be a finite, undirected, connected simple graph. The
hyper-Wiener index WW (G) of a graph G is defined as

WW (G) =
1
2

W (G)+
1
2 ∑
{u,v}⊆V (G)

d2(u,v),

where d2(u,v) = d(u,v)2 and d(u,v) is distance from u to v. Let d2
G(v) be the

sum of square of distances between v and all other vertices of G, then

WW (G) =
1
2

W (G)+
1
4 ∑

v∈V (G)

d2
G(v).

Definition 2.6. [3] The forgotten topological index F(G) of a graph G is

F(G) = ∑
v∈V (G)

deg(v)3 = ∑
uv∈E(G)

(
deg(u)2 +deg(v)2) .

Definition 2.7. [6] The first Zagreb index M1(G) of a graph G is M1(G) =

∑
v∈V (G)

deg(v)2.

Definition 2.8. [5] The Narumi - Katayama index NK(G) of a graph G is
NK(G) = ∏

v∈V (G)

deg(v).

3. Structural properties of k-coalescence of graphs

This section estimates the structural properties of k-coalescence of graphs, namely,
chromatic number, vertex connectivity, edge connectivity, etc. Throughout the
section, Gi represents graphs on ni vertices.

We represent a graph’s maximum degree and minimum degree by ∆(G) and
δ (G), respectively.
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Proposition 3.1. Let Gi be regular graphs of order ni and regularity ri for i =
1,2 and let G = G1 ◦k G2. Then ∆(G) = r1 + r2 − k+1.

If k = n1 or n2, then δ (G) = max{r1,r2} and if k < n1,n2, then δ (G) =
min{r1,r2}.

Proof. Let v be any vertex of G1 ◦k G2. Then

deg(v) =


degG1(v) if v ∈V (G1 \Q),

degG2(v) if v ∈V (G2 \Q),

degG1(v)+degG2(v)− k+1 if v ∈Q.

If G1 and G2 are regular, then the vertices in Q have degree r1 + r2 − k+1,
which is greater than r1 and r2. Thus the maximum degree, ∆(G) = r1 + r2 −
k+1.

Without loss of generality, assume that k = n1 and n1 < n2. Then all the
vertices in G1 will be merged to a k clique in G2 resulting in G2 itself. Then
δ (G) = r2 = max{r1,r2}.

Next assume k < n1,n2. Then there are vertices of degrees r1 and r2 in
G1 ◦k G2. Thus δ (G) = min{r1,r2}.

Proposition 3.2. Let g(Gi) be the girth of Gi, i = 1,2. Then the girth of G1 ◦k G2

g(G1 ◦k G2) =

{
3 if k ≥ 3,
min{g(G1),g(G2)} if k ≤ 2.

Proof. If k is greater than 2, then the graph G1 ◦k G2 will have a cycle of length
3 in Q.

If k ≤ 2, then the shortest cycle in G1◦k G2 will be the shortest cycle in either
G1 or G2.

Proposition 3.3. Let ωi be the clique number of Gi, i = 1,2. Then the clique
number of G1 ◦k G2,

ω(G1 ◦k G2) = max{ω1,ω2}.

Proof. The graph G = G1 ◦k G2 has G1 and G2 as induced subgraphs. Thus, any
clique of G1 and G2 is a clique of G as well. Also, the merging of vertices does
not produce a new clique. Hence, ω(G1 ◦k G2) = max{ω1,ω2}.

Proposition 3.4. Let Ki be the vertex connectivity of Gi, i= 1,2. Then the vertex
connectivity of G1 ◦k G2,

K(G1 ◦k G2) = min{K1,K2,k}.
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Proof. Suppose K1 and K2 are greater than or equal to k, then G1 ◦k G2 can be
disconnected by removing k vertices in Q. Otherwise, the minimum vertex-cut
of Gi belongs to V (Gi \Q). Therefore, the vertex connectivity of G1 ◦k G2 =
min{K1,K2,k}.

Proposition 3.5. Let λi be the edge connectivity of Gi, i = 1,2. Then the edge
connectivity of G1 ◦k G2,

λi(G1 ◦k G2) = min{λ1,λ2}.

Proof. If the minimum edge-cut of G1 and G2 does not belong to Q, then edge
connectivity of G1 ◦k G2 = min{λ1,λ2}. If the minimum edge-cut of G1 or
G2 is in Q, then it is same as the minimum edge-cut of G1 ◦k G2, therefore
G1 ◦k G2 = min{λ1,λ2}.

