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WARDROP EQUILIBRIA IN AN INFINITE NETWORK

BRUCE CALVERT

In a �nite network, there is a classical theory of traf�c �ow, which gives
existence of a Wardrop equilibrium for given OD demands and af�ne route
costs. In this note, the existence theory is extended to in�nite networks.

1. Introduction.

We de�ne a classical model of Wardrop equilibrium for traf�c �ow [2].
Let (N, B) be a �nite directed graph, with node set N and branch or link set
B . A path in which all links are similarly directed is called a route, with the
initial and �nal nodes forming an origin/destination or O/D pair. Consider a
nonempty set W of O/D pairs, and for each w ∈ W , suppose a �ow demand
dw > 0 to be given. Let Rw be the set of routes joining w. For each w ∈ W ,
consider Fr ≥ 0 for each r ∈ Rw , such that

�

r∈Rw

Fr = dw , giving a route �ow

vector F = (Fr )r∈Rw ,w∈W . This route �ow induces a link �ow f = ( fb)b∈B , by
fb =

�

r�b

Fr for each b, where we identify a route with the set of its links. For

each link a, suppose a link cost ca =
�

b∈B gab fb + ha , where gab and ha are
given. For r ∈ Rw, w ∈W , de�ne a route cost by Cr =

�

a∈r
ca .

A route �ow H is a Wardrop equilibrium if it satis�es the condition that
for all r, s ∈ Rw, w ∈W , if Cr < Cs then Hs = 0. In other words there is, for
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18 BRUCE CALVERT

each w, a common route cost γw for all routes r ∈ Rw with nonzero Hr . There
exists a Wardrop equilibrium [4].

In this paper we shall let (N, B) be an in�nite directed graph. Our mission
is to extend our concepts in a natural way, so that we �nd that Wardrop equilibria
exist. In Section 2 we take the most naive extensions, and give counterexamples
to show the need for in�nte routes. In Section 3 we show that allowing in�nite
routes is still not enough, and end with the promise to give Wardrop �ows as
measures. Some background on in�nite routes is given in Section 4. Section 5
addresses a well known variational inequality in the setting of the pairing
between Borel measures and continuous functions on the closure of the routes.
In Section 6 we de�ne a Wardrop equilibrium, and show that it exists, by taking
the completion of the measure given by the variational inequality, and restricting
this to the routes.

2. The need for a 1-network.

Recall an in�nite graph is locally �nite if each node has only �nitely many
links incident to it. We shall consider an in�nite directed graph, allowing only
�nite routes, but a possibly in�nite set of O/D pairs W . Of course, even with a
single O/D pair, o, d , it may be that there are in�nitely many routes from �o�
to �d�.

Assumption 1. Let G = (N, B) be an in�nite, locally �nite, and connected
directed graph.

Assumption 2. d ∈ �l1(W ), i.e
�

w∈W

dw < ∞.

Remark 1. Let R =
�

w∈W

Rw . Under Assumption 2, de�ne K = {F : R →

[0, ∞) : for each w,
�

r∈Rw

Fr = dw}. Later we shall replace this de�nition. If

F ∈ K then link �ows are �nite, since for b∈ B ,

fb =
�

r�b

Fr ≤
�

r∈R

Fr =
�

w∈W

dw.

We keep the same de�nition of link costs, but it involves an in�nite sum.

Temporary Assumption 3. Assume for each link b,
�

a∈B

|gb,a| < ∞.
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Suppose F ∈ K . Then, for each link b,

cb = eb +
�

a∈B

gb,a f
F
a

is �nite, by Remark 1. Given F , we may write f F , cF , and CF to remind us
that they are induced by F .

For each route r , the route cost CFr =
�

b∈r

cb is �nite, since r is �nite.

Hence the de�nition of Wardrop equilibrium needs no change, under the above
assumptions.

The �rst question is whether there exists a Wardrop equilibrium, consider-
ing only �nite routes.

Counterexample 1. Consider the in�nite ladder with nodes at points on the
plane (n, 0) and (n, 1) for n ≥ 0. The nth top link from (n − 1, 1) to (n, 1) is
denoted nt , the nth bottom one nb, and the nth vertical one from (n − 1, 1) to
(n − 1, 0), (n − 1)v. Let the top links point right, the vertical ones down, and
the bottom ones left. Let the link cost be given in terms of link �ow f by

c = an + bn f

on each of nt , nb and nv, where an and bn are assumed non-negative. Suppose
we have one OD pair, from (0, 1) to (0, 0), with demand d = 1. Suppose that
for all n, 3(an+1 + bn+1) < an . Then there is no Wardrop equilibrium.

