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REGULARITY OF THE INVERSE OF A SOBOLEV
HOMEOMORPHISM

ROSSELLA CORPORENTE

We establish a connection between AΦ and GΨ classes of weights (see
[13], [23]) in the context of Orlicz spaces. We give a generalization of the
following result (see [11])

h′ ∈ Ap⇐⇒ (h−1)′ ∈ Gp′ ,
1
p

+
1
p′

= 1

where h : R −→ R is an increasing homeomorphism such that h,h−1 ∈
W 1,1

loc (R), Ap and Gp′ are, respectively, Muckenhoupt and Gehring classes
of weights (see [18], [9]).

1. Introduction

In this paper we study some weighted integral inequalities in Orlicz Spaces.
More specifically we extend to the context of Orlicz classes the following result
of Johnson and Neugebauer (see [11]):

h′ ∈ Ap⇐⇒ (h−1)′ ∈ Gp′ ,
1
p

+
1
p′

= 1 (1)

where h : R−→R is an increasing homeomorphism such that h,h−1 ∈W 1,1
loc (R).

Further they proved the equality between the corresponding constants:

Ap(h′) = Gp′(h−1)′.
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The aim of this paper is to prove that condition (1) is also true for more
general Young functions and not only for power functions. If Φ e Ψ are com-
plementary Young functions, the following definitions hold

h′∈ AΦ⇔∃A≥ 1 : ∀ε >0,

(∫
I
εh′ds

)
ϕ

(∫
I
ϕ
−1
(

1
εh′

)
ds
)
≤ A, ϕ(t)=Φ

′(t)

and

(h−1)′ ∈ GΨ⇐⇒∃B≥ 1 : ∀ε > 0,

Ψ−1
(∫

J
Ψ

(
(h−1)′

ε

)
ds
)

(∫
J

(h−1)′

ε
ds
) ≤ B,

∀ I,J bounded intervals of R, where
∫

I
=

1
|I|

∫
I

and |E| denotes the classical

Lebesgue measure.
At first we prove that, if the growth of Φ is close to a power function from

the point of view of indices (see (36)),

(h−1)′ ∈ GΨ =⇒ h′ ∈ AΦ,

where h : R−→R is an increasing homeomorphism such that h,h−1 ∈W 1,1
loc (R)

and Φ, Ψ are complementary Young functions verifying ∆2-condition.
Then we prove the converse inequality for a certain class of Young func-

tions. Namely, setting

ϕp,α(s) =
sp

logα(e+ s)
, α ≥ 0, p > 1

Φp,α(t) =
∫ t

0
ϕp,α(s) ds

Ψp,α(t) = complementary function of Φp,α(t),

we get the following statement

∀M > 1 ∃α ≥ 0 : h′ ∈ AΦp,α , AΦp,α (h′)≤M =⇒ (h−1)′ ∈ GΨp,α .

In conclusion, in this paper, we establish a connection between AΦ and GΨ

classes, giving a generalization of condition (1).
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2. Preliminaries

A Young function is a convex function Φ : [0,∞) −→ [0,∞) such that Φ is in-
creasing on [0,∞) , satisfying

lim
t→0

Φ(t)
t

= 0, lim
t→∞

Φ(t)
t

= ∞.

Φ has a derivative ϕ which is nondecreasing and nonnegative, ϕ(0+) = 0 and
ϕ(∞) = ∞, so that

Φ(t) =
∫ t

0
ϕ(x)dx

and we can take ϕ to be right-continuous. The Young function complementary
to Φ is defined by

Ψ(t) = sup
s>0
{st−Φ(s)}=

∫ t

0
ψ(x)dx,

where ψ(x) = inf{s : ϕ(s)≥ x}. These functions verify the Young’s inequality

ab≤Φ(a)+Ψ(b) ∀ a,b > 0.

The Young function Φ satisfies the ∆2-condition (we will write Φ ∈ ∆2 ) if
there exists a constant c > 0 such that

Φ(2t)≤ cΦ(t), ∀ t ≥ 0. (2)

The following result shows that we can substitute ∆2-condition with a growth
condition that gives a control of a Young function by power functions. This is
frequently used, for instance, in connections with applications to PDEs (see, e.g.
[8], [21], [22]).