Proposition 3.6. Let G1 and G2 be Eulerian graphs. Then the graph G1 ◦k G2
is Eulerian if and only if k is odd.

Proof. If G1 and G2 are Eulerian, then by Theorem 2.3, every vertex of G1 and
G2 are of even degree. For a vertex v in G1 ◦k G2

deg(v) =


degG1(v) if v ∈V (G1 \Q),

degG2(v) if v ∈V (G2 \Q),

degG1(v)+degG2(v)− k+1 if v ∈Q.

Then G1 ◦k G2 is Eulerian if and only if degG1(v)+degG2(v)−k+1 is even, that
is k is odd.

C4 C4 ◦2 C4 C4 ◦1 C4

Figure 1: C4 ◦2 C4 is not Eulerian whereas C4 ◦1 C4 is Eulerian.

Proposition 3.7. For k > 1, the graph G1 ◦k G2 is Hamiltonian if and only if
both G1 and G2 are Hamiltonian. If k = 1, then G1 ◦k G2 is not Hamiltonian.
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Proof. If k= 1, the vertex in Q is a vertex cut. Then G1◦k G2 is not Hamiltonian.
Consider k ≥ 2. Let ni be the order of Gi, i = 1,2. Assume G1 and G2 are

Hamiltonian, then they have a Hamiltonian cycle u1u2 · · ·un1u1 and v1v2 · · ·vn2v1
respectively, where ui’s are the vertices of G1 and vi’s are the vertices of G2.

Let ur,ur+1, · · · ,ur+k and v1,v2, · · · ,vk be the vertices merging in G1 ◦k G2.
We denote the resulting vertices as w1,w2, · · · ,wk. The merging is in such a way
that v1 merge with ur+m+1 for some m ∈ {r,r+ 1, · · · ,r+ k} and is denoted as
wm+1, v2 merge with ur+m+2 and is denoted as wm+2 and so on(see Figure 2).
Then we can construct a new Hamiltonian cycle

u1u2 · · ·w1w2 · · ·wmvk+1vk+2 · · ·vn2wm+1 · · ·wk · · ·un1u1.

Hence G1 ◦k G2 is Hamiltonian.
Conversely, if G1◦k G2 is Hamiltonian, then there exists a Hamiltonian cycle

u1u2 · · ·w1w2 · · ·wmvk+1vk+2 · · ·vn2wm+1 · · ·wk · · ·un1u1. In this cycle, consider
the path wm+1 · · ·wk · · ·un1u1u2 · · ·w1w2 · · ·wm. Since there is an edge between
wm and wm+1, adding this edge to the path will produce a cycle containing all
the vertices of G1. Therefore G1 is Hamiltonian. Similarly, we can show that
G2 is also Hamiltonian.

u1

u2

w1

wk

un1

un1−1

wm

wm+1

vk+1

vn2−1

vn2

Figure 2: Hamiltonian cycle in G1 ◦k G2.

The following proposition gives us a lower and upper bound for the inde-
pendence number of k-coalescence of two graphs.
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Proposition 3.8. Let β0(Gi) be the independence number of Gi, i = 1,2. Then
the independence number of G = G1 ◦k G2 satisfies

β0(G1)+β0(G2)−2 ≤ β0(G)≤ β0(G1)+β0(G2).

Proof. Let G = G1 ◦k G2
Case 1: Both G1 and G2 are complete graphs.
Then the vertices in V (G1 \Q) are not adjacent to vertices in V (G2 \Q). Thus
β0(G) = 2 = β0(G1)+β0(G2).

Case 2: Either G1 or G2 is complete.
Without loss of generality, assume that G1 is complete and G2 is not. If the
independent set of G2 contains a vertex in Q, then β0(G) = β0(G2) = β0(G2)+
β0(G1)−1. If the independent set of G2 does not contain a vertex in Q, then the
independent set of G contains independent vertices of G2 along with a vertex
from G1 \Q. Thus β0(G1 ◦k G2) = β0(G2)+1 = β0(G2)+β0(G1).

Case 3: Neither G1 nor G2 is complete.
If both Gi’s have an independent set disjoint from Q then their union gives the
independent set for G, that is, β0(G) = β0(G1)+β0(G2). If one of the Gi’s has a
vertex common in its independent set and Q, then β0(G)= β0(G1)+β0(G2)−1.
If both Gi’s has vertices common in their independent set and Q, then β0(G) =
β0(G1)+β0(G2)−2.

