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HOLOMORPHIC VECTOR BUNDLES ON

HOLOMORPHICALLY CONVEX COMPLEX SURFACE

EDOARDO BALLICO - ELIZABETH GASPARIM

Here we study holomorphic vector bundles on a two-dimensional holo-
morphically convex complex manifold Y . We present some characteriza-
tions of Y under which torsion free sheaves are �ltrable. In the case when
Y = X × C , where X is a connected compact Riemann surface, we study
in what sense every holomorphic vector bundle may be approximated by a
sequence of algebraic vector bundles.

0. Introduction.

Let X be a smooth connected complex projective curve of genus g ≥ 0. Set
Y := X×C . Hence Y is both an algebraic surface (neither af�ne nor projective)
and a complex surface. Let π : Y → C be the projection. Usually we will see
Y and π in the analytic category and use Yalg, πalg and so on if we consider
the corresponding objects in the algebraic category. Since π is proper, C is
Stein and X is connected. Y is holomorphically convex and π : Y → C is the
Remmet reduction of Y , i.e. π∗(0Y ) = 0C . In particular for every holomorphic
function h on Y there is a unique holomorphic function h� on C with h = h� ◦π

([7], p. 229).
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In this paper we study holomorphic vector bundles on Y and on other
holomorphically convex complex surfaces whose cohomological properties are
similar to the ones of y . In particular, we consider the problem of approximation
of a holomorphic vector bundle by algebraic vector bundles. For the case of line
bundles on X × C , see Theorem 1.5 and Remark 1.6. For the case of rank 2
vector bundles, see 4.5. On suitable holomorphically convex surfaces Y every
holomorphic vector bundle E admits an increasing �ltration {Ei},0≤i≤r , r :=
rank(E), with E0 = {0}, Er = E and rank(Ei+1/Ei ) = 1 for every i < r (see
2.5, 2.6, 3.1, 3.2 and 3.3). We use this type of �ltration to give a description of
rank 2 holomorphic vector bundles on surface of type X × U with U an open
Riemann Surface (see 4.5 and 4.6). In some cases the description is complete
and give a recipe to construct every such holomorphic vector bundle (see 4.7).
In general the description at least allows us to construct several interesting
examples.

We now brie�y state some of the basic concepts that we will be using
and mention our previous work in this area. Recall that a complex space
Y is holomorphically convex if one of the following equivalent conditions is
satis�ed:

i) there is a Stein space A and a proper holomorphic surjective map u : Y →

A;

ii) for every compact subset K ⊆ Y the holomorphic hull K ∧ of K is
compact.

If a pair (u.A) satis�es i), then there is a Stein space B , a proper holomor-
phic surjective map π : Y → B and a holomorphic �nite map v : B → A such
that π∗(0Y ) = 0B and u = v ◦ π . The pair (B, π ) is uniquely determined by Y
and it is called the Remmert reduction of Y . The �bers of π are connected.

We studied the case when Y is 0-convex in [1]. Holomorphic convexity is a
much more general concept. For reader�s sake we compare the two situations.
According to our convention Y is said to be 0-convex if there exists a C∞

weakly pseudoconvex function h : Y → R such that for every c ∈ R the set
{x ∈ Y : f (x ) < c} is relatively compact and there exists a compact subset K of
Y such that f is strictly 0-convex in X \K . It is known that Y is 0-convex if and
only if there exist a Stein space B , a �nite subset S of B and a proper surjective
holomorphic map f : Y → B such that f | f −1(Y \ S) : f − 1(Y \ S) → Y \ S
is a isomorphism. Hence compact implies 0-convex (just take B a point): a
Stein space is 0-convex (take B = Y and f = identity); 0-convex implies
holomorphically convex; a holomorphically convex space is 0-convex if and
only if the union of all positive dimensional analytic subspaces of Y is analytic.
Hence if X is a compact complex space, U is a Stein space, dim(U ) > 0 and
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dim(X ) > 0, then X × U is holomorphically convex but not 0-convex. For
more details see [7] or [14]: we note however that there are two conventions
for convexity and our concept of 0-convexity corresponds to their concept of
1-convexity.