Proposition 2.1. [16] Let Φ be a Young function, then

Φ ∈ ∆2⇐⇒∃ p,q,1≤ p≤ q : pΦ(t)≤ t Φ
′(t)≤ qΦ(t) ∀ t > 0. (3)

Note that the growth condition (3) means also that the function Φ(t)
t p is non-

decreasing and Φ(t)
tq is nonincreasing.

Next two results deal with relations between complementary Young func-
tions and Hölder conjugate exponents. Here and for all the sequel p′ (and simi-
larly q′,r′) will denote the conjugate exponent p′ = p

p−1 .

Proposition 2.2. [16] Let 1 < p≤ q and let Φ and Ψ be complementary Young
functions and suppose that their derivatives are continuous, then

pΨ(t)≤ t Ψ
′(t)≤ qΨ(t)⇐⇒ q′Φ(t)≤ t Φ

′(t)≤ p′Φ(t), ∀ t > 0. (4)
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Proposition 2.3. Let 1 < p ≤ r < ∞ and let Φ, Ψ be complementary Young
functions verifying the ∆2-condition. If ϕ(t) = Φ′(t) verifies

(r′−1)ϕ(t)≤ tϕ ′(t), ∀ t > 0 (5)

then
r′Φ(t)≤ tϕ(t), ∀ t > 0 (6)

and therefore
t Ψ
′(t)≤ r Ψ(t), ∀ t > 0. (7)

Proof. Integrating (5), we get

(r′−1)Φ(t)≤
∫ t

0
sϕ
′(s)ds, ∀ t > 0

and by integration by parts

(r′−1)Φ(t)≤ tϕ(t)−Φ(t), ∀ t > 0

i.e. (6) holds true and by (4) we get (7).

One more result about the growth condition (3) will be used in the follo-
wing.

Proposition 2.4. [5] Let 1 ≤ p ≤ q. If Φ is a Young function verifying the
growth condition

pΦ(t)≤ t Φ
′(t)≤ qΦ(t), ∀ t > 0,

then ∃C > 0 such that

Φ(λ t)≤C max{λ p,λ q}Φ(t), ∀ λ , t > 0. (8)

Next theorem states that, as a consequence of the growth condition, the

Jensen mean Ψ−1
(∫

Q
Ψ(w)dx

)
lies between the Lp- norm and the Lq-norm.

Theorem 2.5. [5] Let 1 < p≤ q and let w ∈ L1
loc(R) be nonnegative. If Ψ is a

Young function verifying the condition

pΨ(t)≤ t Ψ
′(t)≤ qΨ(t), ∀ t > 0

then
1
C

(∫
I
wpdx

) 1
p

≤Ψ
−1
(∫

I
Ψ(w)dx

)
≤C

(∫
I
wqdx

) 1
q

(9)

where C = ( q
p)

1
p .
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We conclude this Section introducing the notion of fundamental indices,
which will play a key role in the sequel.

Setting

hΦ(λ ) = sup
t>0

Φ(λ t)
Φ(t)

, λ > 0 (10)

the numbers

α(Φ) = lim
λ→0+

loghΦ(λ )
logλ

= sup
0<λ<1

loghΦ(λ )
logλ

(11)

and

α(Φ) = lim
λ→∞

loghΦ(λ )
logλ

= inf
1<λ<∞

loghΦ(λ )
logλ

(12)

are called the lower index of Φ and the upper index of Φ, respectively.
The fundamental indices α(Φ) and α(Φ) are reciprocals of the Boyd in-

dices (see [1], [14]). In the same way we can define the fundamental indices of
Ψ, α(Ψ) and α(Ψ). We have the following relations:

1≤ α(Φ)≤ α(Φ) and α(Φ) > 1⇐⇒Ψ ∈ ∆2 (13)

1≤ α(Ψ)≤ α(Ψ) and α(Ψ) > 1⇐⇒Φ ∈ ∆2. (14)

Moreover, the couples α(Ψ), α(Φ), and α(Ψ), α(Φ) behave similarly as con-
jugate exponents of power functions, namely:

α(Ψ) =
α(Φ)

α(Φ)−1
(15)

and

α(Ψ) =
α(Φ)

α(Φ)−1
.