Let the routes be indexed by the vertical links nv. Suppose F is a Wardrop
equilibrium, given by Fn on each nv. For any n ≥ 0, let the route cost on route
nv be Cn . Let the link cost on any link a be ca . Then

Cn+1 = Cn − cnv + c(n+1)t + c(n+1)b + c(n+1)v

≤ Cn + 3(an+1 + bn+1) − an

< Cn .

Since F is a Wardrop equilibrium, Fn = 0. But then summing the Fn gives zero
instead of d , a contradiction.

What we shall do is de�ne a generalized Wardrop equilibrium, in this case
being a �ow of 1 out along the top in�nite route and back along the bottom
route. To formalize this we may use a little of the concept of �1-networks� from
[1]. In this case, we merely add on an ideal node n1, (the end) and regard the top
in�nite route as being from (0, 1) to n1, and the bottom from n1 back to (0, 0).
That is, we have allowed in�nite routes.
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3. The need for route �ows as measures.

Even this construction of 1-networks is not enough in general, and the
next example and counterexample provoke a concept of �ow which will give
existence. We have just shown that it is possible that merely allowing in�nite
routes can give a Wardrop equilibrium. We now look at two almost identical
situations: Example 1 for which it is enough to allow in�nite routes and give a
route �ow as a summable function on these, and Counterexample 2 for which it
is not enough.

Example 1. Consider the graph formed from the in�nite ladder above by
identifying nodes (n, 0) and (n, 1) for all n, and eliminating nv, and re-orienting
links nb to point right. That is, we have two links, nt and nb in parallel from
(n − 1, 0) to (n, 0), for each n ≥ 1. As above we have n1, and we suppose
we have one OD pair, from (0, 0) to n1, with demand d = 1, joined by in�nite
routes. Let the link cost be given in terms of link �ow f by

c = eb + gb f

on each link b, where eb and gb are nonnegative. Suppose e and g are
summable, so that route costs, obtained by summing their link costs, are �nite.
There does exist a Wardrop equilibrium.

Let us de�ne δa,r for any link a and route r to be 1 if a ∈ r and 0 otherwise.
First, for for each n, there is a Wardrop equilibrium on the subnetwork with
links nt and nb, giving two link �ows fnt and fnb , summing to 1. Take route
r1 such that for each n, nt is in it iff fnt ≥ 1/2, and take route �ow Fr1 = 1/2.
Then take route r2 such that for each n, nt is in it iff fnt − δnt ,r1Fr1 ≥ 1/4,
and take route �ow Fr2 = 1/4. Continuing, we have a route �ow vector
F = {Frn : n = 1, . . .}. These give the link �ow vector { fb : b ∈ B},
and therefore route costs are all equal on the routes rn, and F is a Wardrop
equilibrium.

This looks encouraging, and we are led to look for a �ow F as a summable
function on R, that is, as an element of K from Remark 1. Using this concept,
we obtain a counterexample to a claim of existence of a Wardrop equilibrium.

Counterexample 2. Consider a directed graph as in the last example, but with
n links in parallel from (n − 1, 0) to (n, 0), for each n. As above we have n1,
and we suppose we have one OD pair, from (0, 0) to n1, with demand d = 1.
Let the link cost be given in terms of link �ow f by

c = eb + gb f
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on each link b, where eb and gb are positive, with both eb all equal and gb all
equal if b is from (n − 1, 0) to (n, 0). Suppose e and g are summable, so that
route costs are �nite. There does not exist a Wardrop equilibrium.

Any Wardrop equilibrium F gives an equilibrium on the links from (n −

1, 0) to (n, 0). These give link �ows which must be equal on the links from
(n − 1, 0) to (n, 0), and thus take the value 1/n. For any route r , Fr ≤ 1/n for
all n. Therefore Fr = 0, contradicting

�
Fr = d .

What we shall do is de�ne a Wardrop equilibrium as a measure on a sigma
�eld of subsets of R, to give existence. First we develop some theory.

4. Notation and de�nitions.

We take s : B → (0, ∞) a summable function, after noting that B is
countable by Assumption 1.. De�ne the metric d0 on N by d0(x , x ) = 0 and

d0(x , y) = inf

�
�

b∈B

sb : P a path connecting x and y

�

.