Proposition 3.9. Let χi be the chromatic number of Gi, i = 1,2. Then the chro-
matic number of G1 ◦k G2,

χ(G1 ◦k G2) = k+max{χ1 − k,χ2 − k}.

Proof. We need k different colours to colour the vertices in Q. Since the ver-
tices in V (G1 \Q) and V (G2 \Q) are not adjacent, they can be coloured us-
ing max{χ1 − k,χ2 − k} colours. Thus chromatic number of G1 ◦k G2 = k +
max{χ1 − k,χ2 − k}.

4. Aα -characteristic polynomial of k-coalescence of graphs

This section computes the Aα -characteristic polynomial of k-coalescence of two
graphs. Using that, the Aα -characteristic polynomial of Lollipop graphs is esti-
mated.

Let G be a graph containing a k-clique. Then we partition the adjacency

matrix of G into the form A(G) =

[
B CT

C A(Kk)

]
.
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Proposition 4.1. Let G1 and G2 be two graphs of order n1 and n2 respectively
such that n1 +n2 > 3k. Then the Aα -characteristic polynomial of G1 ◦k G2 is

Φ(Aα(G1 ◦k G2),λ ) =Φ(Aα(G1),λ )Φ(Aα(G2\Q),λ )+Φ(Aα(G2),λ )Φ(Aα(G1\Q),λ )

−Φ(Aα(G1\Q),λ )Φ(Aα(G2\Q),λ )
(

α|D1(Q)− (k−1)I|+α|D2(Q)− (k−1)I|

+ |λ −α(D1(Q)+D2(Q)− (k−1)I)− (1−α)A(Kk)|
)
,

where Di(Q) represents the degree matrix of the k vertices in Q of Gi, i = 1,2.

Proof. The Aα -matrix of G1 ◦k G2 with proper labelling has the form

Aα(G1 ◦k G2) =

D RT
1 RT

2
R1 Aα(G1\Q) O
R2 O Aα(G2\Q)

 ,

where D = α(D1(Q)+D2(Q)− (k− 1)I)+ (1−α)A(Kk) and Ri = (1−α)Ci, where
Ci is the block matrix in the adjacency matrix of Gi. Then,

Φ(Aα(G1 ◦k G2),λ ) =|λ −Aα(G1 ◦k G2)|

=

∣∣∣∣∣∣
λ −D −RT

1 −RT
2

−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ −D −RT

1 −RT
2

−R1 O O
−R2 O O

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ −D −RT

1 O
−R1 O O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ −D O −RT

2
−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣ .

Adding and subtracting

∣∣∣∣∣∣
λ −D O O
−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣
to Φ(Aα(G1 ◦k G2),λ ), we get

Φ(Aα(G1 ◦k G2),λ ) =

∣∣∣∣∣∣
λ −D −RT

1 O
−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣
−

∣∣∣∣∣∣
λ −D O −RT

2
−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ −D O O
−R1 λ −Aα(G1\Q) O
−R2 O λ −Aα(G2\Q)

∣∣∣∣∣∣
=
∣∣λ −Aα(G2\Q)

∣∣ ∣∣∣∣λ −D −RT
1

−R1 λ −Aα(G1\Q)

∣∣∣∣
+
∣∣λ −Aα(G1\Q)

∣∣ ∣∣∣∣λ −D −RT
2

−R2 λ −Aα(G2\Q)

∣∣∣∣− ∣∣λ −D
∣∣ ∣∣λ −Aα(G1\Q)

∣∣ ∣∣λ −Aα(G2\Q)
∣∣ .
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Here,∣∣∣∣λ −D −RT
1

−R1 λ −Aα(G1\Q)

∣∣∣∣= ∣∣∣∣λ −α(D1(Q)+D2(Q)− (k−1)I)− (1−α)A(Kk) −RT
1

−R1 λ −Aα(G1\Q)

∣∣∣∣
=

∣∣∣∣λ −αD1(Q)− (1−α)A(Kk) −RT
1

−R1 λ −Aα(G1\Q)

∣∣∣∣
+

∣∣∣∣−α(D2(Q)− (k−1)I) −RT
1

O λ −Aα(G1\Q)

∣∣∣∣
=
∣∣λ −Aα(G1)

∣∣−α
∣∣D2(Q)− (k−1)I

∣∣ ∣∣λ −Aα(G1\Q)
∣∣ .