For the sake of completeness, we conclude this Section stating a couple of
results which help to understand how indices are related to the growth of the
Young functions.

The following theorem gives a simple formula to compute the fundamental
indices of a given Young function.

Theorem 2.6. [7] If there exist

r0 = lim
t→0

t Φ′(t)
Φ(t)

and r∞ = lim
t→∞

t Φ′(t)
Φ(t)

then
α(Φ) = min{r0,r∞} and α(Φ) = max{r0,r∞}.
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Example 2.7. The Young function Φ(t) = |t|p logα(a+ |t|), with 1 < p < ∞ and
α ≥ 0 has the following fundamental indices:{

α(Φ) = α(Φ) = p, if a > 1,
α(Φ) = p, α(Φ) = p+α, if a = 1.

Example 2.8. The Young function Φ(t) = t2− log(1+t2)
2 , t ≥ 0 has lower and

upper index equal to 2.

Proposition 2.9. [6] Let Φ be a Young function satisfying the growth condition
pΦ(t)≤ t Φ′(t)≤ qΦ(t), ∀ t > 0, with 1 < p≤ q, then we have

p≤ α(Φ)≤ α(Φ)≤ q. (16)

where α(Φ) and α(Φ) are the fundamental indices of Φ (see (11) and (12)).

3. AΦ and GΨ classes

Let us recall the definition of the Ap-class introduced by Muckenhoupt in [18].
Let 1 < p < ∞. A weight w (i.e. a positive function in L1

loc(R)) belongs to the
Ap-class if there exists A≥ 1 such that

∫
I
wdx

(∫
I
w−

1
p−1 dx

)p−1

≤ A, (17)

for all bounded intervals I in R. The constant Ap(w) is defined by

Ap(w) = sup
I

∫
I
wdx

(∫
I
w−

1
p−1 dx

)p−1

,

where the supremum is taken over all bounded intervals I ⊂ R.
If p = ∞, a weight w belongs to the A∞-class if there exists A≥ 1 such that(∫

I
wdx

)(
exp
∫

I
log

1
w

dx
)
≤ A, (18)

for all bounded intervals I in R. The constant A∞(w) is defined by

A∞(w) = sup
I

(∫
I
wdx

)(
exp
∫

I
log

1
w

dx
)

, (19)

where the supremum is taken over all bounded intervals I ⊂ R.
In [13], Kerman and Torchinsky extended this definition in the framework

of the Orlicz spaces. Let w be a weight and let Φ, Ψ be complementary Young
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functions verifying ∆2-condition. We say that w belongs to the AΦ− class (we
write w ∈ AΦ) if there exists A≥ 1 such that

∀ε > 0,

(∫
I
εwdx

)
ϕ

(∫
I
ϕ
−1
(

1
εw

)
dx
)
≤ A, (20)

for all bounded intervals I in R, where Φ′ = ϕ . The constant AΦ(w) is defined
by

AΦ(w) = sup
ε>0

sup
I

[∫
I
εwdx ϕ

(∫
I
ϕ
−1
(

1
εw

)
dx
)]

. (21)

On the other hand, we have the Gq-class introduced by Gehring [9], and the
related constant ( see [17]). Let 1 < q < ∞. A weight v belongs to Gq-class, if
there exists a constant B≥ 1 such that(∫

I
vqdx

) 1
q

∫
I
vdx

≤ B, (22)

for all bounded intervals I in R. The related constant is defined by

Gq(v) = sup
I


(∫

I
vqdx

) 1
q

∫
I
vdx


q′

, (23)

where the supremum is taken over all bounded intervals I ⊂ R.
If q = 1, a weight v belongs to G1-class, if there exists a constant B≥ 1 such

that (
exp
∫

I

v
vI

log
v
vI

dx
)
≤ B, (24)

for all bounded intervals I in R. The related constant is defined by

G1(v) = sup
I

(
exp
∫

I

v
vI

log
v
vI

dx
)

, (25)

with vI =
∫

I
v dx, where the supremum is taken over all bounded intervals I ⊂R.