1. Holomorphic line bundles on X×C.

In this section we take Y := X × C, where X is a smooth connected
complex curve of genus g.

(1.1) The topological or C∞ classi�cation of vector bundles on Y is easy
because Y is homotopically equivalent to X . Hence every topological or C∞

vector bundle on Y is equivalent (in the topological or C∞ category) to a vector
bundle π∗(F) with F vector bundle on X ([11], Ch. 3, 4). Every topological or
C∞ vector bundle on X is uniquely determined by its rank and its degree: for all
integers r.d with r > 0 there is a unique (up to topological or C∞ equivalence)
vector bundle F on X with rank(F) = r and deg(F) = d ([8]).

(1.2) Let Pic(Y ) be the group of all holomorphic line bundles on Y . up to
isomorphism. Consider the exponential sequence

(1) 0 → Z → 0Y → 0∗
Y → 0

Since Y is homotopically equivalent to X , we have H 1(Y, Z) ∼= H 1(X, Z) ∼=

Z⊕2g and H 2(Y, Z) ∼= H 2(X, Z) ∼= Z. Since Y is a two-dimensional connected
complex manifold and Y is not compact, we have H 2(Y, 0Y ) = {0} (see e.g.
[13]). Thus the map δ : Pic(Y ) → H 2(Y, Z) which sends a line bundle on
Y into the degree of its restriction to any slice X × {t} is surjective. Call
Pic0(Y ) = Ker(δ): we will often write deg(L) instead of δ(L). for every
L ∈ Pic(Y ), the integer deg(L) = δ(L) is called the degree of L . Since
π is the Remmert reduction of Y , we have H 0(Y, 0Y ) ∼= H 0(C, 0C) and
H 0(Y, 0∗

Y )
∼= H 0(C, 0C

∗). Thus the exponential map H 0(Y, 0Y ) → H 0(Y, 0∗
Y )

is surjective. SinceC is Stein and π∗(0Y ) is coherent, we have H
1(C, π∗(0Y )) =

0. By relative duality we have R1π∗(0Y
∼= 0C

⊕2g ; this is obvious in the
algebraic category and the 2g linearly independent and spanning algebraic
sections are obviously holomorphic, too; a very general theory of duality for
proper holomorphic maps is given in [12] but in our paper the situation is
simpler because the holomorphicmap π is projective and hence we are in the set
up of [2]. Hence we obtain H 1(Y, 0Y ) ∼= H 0(C, 0C )

⊕2g . Alternatively, one can
prove that H 1(Y, 0Y ) ∼= H 0(C, 0C )

⊕2g using a Künneth formula because the
natural quasi-Frechet topologies on the vector spaces H 0(C, 0C ), H

1(C, 0C ) =
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{0}, H 1(X, 0X ) ∼= C
⊕2g, H 0(X, 0X ) ∼= C are all separated and the same is true

for a good family of open subsets of Y . Summing up, we have checked the
following result.

Proposition 1.3. We have Pic(Y ) ∼= Pic0(Y )⊕ Z as abelian groups. Pic0(Y ) is
the quotient of H 0(C, 0C)⊗C C⊕2g by the group {0}×Z⊕2g ∼= Z⊕2g acting on
the second factor of the tensor product.

From the statement of 1.3 we obtain at once the following result.

Proposition 1.4. Fix P ∈ X and L ∈ Pic(Y ) and let d := deg(L). L is
algebraizable if and only if L⊗0Y (−d{P}×C)∈ H 0(Calg, 0Calg)⊗ (C2g/Z2g).

Here of course d{P} × C is a Cartier divisor of Y, 0Y (−d{P} × C) is
algebraizable, and H 0(Calg, 0Calg) is the set of all polynomials. Since every
element of H 0(C, 0C), i.e. every entire function, is the limit of a sequence of
polynomials (e.g. of its Taylor expansion at the origin) and H 0(C, 0C)⊗C C⊕2g

as topological vector spaces, we may say that every holomorphic line bundle on
Y may be approximated by a sequence of algebraic line bundles on Yalg in the
following form.