Similarly

∣∣∣∣λ −D −RT
2

−R2 λ −Aα(G2\Q)

∣∣∣∣= ∣∣λ −Aα(G2)
∣∣−α

∣∣D1(Q)− (k−1)I
∣∣ ∣∣λ −Aα(G2\Q)

∣∣ .
Therefore,

Φ(Aα(G1 ◦k G2),λ ) =
∣∣λ −Aα(G1)

∣∣ ∣∣λ −Aα(G2\Q)
∣∣+ ∣∣λ −Aα(G2)

∣∣ ∣∣λ −Aα(G1\Q)
∣∣

−
∣∣λ −Aα(G1\Q)

∣∣ ∣∣λ −Aα(G2\Q)
∣∣(α

(∣∣D1(Q)− (k−1)I
∣∣+ ∣∣D2(Q)− (k−1)I

∣∣)+ ∣∣λ −D
∣∣)

=Φ(Aα(G1),λ )Φ(Aα(G2\Q),λ )+Φ(Aα(G2),λ )Φ(Aα(G1\Q),λ )

−Φ(Aα(G1\Q),λ )Φ(Aα(G2\Q),λ )
(

α
(∣∣D1(Q)− (k−1)I

∣∣+ ∣∣D2(Q)− (k−1)I
∣∣)+ ∣∣λ −D

∣∣).

Corollary 4.2. Let G1 and G2 be two graphs of order n1 and n2 respectively
such that n1+n2 > 3k. Then the adjacency characteristic polynomial of G1◦k G2
is

Φ(A(G1 ◦k G2),λ ) =Φ(A(G1),λ )Φ(A(G2\Q),λ )+Φ(A(G2),λ )Φ(A(G1\Q),λ )

− (λ − k+1)(x+1)k−1
Φ(A(G1\Q),λ )Φ(A(G2\Q),λ ).

Remark 4.3. The Lollipop graph, L(m,n−1) is obtained from the coalescence
of a vertex from a cycle Cm and a pendant vertex from a path Pn. The Aα -
characteristic polynomial of the Lollipop graph is, Φ(Aα(L(m,n−1)),λ ) =
Φ(Aα(Pn),λ )Φ(Aα(Pm−1),λ )+Φ(Aα(Cm),λ )Φ(Aα(Pn−1),λ )−λΦ(Aα(Pn−1),λ )Φ(Aα(Pm−1),λ ).

Using the Remark 4.3, we can calculate the Aα -characteristic polynomial of
Lollipop graphs and hence find their spectrum.
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Figure 3: L(4,3)

Example 4.4. The Aα -characteristic polynomial of the Lollipop graph L(4,3)
is, Φ(Aα(L(4,3)),λ ) =
Φ(Aα(P3),λ )Φ(Aα(P3),λ )+Φ(Aα(C4),λ )Φ(Aα(P2),λ )−λΦ(Aα(P2),λ )Φ(Aα(P3),λ ).

5. Aα -spectrum of k-coalescence of complete graphs

In this section, we compute the Aα -spectrum and Aα -energy of Km ◦k Kn.

Proposition 5.1. For m,n > 1, the Aα -characteristic polynomial of Km ◦k Kn is

Φ(Aα(Km◦k Kn),λ )=
(

λ −α(m+n−k)+1
)k−1(

λ −αm+1
)m−k−1(

λ −αn+1
)n−k−1((

λ −m+1+(1−α)k
)(

λ −n+1+(1−α)k
)(

λ −α(m+n−2k)+1− k
)
− (1−

α)2k
(
(m+n−2k)λ − (m+n−2k)αk− (m− k)(n− k−1)− (n− k)(m− k−1)

))
.

Proof. The degree matrix of Km ◦k Kn with proper labelling has the form

D(Km ◦k Kn) =

(m+n−1− k)Ik Ok×m−k Ok×n−k
Om−k×k (m−1)Im−k Om−k×n−k
On−k×k On−k×m−k (n−1)In−k

 .

The adjacency matrix of Km ◦k Kn has the form

A(Km ◦k Kn) =

 A(Kk) Jk×m−k Jk×n−k
Jm−k×k A(Km−k) Om−k×n−k
Jn−k×k On−k×m−k A(Kn−k)

 .