As before it is possible to extend this definition to Orlicz spaces. Let v be a
weight and let Φ, Ψ be complementary Young functions verifying ∆2-condition.
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We say that v ∈ GΨ if there exists B≥ 1 such that

∀ε > 0,

Ψ−1
(∫

I
Ψ

( v
ε

)
dx
)

∫
I

v
ε

dx
≤ B, (26)

for all bounded intervals I in R. Moreover the constant GΨ is defined by

GΨ(v) = sup
ε>0

sup
I

Φ

Ψ−1
(∫

I
Ψ

( v
ε

)
dx
)

∫
I

v
ε

dx

 , (27)

where Φ is the complementary Young function of Ψ.
In [13], Kerman and Torchinsky proved the following result about the con-

nection between AΦ and Ap classes, (see also [14], page 33, Theorem 2.1.1).

Theorem 3.1. ([13], [14]) Let w be a weight and let Φ, Ψ be complementary
Young functions verifying ∆2-condition. The following conditions are equiva-
lent:

i) w(x) ∈ AΦ

ii) w(x) ∈ Ap, where p = α(Φ).

In [19], (see also [6]) Migliaccio proved the following

Theorem 3.2. ([19], [6]) Let w be a weight and let Φ, Ψ be complementary
Young functions verifying ∆2-condition. We have

w ∈ GΨ =⇒ w ∈ Gq, ∀q < α(Ψ). (28)

We are going now to prove a result (see Corollary 3.4) which gives a con-
nection between Gp and GΨ classes. We begin with the following

Lemma 3.3. Let s≥ p≥ 1, w be a weight, and let Ψ be a Young function such
that

Ψ(λ t)≤C max{λ p,λ s}Ψ(t), λ , t ≥ 0. (29)

Then the following inequality holds for all bounded intervals I ⊂ R:∫
I
Ψ(w(x))dx

Ψ

(∫
I
w(x)dx

) ≤ C
|I|

∫E

ws(x)(∫
I
w(x)dx

)s dx+
∫

F

wp(x)(∫
I
w(x)dx

)p dx

 (30)

where E = I∩
{

w(x) >
∫

I
w(x)dx

}
and F = I∩

{
w(x)≤

∫
I
w(x)dx

}
.
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Proof. The following average integral

∫
I
Ψ(w(x)) dx =

∫
I
Ψ

w(x)

∫
I
w(x)dx∫

I
w(x)dx

dx

is, by (29) applied with λ = w(x)∫
I
w(x)dx

and t =
∫

I
w(x)dx, smaller than

C
∫

I
max


 w(x)∫

I
w(x)dx


p

,

 w(x)∫
I
w(x)dx


sdx Ψ

(∫
I
w(x)dx

)
=

=
C
|I|

∫E

ws(x)(∫
I
w(x)dx

)s dx Ψ

(∫
I
w(x)dx

)
+

+
∫

F

wp(x)(∫
I
w(x)dx

)p dx Ψ

(∫
I
w(x)dx

)
from which the assertion follows.

An immediate consequence of Lemma 3.3 is the following

Corollary 3.4. Let s≥ p≥ 1, w∈Gs be a weight, and let Ψ be a Young function
such that

Ψ(λ t)≤C max{λ p,λ s}Ψ(t), λ , t ≥ 0. (31)

Then w ∈ GΨ and ∫
I
Ψ(w(x))dx

Ψ

(∫
I
w(x)dx

) ≤C{[Gs(w(x))]s−1 +1}. (32)

Note that hypothesis (31) is satisfied, because of Proposition 2.4, by all
functions with growth between the powers t p and ts.

Remark 3.5. We observe that if Ψ(t) = tr in the Corollary 3.4 is a power func-
tion, then assumption (31) reads as p ≤ r ≤ s and inequality (32) is a direct
consequence of the Hölder’s inequality.

