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SOME APPLICATIONS OF TWO MINIMAX THEOREMS

M. AIT MANSOUR - J. LAHRACHE - N. ZIANE

In this note, we present further applications of two results of Ricceri
([3, Theorem 1.1]) and [4, Theorem 2.4]). In particular, we prove the
following: Let (T,F ,µ) be a finite non-atomic measure space, let [c,d]⊂
R be a compact interval and let ω,ψ : [c,d]→ [0,+∞[ be two continuous
concave functions such that ω(d) = 0, ψ(c)< ψ(d) and

sup
x∈]c,d[

ω(x)
ψ(x)

= 1 .

Set

δ :=
ω(c)

ψ(d)−ψ(c)

and, if ψ(c)> 0, assume that√
δ 2 +1−δ ≤ ω(c)

ψ(c)
.

Denote by X the set of all measurable functions u : T →]c,d[. Then, we
have

inf
u∈X

(
(
∫

T ω(u(t))dµ)2 +(
∫

T ψ(u(t)dµ)2∫
T ψ(u(t)dµ

)
= 2µ(T )δ (

√
δ 2 +1−δ )ψ(d) .
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1. Introduction and preliminaries

Let X ,Y be two topological spaces and f : X×Y →R be a given function. In [2],
Ricceri obtained the equality supY infX = infX supY assuming, for the first time,
that the sub-level sets of f (·,y) are connected. However, because of the great
generality of such an assumption, a price has necessarily to be paid: Y must be
a real interval. In any case, despite such a restriction, Ricceri’s result has suc-
cessfully been applied to obtain many significant consequences. In particular,
in [3] and [4], Ricceri applied his minimax theorem to two specific classes of
functions: the functions of the type ϕ +ψ , where ϕ is a non-zero continuous
linear functional on a Banach space and ψ is a Lipschitzian functional whose
Lipschitz constant is equal to the norm of ϕ; functionals on Lp spaces. In turn,
consequences of the results of [3] and [4] have been obtained very recently by
D. Giandinoto in [1].

The aim of this note is to present new applications of the results of [3] and
[4], in the spirit of the ones of [1].

2. Infimum of certain functionals on Banach spaces

Throughout this section, X is a real Banach space whose norm is denoted by
∥ .∥, ϕ : X → R is a non-zero continuous linear functional and ψ : X → R is
a Lipschitzian functional whose Lipschitzian constant L is equal to ∥ϕ∥X∗ , X∗

being the dual space of X whose norm is denoted by ∥ .∥X∗ .

Now, we will apply the following result established in [4] with concrete
examples :

Theorem 2.1. Let γ : [−1,1]→ R be a continuous function which is derivable
in ]−1,1[. Assume that γ ′ is strictly increasing in ]−1,1[, with γ ′(]−1,1[) =R.
Denote by η the inverse of the function γ ′. Then, one has

max
{

inf
x∈X

(
ϕ(x)−ψ(x)− γ(−1)

)
, inf

x∈X

(
ϕ(x)+ψ(x)− γ(1)

)}
= inf

x∈X

(
ϕ(x)+η(ψ(x))ψ(x)− γ(η(ψ(x)))

)
.

We start by the following result

Theorem 2.2. We have

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)−ψ(x)+2log(eψ(x)+1)

)
.

Proof. Consider the function γ : [−1,1]→ R defined by

γ(λ ) =


(1+λ ) log(1+λ )+(1−λ ) log(1−λ ) i f |λ |< 1

γ(−1) = γ(1) = log(4).
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Clearly, γ is continuous in [−1,1] and twice derivable in ]− 1,1[, also we
have, for each λ ∈]−1,1[,

γ
′(λ ) = log

(
1+λ

1−λ

)

γ
′′(λ ) =

2
1−λ 2 .

Hence, the function γ ′ is strictly increasing in ]−1,1[, with γ ′(]−1,1[) =R.
Moreover, η , the inverse of γ ′, is given by

η(µ) =
eµ −1
eµ +1

.