Theorem 1.5. For every integer d �x an algebraic line bundle L(d) of degree d
on Y ; for instance �x P ∈ X and take L(d) := 0Y (d{P} × C). Take L ∈ Pic(Y )
and set d := deg(L). Fix a lift f ∈ H 0(C, 0C ⊗C C2g of the isomorphism class
of L ⊗ L(d)∗ . Then there exists a sequence Ln ∈ Picalg(Y ) of algebraic line
bundles of degree d and lifts fn ∈ H 0(Calg, 0Calg) ⊗C C2g of the isomorphism
class of Ln ⊗ L(d)∗ such that for every compact subset K of C the sequence
{ fn |K }n∈N converges uniformly to f |K .

Remark 1.6. We believe that 1.5 is a strong result in the following sense.
Although it does not give an approximation theorem for the analytic properties
of an analytic line bundle, we believe that at least in the case of positive genus
no such result is true. Assume g > 0. The group Z⊕2g which appears in the
description of Pic0(Y ) is the lattice � such that C2g/� ∼= Pic0(X ) as complex
tori. Since the af�ne line is rational, there is no non-constant rational map
from the af�ne line into Pic0(X )alg. in particular every algebraic map from
Calg into Pic0(Y )alg is constant. However, there is a huge number of non-
constant holomorphic maps from C into the torus C2g/� ∼= Pic0(X ): any such
holomorphic map C → Pic0(X ) is uniquely determined by its lifting C → C2g

to the universal covering C2g of Pic0(X ); conversely any holomorphic map
C → C2g gives a holomorphic map C → Pic0(X ). a very nice case occurs
when X has genus 1. Consider the universal line bundle, L. over X × Pic0(X ).
Fix the map u : C → C/� ∼= Pic0(X ) induced by the identity C → C and use
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it to obtain a line bundle. L . over Y . Varying t in C the restrictions L|X × {t}
run through every isomorphism class of degree 0 line bundles on X and each
isomorphism class appears for in�nitely (but countably) many t . We just saw
that for every algebraic line bundle. L . on Y the line bundles L|X × {t} are
isomorphic for every t .

2. General de�nitions and the case Y = X ×U .

First we give a few de�nitions for an arbitrary smooth complex surface
Y . In the latter part of the section we will consider the case Y = X × U, X a
compact Riemann Surface and U an open Riemann Surface. For every analytic
coherent sheaf F on Y . set F∗ := Hom(F.0Y ). There is a natural map
jF : F → F∗∗.F is torsion free if and only if jF is injective. F is said to
be re�exive if jF is an isomorphism. Since Y is smooth and dim(Y ) = 2, every
re�exive sheaf on Y is locally free ([10]. Cor. 1.4). Set rank(F) := rank(F∗∗).
Since Y is connected and F∗∗ is a vector bundle, this is a well-de�ned notion
of rank. If A is any analytic coherent sheaf, every map u : A → F induces a
bidual map u∗∗ : A∗∗ → F∗∗ .

De�nition 2.1. Let F be a torsion free analytic coherent sheaf on Y and set
r := rank(F). If r = 1 we will say that F is semi-�ltrable. Assume r ≥ 2.
Then the concept of semi-�ltrability is de�ned by induction on r . If there is no
pair (L, u) with L coherent torsion free rank 1 sheaf on Y and u : L → F
injective map of sheaves, we will say that F is not semi-�ltrable. Assume
the existence of L and u : L → F . Let Tors(F/u(L)) be the torsion part
of F/u(L) and let M be the kernel of the composition of the two surjections
F → F/u(L) → (F/u(L))/T ors(F/u(L)). We have a natural inclusion of
L in M and M is a rank 1 torsion free sheaf. F/M is a torsion free sheaf
with rank(F/M) = r − 1. We will say that F is semi-�ltrable if there exist
L and u such that the associated torsion free sheaf F/M is semi-�ltrable. If
rank(F) = 1 we will say that F is weakly �ltrable. If r := rank(F) ≥ 2 we
will de�ne inductively that F is weakly �ltrable if there exists L and u with M
line bundle and such that F/M is torsion free and weakly �ltrable.