Remark 3.6. Note that Theorems 2.5, 3.1, 3.2, Lemma 3.3 and Corollary 3.4
continue to hold also in Rn.



170 ROSSELLA CORPORENTE

4. On increasing homeomorphisms

We begin to state some auxiliary results.

Let us recall first the following

Theorem 4.1. [11] Let h : R−→R be an increasing homeomorphism onto such
that h,h−1 are locally absolutely continuous. Then

h′ ∈ Ap⇐⇒ (h−1)′ ∈ Gp′ ,
1
p

+
1
p′

= 1 (33)

and
Ap(h′) = Gp′(h−1)′. (34)

An immediately consequence of Theorem 4.1 is the following

Lemma 4.2. Let h : R −→ R be an increasing homeomorphism onto such that
h,h−1 are locally absolutely continuous. Then

h′ ∈ A∞⇐⇒ (h−1)′ ∈ A∞.

Note that (34) continues to hold also in the limit case via limiting formulas
contained in [17] and [24]. A direct proof of this result is contained in [3] where
the following is proved

Theorem 4.3. [3] Let h : R−→ R be an increasing homeomorphism onto such
that h,h−1 are locally absolutely continuous. Then

A∞(h′) = G1((h−1)′). (35)

Now we report a result about the improvement of the integrability exponent
of a function that is in Gq. The following Theorem is contained in [4].

Theorem 4.4. [4] Let v : R−→R be a nonincreasing and nonnegative function.
If (∫

I
vpdx

) 1
p

≤ B
∫

I
vdx,

for all bounded intervals I ⊂ R, there exists β = β (p,B) > p such that v ∈ Gq,
∀q ∈ [p,β ). Moreover the best constant β is the solution of the equation

1−Bp x− p
x

(
x

x−1

)p

= 0.
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In the following Corollary we prove that, if the fundamental indices of Ψ are
very close, we can pass from GΨ to Gα(Ψ) (compare with Theorem 3.2). Note
that in some sense next result is dual to Corollary 3.4, where we passed from Gs

to GΨ.

Corollary 4.5. Let w be a weight and let Ψ be a Young function verifying the
∆2-condition. Let q > 1 and β = β (q,B) > q be from Theorem 4.4 such that

q < α(Ψ)≤ α(Ψ) < β , (36)

then
w ∈ GΨ =⇒ w ∈ Gα(Ψ).

Proof. If w ∈ GΨ, then by Theorem 3.2, we get w ∈ Gα(Ψ). By Hölder’s in-
equality we have w ∈ Gq and finally by Theorem 4.4 we get the result.

Proposition 4.6. Let Ψ be a Young function such that (36) holds for some q,β
from Theorem 4.4, and

t Ψ
′(t)≤ α(Ψ)Ψ(t).

Then the classes GΨ and Gα(Ψ) coincide.

Proof. By Corollary 4.5 it is GΨ ⊂ Gα(Ψ). On the other hand, if w ∈ Gα(Ψ),
setting p = 1 and q = α(Ψ) in Proposition 2.4 we get inequality (31) with p = 1
and q = α(Ψ), from which, by Corollary 3.4, w ∈ GΨ.

Lemma 4.7. If ϕ ∈C1([0,∞)), ϕ(0) = 0, is increasing and such that

∃ ε ∈]0,1[ : ϕ
ε is concave, (37)

then the function Γρ defined by

Γρ : t ∈ [0,+∞[→ Γρ(t) = ϕ
−1(tρ)

is convex for all ρ ≥ 1/ε .

Proof. Let us fix ρ ≥ 1/ε . It is

Γ
′
ρ(t) =

d
dt

(ϕ−1(tρ)) = (ϕ−1)′(tρ) ·ρtρ−1 =
1

ϕ ′(ϕ−1(tρ))
·ρtρ−1 ∀ t > 0

(38)
so that, setting t = ϕ(s)1/ρ , it is

Γ
′
ρ(ϕ(s)1/ρ) =

1
ϕ ′(s)