Thus the Aα -matrix of Km ◦k Kn is Aα(Km ◦k Kn) = β1 (1−α)Jk×m−k (1−α)Jk×n−k
(1−α)Jm−k×k1 β2 Om−k×n−k
(1−α)Jn−k×k On−k×m−k β3

 ,
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where β1 = α(m+n−1− k)Ik +(1−α)A(Kk),
β2 = α(m−1)I +(1−α)A(Km−k) and
β3 = α(n−1)I +(1−α)A(Kn−k).

Then the characteristic polynomial of Km ◦k Kn is

|λ I−Aα(Km◦k Kn)|=

∣∣∣∣∣∣
λ Ik −β1 −(1−α)Jk×m−k −(1−α)Jk×n−k

−(1−α)Jm−k×k λ Ik −β2 O
−(1−α)Jn−k×k O λ Ik −β3

∣∣∣∣∣∣ .
In the above determinant, performing

Cl −→Cl +
1−α

λ −m+1+(1−α)k

m

∑
i=k+1

Ci +
1−α

λ −n+1+(1−α)k

m+n−k

∑
j=m+1

C j

for l = 1,2, · · · ,k columns we get,

|λ I −Aα(Km ◦k Kn)|=

∣∣∣∣∣∣
β4 −(1−α)Jk×m−k −(1−α)Jk×n−k
O λ I −β2 O
O O λ I −β3

∣∣∣∣∣∣,
where β4 =(λ −α(m+n−k)+1)Ik−(1−α)

[
(1−α)(m−k)

λ−m+1+(1−α)k +
(1−α)(n−k)

λ−n+1+(1−α)k +1
]

Jk.

|λ I −Aα(Km ◦k Kn)|= |(λ −α(m+n− k)+1)Ik − (1−α)XJk|
|(λ −α(m−1))I − (1−α)A(Km−k)| |(λ −α(n−1))I−(1−α)A(Kn−k)|,

where X =
[

(1−α)(m−k)
λ−m+1+(1−α)k +

(1−α)(n−k)
λ−n+1+(1−α)k +1

]
Thus
Φ(Aα(Km ◦k Kn),λ ) =

(
λ − α(m + n − k) + 1

)k−1(
λ − αm + 1

)m−k−1(
λ −

αn+1
)n−k−1

((
λ −m+1+(1−α)k

)(
λ −n+1+(1−α)k

)(
λ −α(m+n−

2k)+ 1− k
)
− (1−α)2k

(
(m+ n− 2k)λ − (m+ n− 2k)αk− (m− k)(n− k−

1)− (n− k)(m− k−1)
))

.

Now, in the following corollary, we obtain the Aα -eigenvalues of Km ◦k Kn.

Corollary 5.2. The Aα -eigenvalues of Km ◦k Kn are

1. α(m+n− k)−1 repeated k−1 times,

2. αm−1 repeated m− k−1 times,

3. αn−1 repeated n− k−1 times,
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4. three roots of the equation
((

λ −m+ 1+(1−α)k
)(

λ − n+ 1+(1−

α)k
)(

λ −α(m+n−2k)+1−k
)
−(1−α)2k

(
(m+n−2k)λ −(m+n−

2k)αk− (m− k)(n− k−1)− (n− k)(m− k−1)
))

= 0.

The following corollary helps us to determine the Aα -energy of non-regular
graph Km ◦k Kn.

Corollary 5.3. The Aα -energy of Km ◦k Kn is
εα(Km ◦k Kn) =

(k−1)
∣∣∣∣α(1−2k)+

2αmn
m+n−1

−1
∣∣∣∣+(m−k−1)

∣∣∣∣α(1− k)+
αn(m−n+ k)

m+n− k
−1

∣∣∣∣+
(n− k−1)

∣∣∣∣α(1− k)+
αm(n−m+ k)

m+n− k
−1

∣∣∣∣+ |β −X1|+ |γ −X1|+ |δ −X1|,

where X1 =
α
(
m2 +n2 − k2 − (m+n− k)

)
m+n− k

and β ,γ,δ are roots of the equation((
λ −m+1+(1−α)k

)(
λ −n+1+(1−α)k

)(
λ −α(m+n−2k)+1−k

)
−

(1−α)2k
(
(m+n−2k)λ − (m+n−2k)αk− (m−k)(n−k−1)− (n−k)(m−

k−1)
))

= 0.

