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LITTLEWOOD-PALEY CHARACTERIZATION OF DISCRETE
MORREY SPACES AND ITS APPLICATION TO THE
DISCRETE MARTINGALE TRANSFORM

Y. ABE - Y. SAWANO

The goal of this paper is to develop the Littlewood—Paley theory of
discrete Morrey spaces. As an application, we establish the boundedness
of martingale transforms. We carefully justify the definition of martingale
transforms, since discrete Morrey spaces do not contain discrete Lebesgue
spaces as dense subspaces. We also obtain the boundedness of Riesz po-
tentials.

1. Introduction

The goal of this note is to develop the Littlewood—Paley theory of discrete Mor-
rey spaces. As an application, we establish the boundedness of the martingale
transforms.

First, we define discrete Morrey spaces. A dyadic interval of integers is the
set of integers given by I(j, k) = ZN[2/k,2/(k+1)) for some j € Ng={0,1,...}
and k € Z. A dyadic cube in Z" is a subset of the form:

Q=1(j. ki) x1(j,k2) % -+ X I(j kn),

where j € Ny and k = (ky,k,...,k,) € Z". The family D(Z") stands for the
set of all dyadic cubes described above, while the subfamily D;(Z") collects all
dyadic cubes of 1(j,k) = ZN[2/k,2/(k+ 1)) with j € Np.
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Definition 1.1. Let 1 < g < p < co. The space MY (Z") is the set of all a =
{as};cz, for which

1

q

11
lall gy = sup (40)7 ¢ | Y lalf
0eD(7r) ‘o

is finite, where #Q stands for the number of elements of the dyadic cube Q.

It is remarkable that the space M5 (Z") boils down to the Lebesgue space
e(zZm).

The discrete Morrey space MY (Z") falls within the scope of the work [1]
and has been investigated in [4—7]. Our goal of this paper is to obtain an equiv-
alent norm using the Littlewood—Paley decomposition.

We describe the Littlewood—Paley decomposition. To this end, we start with
defining the 1-dimensional Littlewood—Paley operator. For a 1-dimensional se-
quence a = {a,} jez, we let

1
Ei(a); = 5 Y a,
leQ

where Q is a unique cube in Dy(Z) which contains j. Each Ej is called the
average operator of generation k. We define Dy = E; — Ej;. The Littlewood—
Paley operator g(a) = {g(a);} jez is defined by

ga); = <i \Dk(a)j\2> (jez)
k=0

Having defined 1-dimensional operators, we move on to the definition of op-
erators acting of n-fold indexed (multi-indexed) sequences. Welet/ =1,2,...,nJ}
The operator E ,El)
changed. The difference operator D,((l) is defined by D,(f) =F ,EI) —E 1521 We write
E=(E,E,....E). LetX = (X1,Xa,...,X,) € {(D,E)}*\ {E}. Define the oper-
ator X; by X = Xk(l) o Xk(z) 0---0 Xk("). The discrete Littlewood—Paley operator

g is given by the mapping a = {a;}5_7. — g(a) = {8(a) 7} 57, where

acts on the /-th component as Ej with other components un-

1

d@i= Y L W@it| Gez

k=0Xe{(D,E)}"\{E}

The next proposition is well known as the Littlewood—Paley characterization of
the discrete ¢7(Z")-norm.
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Proposition 1.2. Let 1 < p < oo. Then there exists ¢, > 0 such that

cplallerzny < 18(@)ller(zn) < cpllallerzn)
forall a € (P(Z").

In this paper, we will establish the following norm equivalence and then
apply it to the boundedness of various operators:

Theorem 1.3. Let 1 < g < p < oo. Then there exists c, 4 > 0 such that
~1
Cpg ”a”Mg(zn) < ||g(a)”/vt5(zn) < Cp7q||aHM5(zn)
forall a € M}(Z").