·ρ[ϕ(s)1/ρ ]ρ−1 =
ρ

ϕ ′(s)
ϕ(s)1/ρ ′ ∀s > 0. (39)
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Since ϕ is strictly increasing, the assertion is proven if we show that the function
on the right hand side of (38) is increasing, or, equivalently, that the right hand
side of (39) is increasing. Let us first observe that, in general, if ϕ ∈ C1 is
increasing and concave, then ϕα , where 0 < α ≤ 1, is also concave. This is
clear for α = 1. If 0 < α < 1, observe that the derivative (ϕα)′ = αϕα−1ϕ ′ is
decreasing since ϕα−1 is decreasing, ϕ ′ > 0 (because ϕ is increasing) and ϕ ′ is
decreasing. As a consequence, since 0 < 1

ρ
≤ ε , the function ϕ

1
ρ is concave and

therefore its derivative

(ϕ1/ρ)′ =
1
ρ

ϕ
1
ρ
−1

ϕ
′ =

1
ρ

ϕ
− 1

ρ ′ ϕ
′

is decreasing. This implies that its reciprocal is increasing, i.e. the right hand
side of (39) is increasing. The lemma is therefore proven.

We remark that a Young function satisfying the42-condition along with its
complementary function, has not necessarily the derivative satisfying the condi-
tion (37). In fact it is possible to consider the following

Example 4.8. It is sufficient to consider the function

ϕ(t) =


t2 t ∈ [0,1]

e2(t−1) t ∈ [1,2]
e2

16 t4 t ∈ [2,+∞[

It is straighforward to check that 2ϕ(t)≤ tϕ ′(t)≤ 4ϕ(t) ∀ t > 0. Moreover, (37)
does not hold because

(ϕε(t))′ = 2εe2ε(t−1) > 0 ∀ t ∈ [1,2].

Lemma 4.9. If ϕ ∈C1([0,∞)), ϕ(0) = 0, is increasing and such that

∃ ε ∈]0,1[ : ϕ
ε is concave. (40)

For every ρ ≥ 1
ε

we have[∫
I

f
1
ρ ds
]ρ

≤ ϕ

(∫
I
ϕ
−1( f )ds

)
, ∀ f : ϕ

−1( f ) ∈ L1(R) (41)

for all bounded intervals I ⊂ R.
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Proof. If we set in (41) f
1
ρ = g, then the thesis of Lemma becomes:[∫
I
gds
]ρ

≤ ϕ

(∫
I
ϕ
−1(gρ)ds

)
equivalently ∫

I
gds≤ ϕ

1
ρ

(∫
I
ϕ
−1(gρ)ds

)
.

If we set in the previous inequality ϕ−1(tρ) = λ (t), then we have to show that∫
I
g ds≤ λ

−1
(∫

I
λ (g)ds

)
and this is true when λ is convex, by Jensen inequality. The fact that λ is convex
comes from Lemma 4.7, with λ = Γρ .

Now we are able to prove a first result, which represents a connection be-
tween AΦ and GΨ classes. In the case of power functions, this result generalizes
one implication of Theorem 33.

Theorem 4.10. Let h : R −→ R be an increasing homeomorphism onto such
that h,h−1 are locally absolutely continuous. Let Φ, Ψ be complementary Young
functions verifying the ∆2-condition,and let q,β as in Corollary 4.5, such that
q < α(Ψ)≤ α(Ψ) < β , then

(h−1)′ ∈ GΨ =⇒ h′ ∈ AΦ.

Proof. Fix h as in the statement, so that (h−1)′ ∈ GΨ. From Corollary 4.5 we
know that (h−1)′ ∈Gq, where q = α(Ψ). By Theorem 33 we know that (h−1)′ ∈
Gq⇐⇒ h′ ∈ Ap, with p = q′ which in turn is, by (15), equal to α(Φ). Finally,
by Theorem 3.1, we have h′ ∈ AΦ, i.e. the assertion.

Now let us set

ϕp,α(s) =
sp

logα(e+ s)
, α > 0, p > 1

Φp,α(t) =
∫ t

0
ϕp,α(s) ds

Ψp,α(t) = complementary function of Φp,α(t).

Observe that, setting ε = 1
p , ϕp,α satisfies the condition (37) of Lemma 4.7.