Corollary 5.4. The Aα -energy of Km ◦k Km is
εα(Km ◦k Km) =

(k−1)
∣∣∣∣α(1−2k)+

2αm2

2m−1
−1

∣∣∣∣+2(m− k−1)
∣∣∣∣α(1− k)+

αmk
2m− k

−1
∣∣∣∣

+

∣∣∣∣β −X2

∣∣∣∣+ ∣∣∣∣γ −X2|+
∣∣∣∣δ −X2|,

where X2 =
α
(
2m2 − k2 − (2m− k)

)
2m− k

and β , γ and δ are roots of the equa-

tion (λ −m+1+(1−α)k)2(λ −2α(m−k)+1−k)− (1−α)2k((2m−k)λ −
2αk(m− k)−2(m− k)(m− k−1)) = 0.

Corollary 5.5. For m,n > 1, the Aα -characteristic polynomial of Km ◦1 Kn is

Φ(Aα(Km ◦1 Kn),λ ) = (λ −αm+1)m−2(λ −αn+1)n−2
(
(λ −m+2−α)(λ −

n+2−α)(λ −α(m+n−2))− (1−α)2
(
(m+n−2)λ − (m+n−2)α − (m−

1)(n−2)− (m−2)(n−1)
))

.

Corollary 5.6. The Aα -eigenvalues of Km ◦1 Kn are
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1. αm−1 repeated m−2 times,

2. αn−1 repeated n−2 times,

3. three roots of the equation (λ −m+ 2−α)(λ − n+ 2−α)(λ −α(m+

n−2))− (1−α)2
[
(m+n−2)λ − (m+n−2)α − (m−1)(n−2)− (m−

2)(n−1)
]
= 0.

The following corollary helps us to determine the Aα -energy of a non-
regular graph Km ◦1 Kn.

Corollary 5.7. The Aα -energy of Km ◦1 Kn is

εα(Km ◦1 Kn) =
m−2

m+n−1

∣∣∣∣αn(m−n+1)−(m+n−1)
∣∣∣∣+ n−2

m+n−1

∣∣∣∣αm(n−m+1)−

(m+n−1)
∣∣∣∣+ |β −X3|+ |γ −X3|+ |δ −X3|,

where X3 = α(m2+n2−m−n)
m+n−1 and β ,γ,δ are roots of the equation (λ −m+ 2−

α)(λ −n+2−α)(λ −α(m+n−2))−(1−α)2
[
(m+n−2)λ −(m+n−2)α−

(m−1)(n−2)− (m−2)(n−1)
]
= 0.

Corollary 5.8. The Aα -energy of Km ◦1 Km is

εα(Km ◦1 Km) =
2(m−2)
2m−1 (m(2−α)−1)+

∣∣∣∣2m2(1−α)−5m+2−α

2m−1

∣∣∣∣+ ∣∣∣∣β − 2mα(m−1)
2m−1

∣∣∣∣+∣∣∣∣γ − 2mα(m−1)
2m−1

∣∣∣∣,
where β and γ are roots of the equation λ 2 − (m− 2+α(2m− 1))λ + 2(m−
1)(αm−1) = 0.

Corollary 5.9. For m,n > 2, the Aα -characteristic polynomial of Km ◦2 Kn is
Φ(Aα(Km ◦2 Kn),λ ) = (λ −αm+ 1)m−3(λ −αn+ 1)n−3(λ −α(m+ n− 2)+

1)
(
(λ −m+3−2α)(λ −n+3−2α)(λ −α(m+n−4)−1)−2(1−α)2

(
(m+

n−4)λ − (m+n−4)2α − (m−2)(n−3)− (m−3)(n−2)
))

.

Now, in the following corollary, we obtain the Aα -eigenvalues of Km ◦2 Kn.

Corollary 5.10. The Aα -eigenvalues of Km ◦2 Kn are

1. αm−1 repeated m−3 times,
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2. αn−1 repeated n−3 times,

3. α(m+n−2)−1,

4. three roots of the equation (λ −m+3−2α)(λ −n+3−2α)(λ −α(m+

n−4)−1)−2(1−α)2
[
(m+n−4)λ −(m+n−4)2α −(m−2)(n−3)−

(m−3)(n−2)
]
= 0.

The following corollary helps us to determine the Aα -energy of a non-
regular graph Km ◦2 Kn.

