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WARDROP EQUILIBRIA IN AN INFINITE NETWORK

BRUCE CALVERT

In a finite network, there is a classical theory of traffic flow, which gives
existence of a Wardrop equilibrium for given OD demands and affine route
costs. In this note, the existence theory is extended to infinite networks.

1. Introduction.

We define a classical model of Wardrop equilibrium for traffic flow [2].
Let (N, B) be a finite directed graph, with node set N and branch or link set
B. A path in which all links are similarly directed is called a route, with the
initial and final nodes forming an origin/destination or O/D pair. Consider a
nonempty set W of O/D pairs, and for each w € W, suppose a flow demand
dy, > 0 to be given. Let R, be the set of routes joining w. For each w € W,

consider F, > O for each r € R, such that ) F, = d,,, giving a route flow
FERU,

vector F' = (F,);er, .wew- This route flow induces a link flow f = (f)pep, by

f» = >_ F, for each b, where we identify a route with the set of its links. For
rab
each link a, suppose a link cost ¢, = Zhe g 8ab fv + ha, Where g, and h, are
given. For r € R,,, w € W, define a route cost by C, = > _ ¢,.
aer

A route flow H is a Wardrop equilibrium if it satisfies the condition that
forallr,se R,,we W,if C, < C, then H; = 0. In other words there is, for
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each w, a common route cost y,, for all routes r € R,, with nonzero H,. There
exists a Wardrop equilibrium [4].

In this paper we shall let (N, B) be an infinite directed graph. Our mission
is to extend our concepts in a natural way, so that we find that Wardrop equilibria
exist. In Section 2 we take the most naive extensions, and give counterexamples
to show the need for infinte routes. In Section 3 we show that allowing infinite
routes is still not enough, and end with the promise to give Wardrop flows as
measures. Some background on infinite routes is given in Section 4. Section 5
addresses a well known variational inequality in the setting of the pairing
between Borel measures and continuous functions on the closure of the routes.
In Section 6 we define a Wardrop equilibrium, and show that it exists, by taking
the completion of the measure given by the variational inequality, and restricting
this to the routes.

2. The need for a 1-network.

Recall an infinite graph is locally finite if each node has only finitely many
links incident to it. We shall consider an infinite directed graph, allowing only
finite routes, but a possibly infinite set of O/D pairs W. Of course, even with a

single O/D pair, o, d, it may be that there are infinitely many routes from “o
to 6‘d7"

Assumption 1. Let G = (N, B) be an infinite, locally finite, and connected
directed graph.

Assumption 2. d € ¢l;(W),ie Y d, < oo.
weW

Remark 1. Let R = |J R,. Under Assumption 2, define K = {F : R —
weW

[0, 00) : foreach w, ) F, =d,}. Later we shall replace this definition. If
rer,

F € K then link flows are finite, since for b € B,

=Y F<Y F=) du

rab reR weW

We keep the same definition of link costs, but it involves an infinite sum.

Temporary Assumption 3. Assume for each link b, ) |gp.4| < 00.
aeB
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Suppose F € K. Then, for each link b,
Ch=ep + Zgb,afaF

aeB

is finite, by Remark 1. Given F, we may write 7, ¢/, and C* to remind us
that they are induced by F'.

For each route r, the route cost CrF = Y ¢ is finite, since r is finite.
ber
Hence the definition of Wardrop equilibrium needs no change, under the above

assumptions.
The first question is whether there exists a Wardrop equilibrium, consider-
ing only finite routes.

Counterexample 1. Consider the infinite ladder with nodes at points on the
plane (n, 0) and (n, 1) for n > 0. The nth top link from (n — 1, 1) to (n, 1) is
denoted nt, the nth bottom one nb, and the nth vertical one from (n — 1, 1) to
(n — 1,0), (n — 1)v. Let the top links point right, the vertical ones down, and
the bottom ones left. Let the link cost be given in terms of link flow f by

c=a,+b,f

on each of nt, nb and nv, where a, and b,, are assumed non-negative. Suppose
we have one OD pair, from (0, 1) to (0, 0), with demand d = 1. Suppose that
for all n, 3(a,+1 + by+1) < a,. Then there is no Wardrop equilibrium.