So, for each x ∈ X \ψ−1(0), we have

η(ψ(x))ψ(x)− γ(η(ψ(x))) =
eψ(x)−1
eψ(x)+1

ψ(x)− (1+η(ψ(x))) log(1+η(ψ(x)))− (1−η(ψ(x))) log(1−η(ψ(x)))

=
eψ(x)−1
eψ(x)+1

ψ(x)− 2eψ(x)

eψ(x)+1
log(

2eψ(x)

eψ(x)+1
)− 2

eψ(x)+1
log(

2
eψ(x)+1

)

=
eψ(x)−1
eψ(x)+1

ψ(x)− 2eψ(x)

eψ(x)+1
log(

2
eψ(x)+1

)− 2eψ(x)

eψ(x)+1
ψ(x)− 2

eψ(x)+1
log(

2
eψ(x)+1

)

= −ψ(x)− 2
eψ(x)+1

log(
2

eψ(x)+1
)(1+ eψ(x))

= −ψ(x)− log4+2log(eψ(x)+1).

Consequently, by Theorem 2.1, taking account that γ(−1) = γ(1) = log(4), we
get

max
{

inf
x∈X

(ϕ(x)−ψ(x))− log4, inf
x∈X

(ϕ(x)+ψ(x))− log4
}

= inf
x∈X

(ϕ(x)+η(ψ(x))ψ(x)− γ(η(ψ(x)))).

Taking into account Theorem 4 of [4], this implies that

inf
x∈X

(ϕ(x)+ |ψ(x)|)− log4 = inf
x∈X

(ϕ(x)−ψ(x)− log4+2log(eψ(x)+1),

which is the conclusion.
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Remark 2.3. In [4], it was observed that

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(ϕ(x)+ |ψ(x)|+ e−|ψ(x)|) .

From Theorem 2.2 we get

inf
x∈X

(ϕ(x)+ |ψ(x)|) = inf
x∈X

(
ϕ(x)+ |ψ(x)|+2log(e−|ψ(x)|+1)

)
This is an improvement of the result in [4] since e−t ≤ 2log(e−t + 1) for all
t ≥ 0.

In particular, since infx∈X(ϕ(x)+∥ϕ∥X∗∥x∥) = 0, from Theorem 2.2 we get:

Corollary 2.4. We have

inf
x∈X

(ϕ(x)−∥ϕ∥X∗∥x∥+2log(e∥ϕ∥X∗∥x∥+1)) = inf
x∈X

(ϕ(x)+∥ϕ∥X∗∥x∥

+2log(e−∥ϕ∥X∗∥x∥+1)) = 0.

3. Infimum of functionals in Lp spaces

Let (T,F ,µ) be a σ -finite non-atomic measure space, E a real Banach space,
whose norm is denoted by ∥ .∥, p ∈ [1,+∞[. As usual, Lp(T,E) denotes the
space of all (equivalence classes of) strongly µ-measurable functions u : T → E
such that

∫
T ∥u(t)∥pdµ <+∞, equipped with the norm

∥u∥Lp(T,E) =

(∫
T
∥u(t)∥pdµ

) 1
p

.

A set D ⊂ Lp(T,E) is said to be decomposable if, for every u,v ∈ D and every
A ∈ F , the function

t → χA(t)u(t)+(1−χA(t))v(t)

belongs to D, where χA denotes the characteristic function of A. A real-valued
function on T ×E is said to be a Carathéodory function if it is measurable in T
and continuous in E.

Theorem 3.1. , [4, Theorem 2.4]). Let (T,F ,µ) be a σ -finite non-atomic mea-
sure space, E a real Banach space, p ∈ [1,+∞[, X ⊂ Lp(T,E) a decomposable
set, [a,b] a compact real interval, and γ : [a,b]→R a convex (res. concave) and
continuous function. Moreover, let ϕ,ψ,ω : T ×E → R be three Caratheodory
functions such that, for some M ∈ L1(T ),k ∈ R, one has

max{|ϕ(t,x)|, |ψ(t,x)|, |ω(t,x)|} ≤ M(t)+ k∥x∥p
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for all (t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ+a