Theorem 1.3 is a discrete version of [8, Corollary 4.1].
We apply Theorem 1.3 to the boundedness of martingale transforms. Let
{mk}%_, be a sequence of sequences in £~(Z"). Then define

M, (a) = {My(a)7} 5oy = ZEkH (a) = lim ZEkH “)Di(a), (1)

where Ey | (m*)Dy(a) = {Ejq1(mF) 7Di(a)7} 5.7 We can not use the density
argument. Recall that the support of a multi-indexed sequence a = {af} Fezn is
the set of all indices j for which a; # 0. Since MU(Z") does not contain the
space of finitely supported multi-indexed sequences as a dense subspace (see
Remark 4.1), we have to justify the definition of the martingale transform M,,:
The existence of the limit defining M,,(a) is not clear. Furthermore, since The-
orem 1.3 is applicable for multi-indexed sequences in M5 (Z"), we also have to
show that M,,(a) € MY (Z") for any a € MY (Z") before we use Theorem 1.3
to obtain the norm estimate.
We perform this using the predual space 7—[5// (Z") considered in [9].

Definition 1.4. Let 1 < g < p < oo,

1. A multi-indexed sequence a = {a;} 7.7, is said to be a (p’,¢')-block cen-
_ 1

q,

1\—‘

tered at Q if it is supported on Q and ||a|| (zm < < (40)7»~

2. The block space HY ,(Z”) is the set of all multi-indexed sequences a of

the form: a = Z A)all) where the convergence takes place in the topol-
1

=
ogy of 7'(Z"), & = {AU }°° , € £'(N) and each a/) is a (p’,q')-block
centered at Q; € D(Z"). The norm is given by HaHH,, @ 1nf|M||51 s

where A and {a(j ) }‘;-":1 move over all possible representations.
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According to the general theory [9], M7 (Z") admits a predual. One predual
of Mg(Z") is the space H,, (Z").

Proposition 1.5. Let 1 < ¢ < p’ < oo. Then ”HS// (Z") is a Banach space. Fur-

thermore, the dual of ’Hf;// (Z") is isomorphic to MY(Z"). More precisely, we
have the following:

1. Forall a={a;} e MI(Z") and b = {bstiem € 'Hg, (z"),

jezr

L lagbl < lallgan bl
jele

In particular,
ar— La(b) = Z aﬁbf

is a bounded linear functional.

2. Conversely any bounded linear functional over ’Hg,/ (Z") can be realized
as above for some a € ML (Z").

By using Proposition 1.5 we will justify that the limit defining M,,(a) for
a € M}(Z") exists in the weak-* topology.

Theorem 1.6. Let 1 < g < p < oo, Assume that
K = sup||Ex 11 (mk)\|£°°(zn) < oo
keN
Then the limit defining My,(a) for a € MY(Z") exists in the weak-* topology

of MU(Z"). The martingale transform a € MY(Z") — M,,(a) € MEL(Z") is
bounded.

Here we list other conventions of this paper.

* A cube in Z" is a subset that can be expressed as

0=0(a,r)={m= (my,myp,...,my) €Z" : _rlnglx mj—aj| <r}

J=h4,...n
for some a = (aj,ay,...,a,) and r > 0.
* For multi-indexed sequences a = {a;} 7.z, and b = {b;} 7z, we write
<a,b> = Z a;b;

jezn

as long as the right-hand side converges absolutely.
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* Let A,B>0. Then A < B and B 2 A mean that there exists a constant
C > 0 such that A < CB, where C depends only on the parameters of
importance. The symbol A ~ B means that A < B and B < A happen
simultaneously, while A ~ B means that there exists a constant C > 0
such that A = CB. When we need to emphasize or keep in mind that the
constant C depends on the parameters o, 3,y etc, we write A Sq 5.4, B
instead of A < B.

Before we conclude this section, we collect some elementary facts that can be
derived directly from the above definitions. Observe that any cube Q € Q(Z")
can be included in the union of dyadic cubes Q1,Q,..., Qs satisfying £(Q;) <
£(Q) < 2£(Qj) for each j=1,2,...,3". A direct consequence of this observa-
tion is the norm equivalence: for

<=
Q=

lall pppzmy ~ sup (40)2 7 | Y |l
QeQ(zr) jeo

We organize this paper as follows: In Section 2, we collect some preliminary
facts. Theorem 1.3 is proved in Section 3. As an application, we prove Theorem
1.6 in Section 4. Section 5 is an appendix where we prove the boundedness of
the fractional integral operator.