Let the routes be indexed by the vertical links nv. Suppose F is a Wardrop
equilibrium, given by F,, on each nv. For any n > 0, let the route cost on route
nv be C,. Let the link cost on any link a be c¢,. Then

Chy1 = Cyp — Cpp + Cng 1y + Clat )b + Cluttyw
<C,+ 3(an-i-l + bn-i—l) —day
<C,.

Since F' is a Wardrop equilibrium, F,, = 0. But then summing the F,, gives zero
instead of d, a contradiction.

What we shall do is define a generalized Wardrop equilibrium, in this case
being a flow of 1 out along the top infinite route and back along the bottom
route. To formalize this we may use a little of the concept of “1-networks” from
[1]. In this case, we merely add on an ideal node n1, (the end) and regard the top
infinite route as being from (0, 1) to n;, and the bottom from »n; back to (0, 0).
That is, we have allowed infinite routes.



20 BRUCE CALVERT

3. The need for route flows as measures.

Even this construction of 1-networks is not enough in general, and the
next example and counterexample provoke a concept of flow which will give
existence. We have just shown that it is possible that merely allowing infinite
routes can give a Wardrop equilibrium. We now look at two almost identical
situations: Example 1 for which it is enough to allow infinite routes and give a
route flow as a summable function on these, and Counterexample 2 for which it
is not enough.

Example 1. Consider the graph formed from the infinite ladder above by
identifying nodes (n, 0) and (n, 1) for all n, and eliminating nv, and re-orienting
links nb to point right. That is, we have two links, nt and nb in parallel from
(n — 1,0) to (n,0), for each n > 1. As above we have n;, and we suppose
we have one OD pair, from (0, 0) to n;, with demand d = 1, joined by infinite
routes. Let the link cost be given in terms of link flow f by

c=e,+gf

on each link b, where ¢, and g, are nonnegative. Suppose e and g are
summable, so that route costs, obtained by summing their link costs, are finite.
There does exist a Wardrop equilibrium.

Let us define §, , for any link a and route r to be 1 if a € r and O otherwise.
First, for for each n, there is a Wardrop equilibrium on the subnetwork with
links nt and nb, giving two link flows f,; and f,;, summing to 1. Take route
r1 such that for each n, nt is in it iff f,, > 1/2, and take route flow F,; = 1/2.
Then take route r2 such that for each n, nt is in it iff f, — 81 F1 > 1/4,
and take route flow F,, = 1/4. Continuing, we have a route flow vector
F = {F, : n = 1,...}. These give the link flow vector {f, : b € B},
and therefore route costs are all equal on the routes rn, and F is a Wardrop
equilibrium.

This looks encouraging, and we are led to look for a flow F as a summable
function on R, that is, as an element of K from Remark 1. Using this concept,
we obtain a counterexample to a claim of existence of a Wardrop equilibrium.

Counterexample 2. Consider a directed graph as in the last example, but with
n links in parallel from (n — 1, 0) to (n, 0), for each n. As above we have ny,
and we suppose we have one OD pair, from (0, 0) to n;, with demand d = 1.
Let the link cost be given in terms of link flow f by

c=ey,+8af
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on each link b, where e, and g; are positive, with both e, all equal and g, all
equal if b is from (n — 1, 0) to (n, 0). Suppose e and g are summable, so that
route costs are finite. There does not exist a Wardrop equilibrium.

Any Wardrop equilibrium F gives an equilibrium on the links from (n —
1,0) to (n,0). These give link flows which must be equal on the links from
(n — 1,0) to (n, 0), and thus take the value 1/n. For any route r, F, < 1/n for
all n. Therefore F, = 0, contradicting Y F, =d.

What we shall do is define a Wardrop equilibrium as a measure on a sigma
field of subsets of R, to give existence. First we develop some theory.