Write (�N , d0) for the completion, and call any limit point or cluster point (i.e.,
any element of �N �) an end of (N, B). We now allow in�nite routes, which may
be between a node x ∈ N and an end e ∈ �N �, or even between two ends, with the
initial and �nal nodes or ends forming an O/D pair. We say that an in�nite route
is between two ends e1 and e2 if its nodes nk converge to these in (�N , d0) as k
goes to plus or minus in�nity. Likewise for an in�nite route between a node x
and an end e. We shall identify a route with its branch set. We also allow 1-
routes, made by concatenating a �nite number of in�nite routes, the destination
of one in�nite route being the origin of the next, each node and each end only
visited once on a 1-route. Counterexample 1 gives a typical 1-route, the top
in�nite route followed by the bottom in�nite route. Let R stand for the union of
all the routes, both �nite and in�nite, including the 1-routes.

Let S be the metric space of subsets of B with metric

d(U, V ) =
�

{sb : b ∈ (U \ V ) ∪ (V \U )}
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5. Solution of a variational inequality.

Proposition 1. S is compact.

Proof. S is a complete metric space [5], chapter II,2, Proposition. We need
only show S is totally bounded. Let � > 0 be given. Take H so that�

{sb|b /∈ H } < � . For P ∈ S , the distance d(P, P ∩ H ) < � . Note
{P ∩ H |P ∈ R} is �nite, and we have a �nite �-net. �

We recall that the dual of the Banach space of continuous real valued
functions on a compact metric space is the space of signed Borel measures [5].
Now we update our de�nition of K. Noting R ⊂ S , let cl(R) denote the closure
in S of R.

De�nition. Let K = {µ ∈ C(cl(R); R)� : µ ≥ 0, µ(cl(Rw) = dw for all w ∈

W }.

The next proposition extends a result of [4].

Proposition 2. Let H ∈ K , w ∈ W, and C ∈ C(cl(R); R). The following are
equivalent.

(1) H {r ∈ cl(Rw) : C(r) > in f {C(x ) : x ∈ cl(Rw)}} = 0.

(2)

�

cl(Rw )

C(r) d(F − H )(r) ≥ 0 for all F ∈ K .

Proof. (1) ⇒ (2) Let γw = inf{C(x ) : x ∈ cl(Rw )}. Let F ∈ K be given. We
want to show �

cl(Rw )

C(r) dF(r) ≥

�

cl(Rw)

C(r) dH (r),

or equivalently

�

cl(Rw )

(C(r) − γw) d f (r) ≥

�

cl(Rw )

(C(r) − γw) dH (r).

But RH S = 0 by (1), and LH S ≥ 0 since F ≥ 0.

(2) ⇒ (1) Suppose (1) does not hold. Let T = {r ∈ cl(Rw) : C(r) > γw}.
Then take b∗ ∈ cl(Rw) with C(b∗) = γw . De�ne F by

F = H |cl(R)\T + 0.5H |T + 0.5H (T )δb∗ .

Note F ≥ 0, and

F(cl(Rw )) = H (cl(Rw) \ T ) + 0.5H (T ) + 0.5H (T )
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= H (cl(Rw)).

Note that for v ∈W \ {w}, since Rv and Rw are a positive distance apart,

F(cl(Rv)) = H (cl(Rv)),

and hence F ∈ K . Then

�

cl(Rw )

C(r) d(F − H )(r) = −0.5

�

T

C(r) d(H )(r)

+ 0.5H (T )C(b∗)

= −0.5

�

T

(C(r) − γw) d(H )(r)

< 0 since H (T ) > 0, and C(r) − γw > 0 on T ,

and (2) does not hold. �

Note that for b ∈ B , {r ∈ cl(R) : r � b} is open in cl(R), in particular a
Borel set, allowing the next de�nition.

De�nition. For F ∈ K , let us de�ne fb = f Fb for b∈ B by fb = F{r ∈ cl(R) :
r � b}, then cb = cFb by cb = eb +

�

a∈B

gb,a fa , and then for r ∈ S , C(r) = CF (r)

is de�ned as C(r) =
�

b∈r

cb , giving CF : S → R.

Note that the link �ows are bounded, for

fb =
�

w∈W

F{r ∈ cl(Rw) : r � b} ≤
�

w∈W

dw.

The link costs are �nite by Temporary Assumption 3. The route costs are
now in�nite sums, but are �nite by the following Assumption 3, a stronger
assumption than the temporary one.

Assumption 3. Both e and g are summable, g is nonnegative and all eb > 0,
and

�

a,b∈B

gb,a fa fb ≥ 0 for a bounded real valued function f on B .