2. Preliminaries
2.1. Embedding

We invoke a fundamental embedding result [5, 7]: If 1 <r < g < p < oo, then

lall aepzey < llall gz )

for any multi-indexed sequence a = {a]'}er" by Holder’s inequality.

2.2. Maximal operator

For a multi-indexed sequence a = {a} write

fEZ" s

(Mdyadica)f: . sup ﬁz Z ‘av .
JEQED(Z") = feq

We define Mayadica = {(Mayadica) 7} jezn- The correspondence a — Mayadicd is
called the dyadic maximal operator. Gunawan and Schwanke established that
the dyadic maximal operator is bounded on MY (Z") [4, Theorem 3.2].
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Proposition 2.1. Let 1 < g < p < oo. Then there exists ¢, > 0 such that
[Mayadicall pmpzny < cqllall ez

forall a € M§(Z").

2.3. Predual spaces

We invoke the following elementary facts: Since the proof is similar to the
classical case as in [3], we content ourselves with the statement.

Lemma 2.2. [3, (9.2)] For any (p',q')-block a = { a5} ., we have lall g zny <
1.

A direct consequence of Lemma 2.2 is the following embedding result:

Corollary 2.3. Let 1 < g < p <oo. Then Hg,/ (Z") is a subset of I (Z"). More
quantitativel, all g, < a1 for all a = {a7} e
q

Finally, we invoke [3, Lemma 341].

Proposition 2.4. Let 1 < g < p <ooand Q € D(Z"). Define

- 76 R
Rola);= {gj §¢§

for a € ¢4 (Z"). Then we have

Q=
==

1R (@) Ly < (HQ)T 7l e
q

forall a € 07 (7).

3. Littlewood—Paley decomposition—Proof of Theorem 1.3

Recall that g(a) contains the operators Dy in its definition, which annihilate the
constant multi-indexed sequence {l}fezn- Therefore, seemingly the quantity
18(a)l| pz(zr) loses something that ||a| v (z» has. This is the case if we con-
sider a multi-indexed sequence a that does not necessarily belong to M5 (Z").
To establish that this does not apply for any multi-indexed sequence in M7 (Z"),
we use the following lemma:
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Lemma 3.1. Let R € D(Z") and 1 < q < p < oo. Then for each a € MY(Z")
and for each multi-indexed sequence b which is supported on R, we have

dim (Ey(a), En(b)) = 0.

Proof. Normalization allows us to assume Z \b;]ql = 1. Let R = 2™, Con-
jerR

sider an increasing sequence {Q,,}r_; C D(Z") satisfying Qp = R, Q41 =

2"4Q. A geometric observation shows that U Oy, 1s nothing but a quadrant

m=0
S of Z". That is, S is the Cartesian n-fold product of the sets [0,00) NZ or

(—e0,0) NZ. We decompose

G Qm - Q()U O (Qm+1 \Qm)

m=0 m=0
Then we have

[(En(a) Z Ey(a);En(b
jEZ"

< Y |En(a);||En(b);]
jEZ”

= Y IB@IEG A+ Y L Ev@jllE )
J€Qo m= O/€Q171+1\Qm

For the first term, we employ Holder’s inequality and Proposition 2.1 to have

ZlEN AEN D)1 < En(a)llea(o0) 1EN (D)l (g,

7€0o
q le’
1_1 1
< (8Q0)« 7 | En(a)l| pmz(zn) AZ N
J€Qo J*€00
11,1
< 5 (400 Y BV @l sgan| T b
J*€00
1 1_1 L/
- 2nN(ﬁQO)q p HMdyddICaHMp Z” Z bf*

J*€0g

1 _1
N ZHN(ﬁQO)l pHaH./\/lf;(Z”) Z bf* :

J*€0g
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This term tends to 0 as N — oo.