The class of Young functions {Φp,α} plays a key role in the following result,
which represents the main Theorem of the Section, and is a kind of counterpart
of Theorem 4.10.
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Theorem 4.11. Let h : R −→ R be an increasing homeomorphism onto such
that h,h−1 are locally absolutely continuous, then

∀ p,M > 1 ∃α ≥ 0 : h′ ∈ AΦp,α , AΦp,α (h′)≤M =⇒ (h−1)′ ∈ GΨp,α .

Proof. We know, by definition, that

AΦp,α (h′)≤M⇐⇒∀ε > 0,

(∫
I
εh′ds

)
ϕp,α

(∫
I
ϕ
−1
p,α

(
1

εh′

)
ds
)
≤M,∀ I ⊂R.

(42)
By Lemma 4.9 applied to f = 1

h′ , ρ = p (note that ε = 1
p is such that ϕε

p,α is
concave) we have[∫

I

(
1
h′

) 1
p

ds

]p

≤ ϕp,α

(∫
I
ϕ
−1
p,α

(
1
h′

)
ds
)

, ∀ I ⊂ R.

which together with the choice ε = 1 in (42), gives(∫
I
h′ds

)[∫
I

(
1
h′

) 1
p

ds

]p

≤M

i.e.
h′ ∈ Ap+1, Ap+1(h′)≤M.

By Theorem 33 we have

h′ ∈ Ap+1⇐⇒ (h−1)′ ∈ G(p+1)′

and
Ap+1(h′) = G(p+1)′((h

−1)′)≤M.

Therefore, by Theorem 4.4,

∃β = β (p,M) : (h−1)′ ∈ Gq, ∀q ∈ [(p+1)′,(p+1)′+β [. (43)

Fix σ ∈]0,β [ and define τ = τ(p,M) > 0 by

(p+1)′+σ = (p+1− τ)′

and choose α > 0 sufficiently small, so that

(p− τ)ϕp,α(t)≤ tϕ ′p,α(t) ∀ t ≥ 0. (44)

The existence of α such that (44) holds, comes from the following

inf
t

tϕ ′p,α(t)
ϕp,α(t)

= p−α sup
t

t
(e+ t) log(e+ t)

−→
α→0

p.
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Now by Proposition 2.3 from (44) we get

(p+1− τ)Φp,α(t)≤ t Φ
′
p,α(t) ∀ t ≥ 0

t Ψ
′
p,α(t)≤ (p+1− τ)′Ψp,α(t) = [(p+1)′+σ ]Ψp,α(t) ∀ t ≥ 0.

Hence, using the right wing inequalities in Theorem 2.5, applied to w =
(h−1)′

ε
, and setting q = (p+1)′+σ , we get for all ε > 0 and for all I ⊂ R:

Ψ
−1
p,α

(∫
I
Ψp,α

(
(h−1)′

ε

)
ds
)
≤

(∫
I

(
(h−1)′

ε

)(p+1)′+σ

ds

) 1
(p+1)′+σ

. (45)

Moreover, by (43), we get that for some M > 0 it is{∫
I
[(h−1)′](p+1)′+σ ds

} 1
(p+1)′+σ

≤M
∫

I
(h−1)′ds

i.e. for all ε > 0{∫
I

[
(h−1)′

ε

](p+1)′+σ

ds

} 1
(p+1)′+σ

≤M
∫

I

(h−1)′

ε
ds.

Finally, by (45),

Ψ
−1
p,α

(∫
I
Ψp,α

(
(h−1)′

ε

)
ds
)
≤M

∫
I

(h−1)′

ε
ds

i.e.
(h−1)′ ∈ GΨp,α .

The previous proof shows that the following result is true

Theorem 4.12. ∀ p,M > 1 ∃ α > 0 : h′ ∈ AΦp,α , AΦp,α (h′) ≤ M =⇒ (h−1)′ ∈
GΨp,α , ∀α ∈ [0,α].

Remark 4.13. Choosing α = 0 in Theorem 4.12 we can see that our result
generalizes Theorem 4.1 ([11]).
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