Remark 2.2. Notice that F is semi-�ltrable if and only if F∗∗ is semi-�ltrable
and that if F is weakly �ltrable, then F∗∗ is weakly �ltrable.

Remark 2.3. If Y is compact the notion of semi-�ltrability is called �ltrability
in [3]. p. 91. If Y is projective, then every vector bundle on Y is weakly �ltrable
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([3]. p. 91) but there are complex compact surface (even Kähler ones) which
admits non semi-�ltrable rank two vector bundles ([3]. Ex 4.26).

From now on in this section we will study the case Y = X × U with
X compact connected Riemann Surface of genus g and U open connected
Riemann Surface. Thus the projection π : Y → U is the Remmert reduction of
Y . We will study again this type of surface in section 4.

Lemma 2.4. Let E be a rank r vector bundle on X . If deg(F) > r(g−1), then
h0(X, F) �= 0.

Proof. By Riemann - Roch (see e. g. [8]) we have h0(X, F) − h1(X, F) =

deg(F)+ r(1− g) > 0.

Proposition 2.5. Every coherent torsion free sheaf on Y := X × U is semi-
�ltrable. Every rank 2 holomorphic vector bundle on Y is weakly �ltrable.

Proof. Fix a coherent torsion free sheaf F on Y and set r := rank(F). If
r = 1 the result is obvious. Hence we may assume r ≥ 2 and assume
the result for all torsion free coherent sheaves of lower rank. By Remark 2.2
we may assume F locally free. Furthermore, it is equivalent to prove the
result for F ⊗ L with L ∈ Pic(Y ). Fix P ∈ X and set d := deg(det(F)).
By twisting by a power of the line bundle 0Y ({P} × C), we may assume
d > r(g − 1). Hence H 0(X, F |X × {t}) �= 0 for every t . Furthermore, we
see that the coherent sheaf π∗(F) is not zero. Thus H 0(Y, F) �= {0}. Take a
non-zero homomorphism u : 0Y → F and let M be the kernel of the quotient
map F → F/u(0Y )/(T ors(F/u(0Y ))). Since F/M is torsion free of rank
r − 1, F/M is semi-�ltrable by the inductive assumption. Hence F is semi-
�ltrable by its very de�nition. If F is locally free and rank(F) = 2, then the
bidual of the inclusion map M → F shows that M is re�exive and hence a line
bundle ([10], Prop. 1.9). Hence F is weakly �ltrable.

Remark 2.6. By 2.5 every rank 2 vector bundle F on Y �ts in an exact
sequence

(2) 0 → M → F → R ⊗ IZ → 0

with M ∈ Pic(Y ), R ∈ Pic(Y ) and Z zero-dimensional closed complex subspace
(in general unreduced) of Y . Since F is locally free of rank 2, for every P ∈ Zred

the ideal sheaf of Z is locally generated by two elements. Since Y is smooth,
this is equivalent to the condition that Z is locally a complete intersection in Y .
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3. The general case.

Theorem 3.1. Let Y be a two-dimensional irreducible and reduced holomor-
phically convex complex space and π : Y → U its Remmert reduction. As-
sume π projective in the sense of [2], Ch. IV. Fix a torsion free sheaf F on Y .
Then for every relatively compact open subset � of U the sheaf F |π−1(�) is
semi-�ltrable. If F is locally free, and rank(F) = 2 then F |π−1(�) is weakly
�ltrable.