For the second term, we first choose a dyadic cube S € Dy(Z") which con-
tains Qp. Then we obtain an increasing sequence Qo C Q1 C --- C Q; = § with
the property that there is no intermediate dyadic cube between Q; 1 and Q; for
all j=1,2,...,1, where [ = N — M. Suppose fe Om+1\Om withm=0,1,....
Then

ZY#NﬁZ by, ifm+1<1,
En(b); = J+€0o
0 itm+1>1.

If we insert this expression into the second term, then we have

oo -1
Y ¥ Ev@iE®A=Y ¥ [Ex@il|pe L b

m=05e0,, . 1\Om M=0 7€ 0,1 1\Om J*€0Q0
1

-1

J*€Q0 szfeQm+l\an

By the triangle inequality, the definition of the Morrey norm || - || (7 and
Proposition 2.1,

Y Y |Ew@EN )]

m=0 feQm-H \Qm

-1
S SN )3 bj. Y X [En(a);]

j*€Qp m=05eQ, |

1 -1 1
< onN Z bf'* Z (ﬁQm+l)l P ||EN(a)||MZ(Zn)

7*€0p m=0

1 -1 1
< N Z bj* ”MdyadicaHM{;(Z") Z (ﬁQm+l) r

f*GQO m=0
1 -1 L
N onN Y b | llall ez Y (40mi1) 7.
J*€Qo m=0

Since #Q 1 = 2"MHtm+l) < ooand [ =N — M,
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As a result,

Y Y En(@)lEn(b); !NZHN X2V x Y. by |llall vz

m:Oi‘eQmﬁ»l\Qm J*GQO

<| X byl lal g

J*€Q0
—0 (N — o).
This completes the estimate for the second term. OJ
3.1. Proof of the right inequality
It suffices to show that
1
q
11
(#Q)r v Zé’ < Cp,qHaH/\/tg(Zn)

jeo

for each Q € D(Z"). To specify we let Q € Dy(Z").
We write a = a/, +a, = {(a}) 7} 7z +{(ag) 7} 7oz Where

(ah);=x0(Nay (ag)y=a;—(ah);

Matters are reduced to the proof of

1 1

q q
1 1

1_1 1_1
()77 | Yglap)? | +(t0)7 0 | Yslag)t | < cpgllal gz
jeo jeo

for each Q € D(Z").
As for ag, we employ Proposition 1.2 to have
1
11 11
(8Q)r ¢ Zg aQ < (80)7 7 lg(af) lea(zr)
jeo
1oL
<cq(#0) 7 7 llagllea(zm

Q=

=c,(40)7 7 | X [azl

jeQ
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Thus, we are left with the task of dealing with a,.
It follows from the definition of g(a,,) that

o= (i |Dk<a§>;|2> .
k=0

Suppose f € Q. Then we have

£(a); < T ulag)| < X (ag) 1+ Buantag) ) < 2 Fulap);

by the triangle inequality. Denote by Qy the unique cube in Dy (Z") that contains
Q. A geometric observation shows that

0 ifk<N,

Edag)j=\ L ¥ (ap): ifk<N.
J €0k

If we insert this expression into the definition of g(a,, ), then we obtain

glag)y<2 Z |Eilag);l =2 Z 2nk ) (ag);

k=N+1 k=N+1 Feo
= 1 B
<2 ) sz X lag);
k=N+1 Freox

=1
<2 ) 5w X lagl
k=N+1 ﬁer

Consequently,

(0 + | Lalap)t] <260 ¥ 5p ¥

jeo k= N'H J €0

Recall that $Q = 2"V and that Q) = 2"%. Therefore,

1

q
1

(£Q)7 ¥ Y glag)% <2'*% i (k00" X lazl

jeo k=N+1 €0k
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By the definition of the Morrey norm [a|| »( (z+) and embedding (2),

1
q
1_1 I p— s — 1
(tQ)r—a Zg aQ ] <2 Y (2% ?|all pr zry

]GQ k=N+1
S llall pe )

Thus, the proof is complete.