Proposition 3. Let H ∈ K . CH is continuous on S.
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Proof. Let � > 0 be given. Using Assumption 3, we take a �nite B f ⊂ B ,
such that

�

b �∈B f
eb < �1, and

�

a∈B,b �∈B f

gb,a < �1, where �1 is to be chosen. Take

δ to be min{sb : b ∈ B f }. Let r and r∗ be in S with d(r, r∗) < δ . Then
r ∩ B f = r∗ ∩ B f . Therefore

CH (r) − CH (r∗) =
�

b∈r\B f

cb −
�

b∈r∗\B f

cb,

and as noted after the previous de�nition, for any b,

f Hb ≤
�

w∈W

dw,

giving

|CH (r) − CH (r∗)| ≤
�

b �∈B f

[eb +
�

a∈B

gb,a f
H
b ]

< �1 + (
�

w∈W

dw)
�

b �∈B f ,a∈B

gb,a

≤ �1 + (
�

w∈W

dw)�1

= �,

choosing �1 so that the last equality holds. Thus CH is uniformly continuous on
S . �

Let us denote the restriction of CH to cl(R) by CH .

Proposition 4. The map C : K → C(cl(R); R), mapping H to CH , is
monotone.

Proof. Let F and H be in K . For a ∈ B , let S(a) = {r ∈ cl(R) : r � a}. Then

(CF − CH , F − H ) =

�

r∈cl(R)

(CF (r) − CH (r)) d(F − H )(r)

=

�

r∈cl(R)

(
�

a,b∈B

ga,bχr (a)((F − H )S(b))) d(F − H )(r)

= (
�

a,b∈B

ga,b

�

r∈cl(R)

χr (a)((F − H )S(b)) d(F − H )(r)
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by Fubini

=
�

a,b∈B

ga,b

�

r∈S(a)

(F − H )S(b) d(F − H )(r)

=
�

a,b∈B

ga,b[(F − H )(S(a))][(F − H )(S(b))]

≥ 0.

�

Proposition 5. For F, H ∈ K , the map Z �→ (CZ , F−H ) is continuous on the
line segment [F, H ].

Proof. We put, for t ∈ [0, 1], Z = (1 − t)F + t H , and consider

t �→

�

r∈cl(R)

CZ (r) d(H − F)(r) =

�

r∈cl(R)

�

a∈r

cZa d(H − F)(r)

=

�

r∈cl(R)

�

a∈r

(ea +
�

b∈B

ga,bZ (S(b)) d(H − F)(r)

=

�

r∈cl(R)

�

a∈B

χr (a)(ea +
�

b∈B

ga,b[t H (S(b)) + (1 − t)F(S(b)]) d(H − F)(r)

= t

�

r∈cl(R)

�

a∈B

χr (a)(ea +
�

b

ga,bH (S(b)) d(H − F)(r)

+ (1 − t)

�

r∈cl(R)

�

a∈B

χr (a)(ea +
�

b

ga,bF(S(b)) d(H − F)(r).

This is continuous. �

We recall the following corollary of the Debrunner-Flor Lemma [3].

Proposition 6. Let E be a real locally convex topological vector space and
let K be a nonempty compact convex subset of E . Suppose C : K → E �

is monotone and for x , y ∈ K , the map z �→ (C(z), y − x ) is continuous
on the line segment [x , y]. Then there exists x ∈ K such that for all y ∈ K ,
(C(x ), y − x ) ≥ 0.

Proposition 7. Suppose Assumptions 1,2, and 3 hold. There exists H ∈ K such
that H and CH : cl(R) → R satisfy (1) and (2) of Proposition 2.
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Proof. Use the Debrunner-Flor result with E the space of signed Borel mea-
sures on cl(R), with the weak∗ topology on E = C(cl(R); R)� , and K = {µ ∈

C(cl(R); R)� : µ ≥ 0, µ(cl(Rw) = dw for all w ∈ W }. For H ∈ K , the map
F �→ (CH , F) is a weak∗ continuous linear functional, and we have shown the
required monotonicity and continuity. �

6. Wardrop equilibria and their existence.

We now look at the relationship between Ro,d and its closure, for o, d an
O/D pair. This allows us to consider the completion H0 of H on R.

Notation. Let (N, B) be a connected locally �nite directed graph, with �nitely
many ends. For F a �nite subset of B , and e an end, we write e(F) for the
in�nite component of (N, B \ F) with e as limit point. If G is a subgraph of
(N, B), we write E(G) for its link set and V (G) for its node set. A 1-walk will
be like a 1-route, a concatenation of in�nite routes, except we may visit ends
more than once.