Proof. If Y is compact, i.e. if U is a point, then Y is projective by the
assumption on π . This case is well-known ([3]. p. 91.) Assume dim(U ) = 1.
Thus U is a Stein irreducible curve. Every torsion free sheaf on any subset of
U is spanned by its global sections. By de�nition of projective morphism there
is a line bundle H on Y which is π -ample. Thus by a theorem of Grauert and
Remmert ([2]. Th. IV. 2.1) for every relatively compact open subset � of U
there in an integer n(F, �) such that for all integers n ≥ n(F, �) the natural
map π∗((π∗|π

−1(�))((F ⊗ H⊗n)|π−1(�))) → F ⊗ H⊗n)|π−1(�) is surjective.
Hence π∗F ⊗ H⊗n)|� is not zero. Thus π∗(F ⊗ H⊗n)|� has a non-trivial
section and we may repeat the inductive proof of Proposition 2.5. Now assume
dim(U ) = 2, i.e. assume Y0-convex. This case is well-known without any
assumption on π and may be checked in a very similar way: here we have a
stronger result, i.e. we may take U instead of � because π contracts the �nite
number of compact curves contained in Y , while outside these compact curves
π is an isomorphism.

Proposition 3.2. Let Y be a two-dimensional holomorphically convex irre-
ducible complex space such that its Remmert reduction π : Y → U is a smooth
map whose �bers are Riemann surface of genus g �= 1. Then every torsion free
coherent sheaf on Y is semi-�ltrable.

Proof. It is well-known that π projective ([2], Cor. IV. 4.4); indeed. if g ≥ 2
the relative dualizing sheaf if π -ample, while if g = 0 the relative tangent sheaf
is π -ample. Just applying Theorem 3.1 we would obtain a weaker statement.
To obtain the full statement just notice that we may apply Lemma 2.4 and then
the proofs of 2.5 and 3.1.

Proposition 3.3. Consider a two-dimensional holomorphically convex irre-
ducible complex space Y and assume that its Remmert reduction π : Y → U
is projective smooth and with as �bers Riemann surface of genus 1. Then every
torsion free coherent sheaf on Y is semi-�ltrable.

Proof. By assumption π is projective. Hence, as in the case of 3.2, we may
apply 2.4 and copy the proofs of 2.5 and 3.1.
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Remark 3.4. Let Y be a two-dimensional holomorphically convex irreducible
complex space such that every �ber of its Remmert reduction π : Y → U is a
smooth curve of genus 1. The map π is projective if and only if there is a �nite
surjective map T → U such that the �ber product map Y ×U T → T has a
holomorphic section.

Remark 3.5. If Y is smooth in 3.1, 3.2 or 3.3 and F is a rank 2 vector bundle
on Y , then, as in Remark 2.6, an exact sequence such as (2) holds.

(3.6) We now assume that Y is smooth and study the exact sequence (2) in
the case that Z is a locally complete intersection zero-dimensional analytic
subspace of Y and M, R are analytic line bundles. Assume Y holomorphically
convex, two-dimensional, connected and not compact and let π : Y → U be its
Remmert reduction. Since the case Y0-convex is easy, we assume dim(U ) = 1.
For every P ∈ Zred let Z (P) be the connected component of the scheme Z
containing {P}. Thus Z (P)red = {P} and Z is the disjoint union of all schemes
Z (P), P ∈ Zred . Thus H 0(Y, 0Z ) ∼= H 0(Z , 0Z ) = �P∈Zred

H 0(P, Z (P));
notice that here there is a product, not a direct sum: thus if Zred is in�nite, then
H 0(Y, 0Z ) considered as a vector space has not a countable basis. Consider the
exact sequence

(3) 0 → IZ ⊗ R → R → 0Z → 0

in which we have identi�ed R|Z with 0Z because Z is discrete and R is a
line bundle. Since Z has codimension 2 in Y , we have Ext0(R ⊗ IZ , M) ∼=

Hom0(R ⊗ IZ , M) ∼= M ⊗ R∗; the latter isomorphism follows from Hartogs
theorem because Y is smooth, dim(Y ) > 1, M ⊗ R∗ is locally free and Z
is discrete. We have Hom(0Z , M) = 0 because M has no torsion. We
have Ext i(R, M) = 0 for every i ≥ 1 because R and M are locally free.
We apply the global Ext-functor Ext(−, M) to the exact sequence (3). We
obtain an exact sequence 0 → H 1(Y, M ⊗ R∗) → Ext1(Y ; R ⊗ IZ , M) →