3.2. Proof of the left inequality
Let R € D(Z"). 1t suffices to show that

1

q

Y lajl" | <epglle(@)ag -
/ER

'u\—
»Q\-—

We linearize the left-hand side. By Holder’s inequality,

q q

Z |Clﬂq = sup Z a]b] E {bj'}jGR’ Z ’bﬂq <1 (3)

jeR jeRr jer

Extend b to an element in ¢4 (Z") by letting bj. = 0 outside R. Then we have

N—1
X = b)) = |{Bw(a). Ex(0) + X (Dila), Dy (5)

JGR

< |(En(a). En(®))] +§Or<Dk<a>,Dk<b>>r

for all N € N. By using the Cauchy—Schwarz inequality twice, we have

Y 1D \<Zz|Dk D ()

k=0 jeznk=

< % [E o E oo

EZ” =

=Y s(a)2(b);

jezn




348 Y. ABE - Y. SAWANO

Inserting this inequality into (3), we have

q

Y lasl?

JjeR

<sup [(En(a),En(b))|+ Y g(a)78(b);:supp(b) C R, [|b]l 70y < 1
jezr

for all N € N. Fix b € ¢ (Z") such that
Hszq’(Zﬂ) =1, supp(b) CR. (4)
Recall that
lim (Ex(a),En(b)) =0

N—>oo0

according to Lemma 3.1. Thus, it remains to show

Y 8(a);8()7 < cpgllg(@)ll v zn

‘76 n

for all b € ¢4 (Z") supported in R with ||| o (zny = 1. Let {Om 1}, be the same
exhausting sequence of a quadrant S as in the proof of Lemma 3.1. In particular,
we let Qo = R. Then notice that g(b); = 0 outside S. Thus,

Y @)= ¥ @b+ Y ¥ s@)zb);

jezr j€0o m=0 70,1\ O

As for the first term, we employ Holder’s inequality and Proposition 1.2 to have

Y. 8(a);8(b); < [18(@)llea(0y)lg®) | gy
j€00

< cq18(@)lea(00) 16114 (g,
<cgllg(a)llea(oy)

=cg | X ls(a))?

j€Qo
1_1
< cg(#Qo) e 7 llg(@)]| per(z0y-

It remains to handle the second term. Fix fe Om+1 \ O and consider

g(b)y= (i !Dk(b)f!2> :
k=0
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Then, since #Q,, = 2"V and $Q,,;1 = 2"™*+"+1) we have

0 ifk <N-+m,

B
Bi=Y 0 X b ifk>N4m,
J*€Qo

Inserting this expression into Di(b)5, we obtain

Dy(b); = Ex(b);— Er1(b)7
(0 if k < N+m,
1 .
_ )z L b ifk=N-+m,
- 1 ]'*'EQO1
J*€Q0 J*€Qo
As aresult,
2 2
o0 oo 1 1
2
LI~ Xt X sm~ | X bi| g
k=0 j*€00 k=N-+m-+1 J*€Qp

Hence from (4), we conclude
b)-< ! b < 1
80); S sawrmny 1l @) S Zazmry-

If we insert £Q,,.1 = 2"V 1) into the above estimate and use embedding (2),
then we obtain

— — 1
Y ) s@p®;s) smman Lo 8@
szjeQerl\Qm m=0 jeQerl\Qm
S Hg(a)HM‘f(Z") Z (2"(1\’+m+1))
m=0

Spa (8Q0) 7 llg(@)l| pp zn)

Spa (800) 7 l18(@)l| nag 2 -

In total,

1

q

Ylaj? | <00 7 lg@lagan + (Q0) 7 8@ aagizn)-
JER
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Multiply both sides by (ﬁQO)% ¢ and use the norm 18(a)|| pz 20y to have

q

11
(#Q0)7 7 | X lafl” | Spq llg(@)l pagizm-

j€o

The cube R = Qy being arbitrary, we obtain the desired result.