Theorem 8. Let (N, B) be a connected locally �nite directed graph, with
�nitely many ends. Let o and d(d �= o) be in �N . For r ∈ cl(Ro,d ), there exists
s ∈ Ro,d with s ⊂ r .

Proof. Suppose for now that o and d are ends, to �x ideas. Take a �nite F ⊂ B ,
such that e1(F) /∈ e2(F) if e1 and e2 are distinct ends. Take a sequence rk → r ,
with rk ∈ Ro,d , and take k0 such that for all k ≥ k0, rk ∩ F = r ∩ F . This
intersection is a �nite union of �nite routes pi . We enlarge F to F∗ by including
all �nite routes q contained in r with q ∩ F = ∅, and origin and destination in
F . By taking k0 larger if necessary, assume rk ∩ F∗ = r ∩ F∗ for all k ≥ k0 .
There are now no �nite routes q contained in r with q ∩ F∗ = ∅ and having
origin and destination in F∗ . Let F∗ ∩rk , for k ≥ k0 , be the �nite union of �nite
routes pi , from oi to di (all distinct), i = 1, . . . , L . By taking a subsequence,
we assume that all rk traverse the routes pi in the same order, say p1 to pL , and
k0 = 1.

We claim there is a 1-route in r from di−1 to oi for each i from 2 to L , and
in�nite routes from o to o1 and from dL to d . For all k, the links of rk from di−1

to oi form a �nite route or 1-route, denoted r ik . Since rk traverses the pj in order
1 to L, the links of r ik are all in E(e(F∗)) for some end e. Now suppose thare is a
�nite H ⊂ B , with F∗ ⊂ H , such that for all k, r ik stays in E(e(F∗))∩H . Then
there exists a �nite route contained in r ∩ E(e(F∗)), with origin and destination
in F∗ , which is impossible. Hence for each such H , r ik has some links (r ik )b in
E(e(H )). This gives the existence of a route qi contained in r from di−1 to e,
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because given any �nite subset H of B containing F∗ , H ∩ r ik is constant for
large k, and we take qH to be the component of H ∩ r ik with origin di−1 , and
let qi be the union of the qH . Similarly, there exists a route contained in r from
e to oi . Together, these two in�nite routes give a 1-route in r from di−1 to oi .
Similarly there are in�nite routes in r from o to o1 and from dL to d .

Note that an end e may be approximated more than once by nodes of the
rk . It follows that there exists a 1-walk w in r from o to d , noting all nodes are
only visited once, since each link of w is in rk for k large. Hence there exists a
1-route s in r from o to d . The cases where one or both of o and d are nodes
can be dealt with by adjusting the preceding argument. �

Proposition 9. Suppose Assumptions 1,2, and 3 hold. Let H and CH :
cl(R) → R satisfy (1) and (2) of Proposition 2, and let w ∈W be given. Then
Rw is measurable with respect to the completion (cl(R), B0, H0) of the measure
space (cl(R), B, H ), where B denotes the Borel sets, and H0(Rw) = dw .

Proof. We claim cl(Rw) \ Rw is contained in a Borel set of H measure zero.
It suf�ces to show that if r ∈ cl(Rw ) \ Rw , then CH (r) > CH (s) for some
s ∈ cl(Rw). Now for r ∈ cl(Rw) \ Rw , r contains a 1-route s �= r , by Theorem
7. Then

C(r) = C(s) +
�

a∈r\s

ca

≥ C(s) +
�

a∈r\s

ea

> C(s).

�

De�nition. Suppose Assumptions 1,2 and 3 hold. Suppose there is a measure
space (R, B1, H1) where B1 contains the Borel σ - �eld of R, such that
H1(Rw) = dw and

H1{r ∈ Rw : CH1 (r) > in f {CH1 (x ) : x ∈ Rw}} = 0,

for all w ∈W , where CH1 : R → R is given by: for all b∈ B , fb = H1{r ∈ R :
r � b}, cb = eb +

�

a∈B

gb,a fa , and for r ∈ R, CH1 (r) =
�

b∈r

cb . Then we say H1 is

a Wardrop equilibrium.

Theorem 10. Suppose Assumptions 1,2 and 3 hold. There exists a Wardrop
equilibrium, H1.
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Proof. By Proposition 9, taking (B1, H1) to be the restriction to R of
(cl(R), B0, H0). �

Question. Is there a version of this with the map from link �ows to link costs
being non af�ne?
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