Ext2(Y ; R ⊗ 0Z , M) → H 2(Y, M ⊗ R∗). Since Y is not compact we have
H 2(Y, M ⊗ R∗) = 0 ([13]). Every locally complete intersection is Gorenstein
and in particular Z is Gorenstein. Since Z is Gorenstein and of codimension
2 in Y , we have Ext1(R ⊗ 0Z , M) ∼= ωZ

∼= 0Z , the latter isomorphism being
true because Z is Gorenstein and zero-dimensional. Thus we obtain an exact
sequence

(4) 0 → H 1(Y, M ⊗ R∗) → Ext1(Y ; R ⊗ IZ , M) → H 0(Y, 0Z ) → 0

Thus Ext1(Y ; R ⊗ IZ , M) ∼= (�P∈Zred
H 0(P, Z (P))) ⊕ H1(Y, M ⊗ R∗) as

topological vector spaces. An extension (2) has middle term locally free if and
only if its extension class has a component generating 0Z at every point of Zred .
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4. Rank 2 vector bundles.

In this section we use our techniques in the special case Y := X × U
with X a compact connected Riemann Surface of genus g and U an open
connected Riemann Surface. If we want Y to be algebraic we need to assume
that U = V \ F , where V is a connected, smooth compact Riemann Surface
and F is a �nite and non-empty subset of V .
For every holomorphic map u : U → C and every holomorphic vector bundle
E on X × C, we obtain a holomorphic vector bundle (IdX , u)∗(E) on X ×U .
If u is surjective and L is a line bundle on X × C with the properties described
in 1.6, then (IdX , u)∗(L) has the same properties. Since U is Stein, there
are �many� surjective holomorphic maps from U onto C. We recall that every
analytic vector bundle on U is trivial ([6], Th. 30.1).

Remark 4.1. Assume U algebraic, say U = V \ F with V of genus 0. Then
1.5 works verbatim for X ×U .

Remark 4.2. The proofs of 2.5 and 2.6 work verbatim for X ×U .

(4.3) Here we use the set-up of 3.6 with Y := X × U . We �x a countable
family of open subset Un, n ∈ N, of U with Un relative compact in Un−1 for all
n ≥ 0 and ∪nUn = U . Set Yn := X × Un and Z [n] := Z ∩ Yn . First let us
consider the case deg(M) ≥ deg(R)+ 2g − 1. Hence deg(M ⊗ R∗) ≥ 2g − 1.
Thus R1π∗(M ⊗ R∗) = {0}. Since π∗(M ⊗ R∗) is a coherent sheaf on U and
U is Stein, we obtain H 1(U, π∗(M ⊗ R∗)) = 0. Hence by the Leray spectral
sequence of the proper map π we have H 1(Y, M ⊗ R∗) = 0. Now we study
H 1(Y, M ⊗ R∗) under the assumption that deg(R) > deg(M). Hence for every
t ∈ U we have h1(X × {t}, M ⊗ R∗|X × {t}) = deg(R) − deg(M) + g − 1
and h0(X × {t}, M ⊗ R∗|X × {t}) = 0. Hence by a theorem of changing
basis for the projective morphism π (see e.g. [2]; Th. III. 3.1) we have
π∗(M ⊗ R∗) = 0 and R1π∗(M ⊗ R∗) is a locally free sheaf on U with
x := rank(R1π∗(M ⊗ R∗)) = deg(R)− deg(M)+ g − 1. Since U is Stein and
one-dimensional, we have R1π∗(M⊗ R∗) ∼= 0⊕X

U ([6], p. 91). Thus H 1(Y, M ⊗

R∗) ∼= H 0(U, 00U )
⊕X . Now assume deg(R) ≤ deg(M) ≤ deg(R) + 2g − 2.