Corollary 5.11. The Aα -energy of Km ◦2 Kn is

εα(Km ◦2 Kn) =
m−3

m+n−2

∣∣∣∣α[(m−n)(n−1)+2]−1
∣∣∣∣+ n−3

m+n−2

∣∣∣∣α[(n−m)(m−1)+

2]−1
∣∣∣∣+ 1

m+n−2

∣∣∣∣α(2mn−3m−3n+6)−1
∣∣∣∣+ |β −X4|+ |γ −X4|+ |δ −X4|,

where X4 = α[m(m−1)+n(n−1)−2]
m+n−2 and β ,γ,δ are roots of the equation (λ −m+

3− 2α)(λ − n+ 3− 2α)(λ −α(m+ n− 4)− 1)− 2(1−α)2
[
(m+ n− 4)λ −

(m+n−4)2α − (m−2)(n−3)− (m−3)(n−2)
]
= 0.

Corollary 5.12. The Aα -energy of Km ◦2 Km is

εα(Km◦2 Km)=
m−3
m−1

∣∣∣∣2α−1
∣∣∣∣+ 1

2m−2

∣∣∣∣α(2m2−6m+6)−1
∣∣∣∣+∣∣∣∣m2(1−α)−m(4−3α)−α+3

m−1

∣∣∣∣
+

∣∣∣∣β − α(m(m−1)−1)
m−1

∣∣∣∣+ ∣∣∣∣γ − α(m(m−1)−1)
m−1

∣∣∣∣,
where β and γ are roots of the equation λ 2 − (m−2+2α(m−1))λ +2αm2 −
m(2α +3)−2α +5 = 0.

6. Topological indices of vertex coalescence of graphs

In this section, some topological indices of vertex coalescence of graphs are
computed. We calculate the Wiener index, hyper-Wiener and Zagreb indices of
the Lollipop and Dumbbell graphs using the results.

Proposition 6.1. Wiener index of G1 ◦1 G2 is

W (G1 ◦1 G2) =W (G1)+W (G2)+(n2 −1)dG1(v)+(n1 −1)dG2(v),

where v is the vertex that is merged in G1 ◦1 G2.
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Proof. Let G = G1 ◦1 G2 and v be the vertex merging in G. From Definition 2.4,

W (G) = ∑
{u,w}∈V (G1)

d(u,w)+ ∑
{u,w}∈V (G2)

d(u,w)+ ∑
u∈V (G1)
w∈V (G2)

d(u,w)

=W (G1)+W (G2)+(n2 −1)dG1(v)+(n1 −1)dG2(v).

Remark 6.2. The Wiener index of cycle is W (Cm) =

{
m3

8 if m is even
m(m2−1)

8 if m is odd,

and Wiener index of path is W (Pn) =
n(n2−1)

6 . Thus the Wiener index of Lollipop
graph L(m,n−1) is

W (L(m,n−1)) =

m3

8 + n(n2−1)
6 +(n−1)

(
m2+2n(m−1)

4

)
if m is even

m(m2−1)
8 + n(n2−1)

6 + (n−1)(m−1)(m+1+2n)
4 if m is odd.

Remark 6.3. The Dumbbell graph, denoted by Dl,m,n−3, is obtained from the
coalescence of a cycle Cl and the pendant vertex of a Lollipop graph L(m,n−1).

The Wiener index of Dumbbell graph Dm,m,n−3 is

W (Dm,m,n−3)=

{
m3

4 + n(n2−1)
6 + m(m2+3mn−4m+4)+n(4−6m+2mn−2n)−2

2 if m is even
m(m2−1)

4 + n(n2−1)
6 +(m−1)m2−3m+3mn−3n+4n2

2 if m is odd.

Figure 4: D4,6,1

Proposition 6.4. Hyper-Wiener index of G1 ◦1 G2 is

WW (G1 ◦1 G2) =WW (G1)+WW (G2)

+
1
2

(
(n2 −1)(dG1(v)+d2

G1
(v))+(n1 −1)(dG2(v)+d2

G2
(v))+2dG1(v)dG2(v)

)
,

where v is the vertex that is merged in G1 ◦1 G2.
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Proof. Let G = G1 ◦1 G2 and v be the vertex merging in G. From Definition 2.5,

WW (G) =
1
2
(W (G1)+W (G2)+(n2 −1)dG1(v)+(n1 −1)dG2(v))

+
1
2

 ∑
{u,w}∈V (G1)

d2(u,w)+ ∑
{u,w}∈V (G2)

d2(u,w)+ ∑
u∈V (G1)
w∈V (G2)

d2(u,w)


=WW (G1)+WW (G2)

+
1
2

(
(n2 −1)(dG1(v)+d2

G1
(v))+(n1 −1)(dG2(v)+d2

G2
(v))+2dG1(v)dG2(v)

)
.