4. Notation and definitions.

We take s : B — (0, 00) a summable function, after noting that B is
countable by Assumption 1.. Define the metric d° on N by d’(x, x) = 0 and

d°(x,y) = inf Zs;, : P apath connecting x and y ¢.
beB

Write (ﬁ , d°) for the completion, and call any limit point or cluster point (i.e.,
any element of N ") an end of (N, B). We now allow infinite routes, which may
be between anode x € N and an end e € N', or even between two ends, with the
initial and final nodes or ends forming an O/D pair. We say that an infinite route
is between two ends e; and e; if its nodes n; converge to these in (IV ,d% as k
goes to plus or minus infinity. Likewise for an infinite route between a node x
and an end e. We shall identify a route with its branch set. We also allow 1-
routes, made by concatenating a finite number of infinite routes, the destination
of one infinite route being the origin of the next, each node and each end only
visited once on a 1-route. Counterexample 1 gives a typical 1-route, the top
infinite route followed by the bottom infinite route. Let R stand for the union of
all the routes, both finite and infinite, including the 1-routes.

Let S be the metric space of subsets of B with metric

dU. V)= {sp:beU\V)UV \U)}
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5. Solution of a variational inequality.

Proposition 1. S is compact.

Proof. S is a complete metric space [5], chapter 11,2, Proposition. We need
only show § is totally bounded. Let ¢ > 0 be given. Take H so that
dAsplb ¢ H} < €. For P € S, the distance d(P, P N H) < €. Note
{P N H|P € R} is finite, and we have a finite €-net. (I

We recall that the dual of the Banach space of continuous real valued
functions on a compact metric space is the space of signed Borel measures [5].
Now we update our definition of K. Noting R C §, let c/(R) denote the closure
in S of R.

Definition. Let K = {u € C(cl(R); R) : u > 0, u(cl(Ry) = d,, forall w e
W}.
The next proposition extends a result of [4].

Proposition 2. Let H € K, w € W, and C € C(cl(R); R). The following are
equivalent.
(1) H{recl(Ry,) : C@r) > inf{C(x) : x ecl(Ry)}} = 0.

2) C(r)d(F —H)r)=0 forall FeK.
cl(R,)

Proof. (1) = (2) Let y,, = inf{C(x) : x € cl(Ry)}. Let F € K be given. We
want to show

/ C(r)dF(r) Z/ C(r)dH(r),
cl(Ry)

cl(Ry)

or equivalently

/I(R )(C(r) — Yuw) df(r) = / (C(r) = yw) dH(r).

cl(Ry)

But RHS =0by(1),and LHS > 0 since F > 0.

(2) = (1) Suppose (1) does not hold. Let T = {r e cl(Ry) : C(r) > yy}.
Then take b* € cl(R,,) with C(b*) = y,,. Define F by

F = H|qgy\r +0.5H]|7 +0.5H(T)bp-.
Note F > 0, and

F(cl(Ry)) = H(cl(Ry)\T)+05H(T)+0.5H(T)
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= H(cl(Ry)).

Note that for v e W \ {w}, since R, and R,, are a positive distance apart,
F(cl(Ry)) = H(cl(Ry)),

and hence F € K. Then
/ C(r)d(F — H)r)= —0.5/ C(r)d(H)(r)
cl(Ry) T

+0.5H(T)C(b")

_ 05 fT (C(r) — yu) dCH)(P)

< Osince H(T) > 0, and C(r) — y, > 0on T,
and (2) does not hold. U

Note that for b € B, {r € c/(R) : r 3 b} is open in c/(R), in particular a
Borel set, allowing the next definition.

Definition. For F € K, let us define f, = f;f forbe B by f, = F{r ecl(R) :
rob},thenc, =cf byc, =e,+ > gp.afa,and thenforr € S, C(r) = CF(r)

aeB
is defined as C(r) = Y ¢, giving CF : § — R.

ber

Note that the link flows are bounded, for

fr= ZF{recl(Rw):er}S Zdw-

weW weW

The link costs are finite by Temporary Assumption 3. The route costs are
now infinite sums, but are finite by the following Assumption 3, a stronger
assumption than the temporary one.