In particular we assume g > 0. Here the situation is wild, in the sense that it
depends very much on the choice of M ⊗ R∗ , not just on deg(M) − deg(R).
Set L := deg(M ⊗ R∗) and �x a := deg(L) with 0 ≤ a ≤ 2g − 2. By
Riemann - Roch for every z ∈ U and every L ∈ Pic(Y ) with deg(L) = a we
have h0(X ×{t}, L|X ×{t})−h1(X ×{t}, L|X ×{t}) = a+1− g. For every L
by the semicontinuity theorem for proper morphisms ([2], Ch. 3) there is a open
subset U � of U with U \ U � discrete and such that h0(X × {t}, L|X × {t})
and h1(X × {t}, L|X × {t}) are constant for t ∈ U � while if z ∈ (U \ U �)
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and t ∈ U � we have h0(X × {z}, L|X × {z}) > h0(X × {t}, L|X × {t}) and
h1(X ×{z}, L|X ×{z}) > h0(X ×{t}, L|X ×{t}). Furthermore, it is easy to �nd
such L withU � �= U because Pica(X ) is a representable functor and hence there
is a natural bijection between degree a holomorphic line bundles on X ×U and
holomorphic maps U → Pica(X ). Since there are many surjective holomorphic
maps U → C we may repeat the discussionmade in 1.6. In particular for every
integer a with 0 ≤ a ≤ 2g− 2 there exists L such that the discrete set U \U � is
in�nite and we may prescribe this discrete set.

Remark 4.4. Fix a rank 2 holomorphic vector bundle F on Y . The proofs of
2.5 and 2.6 show that F �ts in an exact sequence (2) in which deg(R)−deg(M)
is a large as we want. In particular we may apply the discussion made in 4.3 to
this exact sequence. However, in this way we do not obtain a �canonical� exact
sequence or, at least a �minimal� exact sequence and E may �t in different exact
sequences with different (or even with equal) M, R and Z .

(4.5) Here we specialize the set-up of 4.3 to the case U = C. We assume also
deg(M) ≥ deg(R) + 2g − 1. Hence H 1(Y, M ⊗ R∗) ∼= H 0(C, 0C)

⊕X with
x := deg(M) − deg(R) + 1 − g. Fix the class e ∈ Ext1(Y : R ⊗ IZ , M) ∼=

(�P∈Zred
H 0(P, Z (P)))⊕H 1(Y, M⊗R∗) of (2) and call f (resp.t) its component

in �P∈Zred
H 0(P, Z (P)) (resp. H 1(Y, M ⊗ R∗)). Let �(0, r) be the open disk

of C with center 0 and radius r . For every integer n > 0, set Yn := X ×�(0, n)
and Z [n] := Z ∩Yn . The component f is a �projective limit� of the components
�P∈Z [n]red H

0(P, Z (P)), n > 0, in the sense of truncation of the components
taking 0 in the components not in Z [n]red . We may approximate the element
t ∈ H 0(C, 0C )

⊕
X by a sequence whose components are x polynomials. Notice

that if M⊗R∗ is algebraic, we obtain, just as in 3.6. that H 1(Yalg, (M⊗R∗)alg) ∼=

H 0(Calg, 0Calg)
⊕X ∼= C[z]⊕X , i.e. we may approximate the extension class t by

a sequence of algebraic extensions. If M ⊗ R∗ is not algebraic, we approximate
M and R by algebraic line bundles in the sense of 1.5. Then the approximation
of the corresponding extension is associated to a family of rank 2 algebraic
vector bundles which approximates the original analytic vector bundle. We
need only to justify why the approximated extensions, say {Fα}, give locally
free sheaves and not just torsion free sheaf. This is a problem only on Zred . Fix
P ∈ Zred . Now we explain why in our set-up we have a Cayley - Bacharach type
condition for the local freeness of F and Fα at P and that this condition sits in
the component over Z (P) of �P∈Z [n]red H

0(P, Z (P)). For the case of a compact
surface, see [5]. Th. 1.4. In our set-up we use that H 2(Y, A) = 0 for every
coherent analytic sheaf A on Y ([13]) and in particular H 2(Y, M ⊗ R∗) = 0.
Fix P ∈ Zred and set z := h0(Z (P), OZ (P)) = lengh(Z (P)). As C-vector
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spaces ωZ (P) and OZ (P) are isomorphic to Cz while their socle,
�
, is a one-

dimensional linear subspace of ωZ (P)
∼= OZ (P) because Z (P) is Gorenstein.