4. Applications to martingale transforms

We apply Theorem 1.3 to martingale transforms. For N € N, b € M7 (Z") and
multi-indexed sequences m®,m', ... satisfying |E; 1 (m*)| < K for each k € Ny,
we define the martingale transform M,,(b) of a multi-indexed sequence b by

M, (b) = i Exy 1 (mF) Dy (D).
k=0

If m* = 0 for k >> 1, then we call M,,(b) a finite martingale transform. Thus, a
finite martingale transform takes the form

N
Mo, (v) (b) = ];)Ekﬂ (m") Dy (b).

We consider finite martingale transforms in Section 4.1. Based on the observa-
tions in Section 4.1, we move on to the general case in Section 4.2.

4.1. Finite martingale transform

For N € N, b € MJ(Z") and multi-indexed sequences m°,m!,... satisfying
i (m")] < K )

for each k € Ny, we deal with the finite martingale transform M,, (v)(b) of a
multi-indexed sequence b by

N
M, () (D) = I;)Ek+l (m")Dy (D).

Note that M, (v (b) € M (Z") whenever b € MY (Z"). In fact,

1

sup (£Q)7 7 | Y 1My ) (B)

QE'D(Z”) jeQ

11
<(N+1) sup (£Q)7 ¢ [ ) max|Epsr (m") ;Di(b);17
QeD(zr) ico *
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From Proposition 2.1 and (5), we have

1

q

sup (40)7 0 | X M, ) (B) 17

QeD(Z") jeo

<K(N+1) sup (40)7 ¢ | Y max|Dy(b)
QeD(2r) jco *

ey

1_1
S K(N+ 1) sup (ﬁQ) P Z (Mdyadicb)fq
QeD(Z") jeo

S KN+ 1|16l a2y

< oo,
Hence, the linear functional Ly, ) : ’Hg,/ (Z") — C, given by

Lty (@) = (M ) (b)) (a € HI(Z"),
is bounded. In Section 4.2, we will show that

]\%520<Mm*(N) (b) ) (l>

exists for all a € HZ,/ (Z"). Once this is achieved, we can say that there exists an
element M,,(b) € ML (Z") such that

My () (b) = Mu(b) (N — )

in the weak-* topology. By considering the coupling of this equality with e;, we
learn that
My (ny(D)7 = My(b); (N — o)

for each j € 7.

We concentrate on the proof of Theorem 1.6 for finite martingale transforms.
In this case, there is no need to consider the convergence defining the finite
martingale transform.

Theorem 1.6 for finite martingale transforms. Letb € MY (Z"). As we have re-
marked above, M,, vy (b) € My(Z"). Thus, from Theorem 1.3, we deduce

(|8 (Mo, 3y (D) pz 2y 2 (1Mo () (B) | a2y -
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Thus, it suffices to show that

1
q

(#0)7 7 | Y 18(My ) (5) )¢

jeQ
for all Q € D(Z"). It follows from the definition of g(b) that

Spaq HbHM{,’(Z”)

1

) = (£ o)

X le (M 0y (8))17 = ¥ (kzo EkH(mk);Dk(b);F) .

jeQ jeo
Recall that we are assuming

|Exci1 (m") 3] < [|Exsr (m

8(M, () (D))

i= (l;)|Dk(M

Thus,

k)HZ“’(Z") <K <oo

for each fe Z" and k=0,1,2,.... Thus,

2 l8(M ) (D)) < ) (Z Bt ()7 ) | D (b) |2>

jeo jeo

q

e £ (£ oo )

JeQ

< sup HEk-H

Once again from the definition of g(b), we have

(i |Dk<b>;|2> —g(b)7.
k=0

If we insert this expression into the above inequality, then we obtain

Y 1My ) (8)7)1 <y KO Y [5(b)+17
jeo jeQ
Hence
(#0) 7 | ¥ lsMu @) | S K0 7 | ¥ ls(®)7
jeo jeo

Sq Klle®)l az(z)-
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Once again from Theorem 1.3, we have

1

q

(:0)7 77 | ¥ leM ) )DI | Spa K28 gz
jeQ

Spa KHbHM{,’(Z")-

This proves Theorem 1.6 for finite martingale transforms. 0

4.2. Proof of Theorem 1.6—General case

We will establish that the limit (M, v)(b),a) as N — oo exists for all b €

MY (Z") and a € ’Hﬁ]’: (Z"). This amounts to showing that {(M,, (v)(b),a)}%_,
is a Cauchy sequence.