Assumption 3. Both e and g are summable, g is nonnegative and all ¢, > 0,

and Y gp.afafp > 0 for a bounded real valued function f on B.
a,beB

Proposition 3. Let H € K. C! is continuous on S.
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Proof. Let € > 0 be given. Using Assumption 3, we take a finite B/ C B,

such that ) e, < e€,and > g5, < €, Where €; is to be chosen. Take
bgBS aeB.bgB!

8 to be min{s, : b € B/}. Letr and r* be in S with d(r,r*) < 8. Then
r N Bf =r*N B/, Therefore

clory—clen= Y e— Y. o,

ber\B/ ber<\BJ

and as noted after the previous definition, for any b,

fbH =< Z dw,

weW

giving
ICHr) = CP eI = Y lev+ ) gvafi]

bgBY aeB

<€+ (Z dw) Z 8b.,a

weWw b¢Bf,aeB

<€+ (Z dw)él

weW
= 6’

choosing €; so that the last equality holds. Thus C* is uniformly continuous on
S. O

Let us denote the restriction of C* to cl(R) by CH .

Proposition 4. The map C : K — C(cl(R); R), mapping H to CH, is
monotone.

Proof. Let F and H bein K. For a € B, let S(a) = {r € cl(R) : r > a}. Then

(cf—ct, F-—H)= f (CFr) =) d(F — H)r)

recl(R)

=/ I(R)( Z abXr(@)(F — H)S(D)))d(F — H)(r)

a,beB

=( Z ga,h/ xr(@)((F — H)S(b))d(F — H)(r)

a.beB recl(R)
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by Fubini

-y ga’b/ (F — H)S(b)d(F — H)(r)

a.beB reS(a)

= Z ab[(F — H)(S@NI[(F — H)(S(D))]

a,beB
> 0.
O
Proposition 5. For F, H € K, the map Z +> (C%, F — H) is continuous on the
line segment [F, H].
Proof. We put, forte€[0, 1], Z = (1 — t)F 4 tH, and consider

t > C%(ryd(H — F)(r) = f > cZd(H - F)r)

recl(R) recl(R) acr

= / > ea + D avZ(SB)) d(H — F)(r)
recl(R) ‘gor

beB

= / Z xr(a)(e, + Zga,h[tH(S(b)) + (1 =0F(SB))AH — F)(r)
recl(R)

aeB beB

= t/ . Z xr(a)eq + Zga,;,H(S(b)) d(H — F)(r)

aeB b

+(1—1) / " 3 x@ea+ Y gas F(S®B) d(H — F)r).

aeB b

This is continuous. [l
We recall the following corollary of the Debrunner-Flor Lemma [3].

Proposition 6. Let E be a real locally convex topological vector space and
let K be a nonempty compact convex subset of E. Suppose C : K — E’
is monotone and for x,y € K, the map z — (C(z),y — x) is continuous
on the line segment [x, y]. Then there exists x € K such that for all y € K,
(C(x),y —x) = 0.

Proposition 7. Suppose Assumptions 1,2, and 3 hold. There exists H € K such
that H and C* : cl(R) — R satisfy (1) and (2) of Proposition 2.
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Proof. Use the Debrunner-Flor result with E the space of signed Borel mea-
sures on cl(R), with the weak™* topology on E = C(cl/(R); R),and K = {u €
C(l(R);RY : u > 0, u(cl(Ry) = d,, forall we W}. For H € K, the map
F — (CH, F)is a weak* continuous linear functional, and we have shown the
required monotonicity and continuity. ([

6. Wardrop equilibria and their existence.

We now look at the relationship between R, ; and its closure, for o, d an
O/ D pair. This allows us to consider the completion Hy of H on R.

Notation. Let (N, B) be a connected locally finite directed graph, with finitely
many ends. For F a finite subset of B, and e an end, we write e(F) for the
infinite component of (N, B \ F) with e as limit point. If G is a subgraph of
(N, B), we write E(G) for its link set and V(G) for its node set. A 1-walk will
be like a 1-route, a concatenation of infinite routes, except we may visit ends
more than once.