Remark 6.5. The hyper-Wiener index of of Lollipop graph L(m,n−1) is

WW (L(m,n−1)) ={
m2(m+1)(m+2)

48 + n4+2n3−n2−2n
24 + (n−1)(m(m2+3m+2)+4n(m−1)(n+1)+3m2n)

24 if m is even
m(m2−1)(m+3)

48 + n4+2n3−n2−2n
24 + (m−1)(n−1)((m+1)(m+3)+4n(n+1)+3n(m+1))

24 if m is odd.

Remark 6.6. The hyper-Wiener index of Dumbbell graph Dm,m,n−3 is

WW (Dm,m,n−3) =

m2(m+1)(m+2)
24 + n4+2n3−n2−2n

24

+
7m4+4m3(−5+7n)−8n(1−3n+2n2)+4m2(2−12n+9n2)+8m(−2+5n−6n2+2n3)

48 if m is even
m(m2−1)(m+3)

24 + n4+2n3−n2−2n
24

+
(−1+m)(−3+7m3−16n−12n2+16n3+m2(−13+28n)+m(−23−20n+36n2))

48 if m is odd.

Proposition 6.7. The forgotten topological index of G1 ◦1 G2 is

F(G1 ◦1 G2) = F(G1)+F(G2)+3degG1(v)degG2(v)(degG1(v)+degG2(v)),

where v is the vertex that is merged in G1 ◦1 G2.

Proof. Let G = G1 ◦1 G2 and v be the vertex merging in G. From Definition 2.6,

F(G) = ∑
u∈V (G1)

deg3
G1
(u)−deg3

G1
(v)+ ∑

u∈V (G2)

deg3
G2
(u)−deg3

G2
(v)

+(degG1(v)+degG2(v))
3

=F(G1)+F(G2)+3degG1(v)degG2(v)(degG1(v)+degG2(v)).



A STUDY ON k-COALESCENCE OF TWO GRAPHS 333

Proposition 6.8. First Zagreb index of G1 ◦1 G2 is

M1(G1 ◦1 G2) = M1(G1)+M1(G2)+2degG1(v)degG2(v),

where v is the vertex that is merged in G1 ◦1 G2.

Proof. Let G = G1 ◦1 G2 and v be the vertex merging in G. From Definition 2.7,

M1(G) = ∑
u∈V (G1)

deg2
G1
(u)−deg2

G1
(v)+ ∑

u∈V (G2)

deg2
G2
(u)−deg2

G2
(v)

+(degG1(v)+degG2(v))
2

= M1(G1)+M1(G2)+2degG1(v)degG2(v).

Remark 6.9. The first Zagreb index of of Lollipop graph L(m,n−1) is

M1(L(m,n−1)) = 4(m+n)−2.

Remark 6.10. The first Zagreb index of Dumbbell graph Dm,m,n−3 is

M1(Dm,m,n−3) = 4(2m+n)+2.

Proposition 6.11. Narumi-Katayama index of G1 ◦1 G2 is

NK(G1 ◦1 G2) = NK(G1)NK(G2)
degG1(v)+degG2(v)

degG1(v)degG2(v)
,

where v is the vertex that is merged in G1 ◦1 G2.

Proof. Let G = G1 ◦1 G2 and v be the vertex merging in G. From Definition 2.8,

NK(G) =

∏
u∈V (G1)

degG1(u) ∏
u∈V (G2)

degG2(u)

degG1(v)degG2(v)
(degG1(v)+degG2(v))

= NK(G1)NK(G2)
degG1(v)+degG2(v)

degG1(v)degG2(v)
.

7. Conclusion

This paper estimates some structural properties of a non-regular graph obtained
from the k-coalescence of two graphs. Also, the Aα -characteristic polynomial
of k-coalescence of two graphs is determined. Moreover, the Aα -spectrum and
Aα -energy of k-coalescence of two complete graphs are computed. In addition,
some topological indices of vertex coalescence of two graphs are estimated. The
Wiener, hyper-Wiener and Zagreb indices of Lollipop and Dumbbell graphs are
derived as an application.
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