Let us start with the case where a is a (p’,¢')-block centered at Q. Let
ni,ny € N satisfy n; > ny. Suppose $Q = 2"V. By linearity, we have

<Mm,(n1)(b)va> - <Mm,(nz)(b)7a> = <Mm,(n1)(b) _Mm,(nz)(b)7a>'
By the Cauchy—Schwarz inequality, we have
’ <Mm,(n1) (b) - Mm,(nz) (b)7a> ’

ggwmmmw%wawmmm

< S DMy ) (B) — My oy (b)) Dil@) .

Jeznk=m

By the Cauchy—Schwarz inequality and Proposition 1.5, we have
[ (M 1) (D) = My () (D) @)

< T Y DM (5)— My 552, | Y IDu@) 52

j'ezn k=ny k=ny
ny ny
<) X 1Dr(My 0 (B) = My 0, (D)) Y. |Di(a)?
k= MGz 1TV k=n2 Y (2

Since |Ey1(m")| < K, thanks to what we did for finite martingale transforms,

S K16l v z0)-

|| Z ‘Dk(Mm,(nl)(b) _Mm,(nz)(b))|2

k= M)
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Let j € Z". We decompose

]

Y @) =20y L. D@+ xzm0l)y | X IDe@)+2

k=ny k=n k=n,

o & e

thanks to Proposition 2.4. Due to Proposition 1.2, we have

As for the first term, we have

n]

x0\| X 1Dk(a)P?

k=ny

_1
P

Q\'—

<(80)

MY (20)
L]/

o (z)

]

x0y| X 1D(a)P?

k=n;

< 180l ot () <l
e (zr)

whenever integers n; and n, satisfy n; > ny > 1. By the dominated convergence

theorem, we have
ny

X0y X 1D(a)l? lim 7o Z |Di(a)
k=ny e k=ns

We move on to the second term. Let ¢ Q. Then for each k € Ny,

=0.
' (Zr)

lim
ny,np—roo

o (zr)

XQk(j> Z ax ifk>NandQ C @,
—] 2k &=
Er(a); = e

0 otherwise,

where #Qy = 2"%. Furthermore, since

4\ np+1
Y ID(a);? < Z |Di(a);] = Z |Ex(@);—Exi(a);] <2 Y |Ei(a)
k=ny k=ny k=ny k=ny

if np > N, then we have

nj
{ Dwmﬂ szwi
fEZ” H!’ (Z")

k=n k=n
2 2 Jj*€Q H;’//(Zn)

7]

1
S Y X0 5k #Z ag,
k=ny J*EQ ’HP/,(Z")
q

1

~ Z (ﬁQSr)zk - Z aj

k=ny f* €0

-Q\'—

jez e (gu)
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Since {Qy = 2,

! a

q q
1 1

nk ﬂZ aj, = ﬂZ nk ﬂZ aj;

J*€Q JE€Ok J*€Q

ﬁQk Z as,

j*€Q

sezllud ()

If we insert this equality into the above estimate, then we have

]

Y. IDi(a |} S| an Y (0077
k =n; jEZ" HP

Loy |eQ T [kEm
q

A

Y a:| ¥ 007

jreQ  |k=m

- Lo

j*€Q
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Since p,n < oo, the last term vanishes as ny — oo. This implies that the limit

defining (M, (v)(b),a) exists as long as a is a (p’,q’)-block.