The component of the extension over Z (P) is given by a linear map λ : CZ →

C (see [4]. p. 15 or [5]). The corresponding extension is locally free at P if and
only if λ(

�
) �= 0 (see [5], lines 3-5 of p. 69). By assumption this condition is

satis�ed by F. Call Z [n] the subscheme of Z used for Fα ; if P ∈ Z [n]red , then
Fα is an extension of two line bundles near P and hence it is locally free near
P , if P ∈ Z [n]red , then the extension of F and Fα have the same component in
the product �P∈Z [n]red H

0(P, Z (P)) and hence Fα is locally free, too.

Remark 4.6. Consider now the set-up of 3.6 (i.e. Y smooth and Z a zero-
dimensional locally complete intersection) but use the description of the Cay-
ley - Bacharach condition given in 4.5. For every P ∈ Zred , set z(P) :=
length(Z (P)) and let

�
(p) ∼= C ⊆ OZ (P)

∼= Cz(P) be the socle of Z (P) (see
[4], p. 15). Notice that if λ = (λp)P∈Zred

in the product �P∈Zred
H 0(P, Z (P))

is an extension class, where λp : Cz(P) → C is a linear map with λp(
�
(p)) �=

{0}, then the extension is locally free. The �construction� of all locally com-
plete intersection discrete analytic subspaces of Y is elementary. The data of
the extension classes λ are just trivial algebra. Hence we obtain in this way a
huge amount of analytic rank 2 vector bundles. In the next remark we will see
how to use the description given in 4.5 to control their geometric properties.

(4.7) Here we take the set-up of 4.3 with deg(M) ≥ deg(R) + 2g − 1. Hence
we have H 1(Y, M ⊗ R∗) = 0. Here we �x any coherent sheaf F �tting in (2).
Set � := U \ π (Zred). Since π is proper and Zred is discrete in Y, � is open
and dense in U . Consider the restriction of (2) to X × �. By the assumption
on deg(M) − deg(R) for every Q ∈ � the restriction to X × {Q} of (2) splits
and F |X × {Q} ∼= (M |X × {Q}) ⊕ (R|X × {Q}). As in (3.6) (or using the
local-to-global spectral sequence for the Ext-functors) we obtain Ext1(X × � :
R|X × �, M |X × �) = 0. Hence F |X × � ∼= (M |X × �) ⊕ (R|X × �).
now �x P ∈ π (Zred). If F is locally free in a neighborhood of X × {P}, then
the inclusion L|X × {P} → F |X × {P} is not an embedding of line bundles,
i.e. its cokernel is not locally free and the length of the torsion of the support of
the cokernel is at least the length of the zero-dimensional scheme Z ∩ X ×{P}.
In the particular case in which Z is reduced, then these two integers are the
same and if Z ∩ X × {P} = ∪1≤i≤t (P1, P), then F |X × {P} is an extension
of (R|X × {P})(−

�
1≤i≤t P1) by (M |X × {P})(

�
1≤i≤t P1). Since deg(M) ≥

deg(R)+ 2g− 1, we have H 1(X × {P}, (M ⊗ R∗|X × {P})(
�

1≤i≤t 2P1)) = 0.
Hence this extension splits. Thus taking Z reduced we may �nd a rank 2
holomorphic vector bundle F �tting in (2) and with essentially all possible
splitting types for its restriction to a discrete (but perhaps in�nite) subset of
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U . Under the assumption deg(M) ≥ (R) + 2g − 1 if there is no jumping in
the degree of the splitting types of the bundles {F |X × {t}}t∈U , we must have
Z = ∅ and hence F ∼= M ⊕ R.
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