Theorem 8. Let (N, B) be a connected locally finite directed graph, with
finitely many ends. Let o and d(d # o) be in N. For r € cl(R, 4), there exists
s€ R, withs Cr.

Proof. Suppose for now that 0 and d are ends, to fix ideas. Take a finite F C B,
such that e;(F) ¢ e;(F) if e; and e, are distinct ends. Take a sequence ry — r,
with r;, € R, 4, and take ko such that for all k > ko, r, N F = r N F. This
intersection is a finite union of finite routes p;. We enlarge F to F* by including
all finite routes g contained in r with ¢ N F' = §, and origin and destination in
F. By taking ko larger if necessary, assume r;, N F* = r N F* for all k > k.
There are now no finite routes g contained in r with ¢ N F* = (J and having
origin and destination in F*. Let F*Nry, for k > ky, be the finite union of finite

routes p;, from o; to d; (all distinct),i = 1, ..., L. By taking a subsequence,
we assume that all r; traverse the routes p; in the same order, say p; to p;, and
ko = 1.

We claim there is a 1-route in r from d;_; to o; foreach i from 2 to L, and
infinite routes from o to o; and from d;, to d. For all k, the links of r;, from d;_,
to o; form a finite route or 1-route, denoted r,i. Since ry, traverses the p; in order
1 to L, the links of r; are all in E(e(F*)) for some end e. Now suppose thare is a
finite H C B, with F'* C H, such that for all k, r; staysin E(e(F*))NH. Then
there exists a finite route contained in » N E(e(F™)), with origin and destination
in F*, which is impossible. Hence for each such H, r,ﬁ has some links (i’;i)h in
E(e(H)). This gives the existence of a route ¢’ contained in r from d;_; to e,
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because given any finite subset H of B containing F*, H N r,i is constant for
large k, and we take gy to be the component of H N r,i with origin d;_;, and
let ¢ be the union of the g5 . Similarly, there exists a route contained in r from
e to 0;. Together, these two infinite routes give a 1-route in r from d;_; to o;.
Similarly there are infinite routes in r from o to o; and from d; to d.

Note that an end e may be approximated more than once by nodes of the
ri. It follows that there exists a 1-walk w in r from o to d, noting all nodes are
only visited once, since each link of w is in r; for k large. Hence there exists a
I-route s in r from o to d. The cases where one or both of 0 and d are nodes
can be dealt with by adjusting the preceding argument. ([

Proposition 9. Suppose Assumptions 1,2, and 3 hold. Let H and C"
cl(R) — R satisfy (1) and (2) of Proposition 2, and let w € W be given. Then
R, is measurable with respect to the completion (cl(R), By, Hy) of the measure
space (cl(R), 8B, H), where B denotes the Borel sets, and Hy(R,) = d,,.

Proof. We claim cl(R,) \ R, is contained in a Borel set of H measure zero.
It suffices to show that if r € cI(R,) \ R, then C(r) > C*(s) for some
s € cl(Ry). Now for r € cl(Ry) \ Ry, r contains a 1-route s # r, by Theorem
7. Then

Cr)=C)+ Y _ e

aer\s
> C)+ ) e
aer\s
> C(s).
O

Definition. Suppose Assumptions 1,2 and 3 hold. Suppose there is a measure
space (R, B, H;) where B; contains the Borel o - field of R, such that
H((R,) =d, and

Hi{re Ry, : C" () > inf{C"(x): x e R,}} =0,

for all w € W, where CH' : R — R is given by: forallbe B, f, = H\{r e R :
rabl,co=ep+ Y. gvafs-andforr € R, CHi(r) = > c,. Then we say H| is

aeB ber
a Wardrop equilibrium.

Theorem 10. Suppose Assumptions 1,2 and 3 hold. There exists a Wardrop
equilibrium, H;.
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Proof. By Proposition 9, taking (8B;, H;) to be the restriction to R of
(cl(R), Bo, Hp). U

Question. Is there a version of this with the map from link flows to link costs
being non affine?
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