Next, we remove the assumption that a is a (p’,¢’)-block. Leta € "Hf}/ (z").
Then there exist A = {l ) }°° | € £1(N) and a collection ~{cz(j)}»°-°,1 of (p/,q')-

blocks such that a = Z A all) | From this expression of a, we deduce

j=1

(M, () (D), a) = <Mm,(1v) (b), Y, l(j)a(j)> =Y 29(M,, ) (b),a
=1 =1

As we have established, the limit of (M,, (v (b),a (1)) as N — oo exists for each

Jj- Meanwhile, since M,,, (v)(b) € MZ(Z”)

(M) (0), @) < (1Mo 0y (0) | pagzny 10 ] ) S KBl gy
q

by what we proved in Section 4.1. By the dominated convergence theorem, we

conclude

lim Z)L i 1m AW N)(b),a(j)>.

N—oo =1
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In particular, the limit Al,im (M, () (b),a")) exists.
—»00

We end this section with the remark that finitely supported multi-indexed
sequences do not form a dense subspace in MY (Z"); if we let X be the set of
all finitely supported sequences, then X C M/ (Z"). This means that we are not
allowed to use the “so-called” density argument.

Remark 4.1. Let n = 1. Define a = {)z(log, |j|)}jcz, where it is understood
that log, 0 = —eo and hence xz(log, |0|) = 0. Notice that any cube Q € Dy can
contain at most k points in the support of a: #(Q Nsupp(a)) < k. If we take
Q = 7ZN10,2%), then §(Q Nsupp(a)) = k. Observe also that

11 1 k_k 1
lallppzny = sup (£Q)7 4 (8(QNsupp(a)))? = sup 27~ aks < co.
QeD(7) keNy

Therefore, a € MY (Z") whenever 1 < g < p < o. However, since
lla—bl| pp(zny = 1

for any b € X, a is not in the closure of the space of finitely supported multi-
indexed sequences.

5. Appendix-dyadic Riesz potential

For a € ML(Z"), we set

oo

Rqa = Z 2N%Dya.
N=0

For the time being, let 0 < o¢ < n. The next lemma contains a flavor of the
original observation by Morrey. This observation allows us to conclude that the
function f is Holder continuous if f has a derivative in some classical Morrey
spaces.

Lemma 5.1. For all a € MJ(Z") ||Dyali=zn) S 277 a s 20

Proof. Observe that Dya is constant on each Q € Dy(Z"). Hence

_1
|Dnall=(zn = sup (4Q) ¢ ||Dnal|g(g)-
Q€Dy
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Let Q € Dy(Z"), or equivalently #Q = 2"V, It follows from the definition of
Mgyagica and Proposition 2.1 that

_1 _1
sup (#Q) ¢ [|Dnall(g) < sup (£Q) 2[|Mayadicallwa(g)
QeDy 0€Dy
_1 1_1
S sup (80) »(#0)7 ¢ || Mayadicallea(o)

0€Dy

_1
< sup (£Q) 7 |Mayadical pq 2
Q€Dy

N
Scg2 v ||aHM£;(Z")~
Putting together these observations, we obtain the desired result. O

A direct consequence of Lemma 5.1 is that

oo oo . N
(Rea):| < Y 2% (Dya) | < ¥ min (21“ sup|De(a)4, 2% a\\Mg<Zn>).
N=0 N=0 keN
If "
0<oa<?
p
then

pa po
n e

S Na 1—
’(R(Xa)f‘ < ]\goz ‘DNa’ < KHCZ MB(zZr) lsclelg |Dk(a)]_'| "

for some positive constant K > 0. As a result, by taking the M7 (Z")-norm, we
obtain the following theorem, which corresponds to the discrete version of a
resultin [2, 11? ]:

1

Theorem 5.2. Letl<q§p<°°and1<t§s<oosatisfy%—%:;and

L—9 Then
s p

oo

2N°‘ |DNa]
N=0

< llall aggzn
M)

forall a € MY(Z"). In particular,
IRaal| vy (zey S llall ap iz

forall a € M4(Z").
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