∫
T

ω(t,u(t))dµ ̸= γ(b)
∫

T
ψ(t,u(t))dµ+b

∫
T

ω(t,u(t))dµ,

for all u ∈ X such that,
∫

T ψ(t,u(t))dµ > 0 (resp.
∫

T ψ(t,u(t))dµ < 0). Then,
one has

sup
λ∈[a,b]

inf
u∈X

(
∫

T
(ϕ(t,u(t))dµ + γ(λ )ψ(t,u(t))+λω(t,u(t)))dµ) = inf

u∈X
sup

λ∈[a,b]
(
∫

T
(ϕ(t,u(t))+ γ(λ )ψ(t,u(t))+λω(t,u(t)))dµ).

From now on, we assume that µ(T ) < +∞. Let I ⊂ E be a non-empty set.
We denote by AI the class of all pairs of continuous functions ω,ψ : I →R with
ω(x)≥ 0 and ψ(x)> 0 for all x ∈ I, such that

sup
x∈I

|ω(x)|+ |ψ(x)|
1+∥x∥p <+∞.

Moreover, we denote by BI the family of all decomposable subsets X of
Lp(T,E) such that u(T )⊆ I for all u ∈ X , and containing each constant function
taking its value in I.

Remark 3.2. Notice that, if (ω,ψ) ∈ AI , we have

inf
x∈I

ω(x)
ψ(x)

≤
∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

≤ sup
x∈I

ω(x)
ψ(x)

for all u ∈ X .

Now, we apply Theorem 3.1 to get the following result:

Theorem 3.3. Let (ω,ψ) ∈ AI and X ∈ BI. Then, one has

inf
u∈X

2log

e
∫
T ω(u(t))dµ∫
T ψ(u(t))dµ +1

2

∫
T

ψ(u(t))dµ −
∫

T
ω(u(t))dµ


= µ(T ) sup

λ∈[0,1]
inf
x∈I

(λω(x)− ((1+λ ) log(1+λ )+(1−λ ) log(1−λ ))ψ(x)) .

Proof. First of all, to simplify the writing, for each u∈X , we put λu =
∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

.

We apply Theorem 2.1, with [a,b] = [0,1], ϕ = 0 and

γ(λ ) =


−(1+λ ) log(1+λ )− (1−λ ) log(1−λ ) i f λ ∈ [0,1[

− log4 i f λ = 1.
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Since γ is concave and
∫

T ψ(u(t)dµ > 0 for all u ∈ X , all conditions of Theorem
3.1 are satisfied, and hence

sup
λ∈[0,1]

inf
u∈X

(λ
∫

T
ω(u(t))dµ + γ(λ )

∫
T

ψ(u(t))dµ) = inf
u∈X

sup
λ∈[0,1]

(λ
∫

T
ω(u(t))dµ + γ(λ )

∫
T

ψ(u(t))dµ). (1)

Fix u ∈ X . The function F : λ → λ
∫

T ω(u(t))dµ + γ(λ )
∫

T ψ(u(t))dµ is con-
cave in [0,1] and its derivative is given by

F ′(λ ) =
∫

T
ω(u(t))dµ − log(

1+λ

1−λ
)
∫

T
ψ(u(t))dµ,

which vanishes at the point λ0 = eλu−1
eλu+1 which lies in [0,1[. Consequently, we

have

inf
u∈X

sup
λ∈[0,1]

(
λ

∫
T

ω(u(t))dµ + γ(λ )
∫

T
ψ(u(t))dµ

)
= inf

u∈X
(

eλu −1
eλu +1

∫
T

ω(u(t))dµ − (
2eλu

eλu +1
log(

2eλu

eλu +1
)+

2
eλu +1

log(
2

eλu +1
))
∫

T
ψ(u(t))dµ)

= inf
u∈X

(
eλu −1
eλu +1

∫
T

ω(u(t))dµ − 2eλu

eλu +1

∫
T

ω(u(t))dµ − 2eλu +2
eλu +1

log(
2

eλu +1
)
∫

T
ψ(u(t))dµ)

= inf
u∈X

(
∫

T
−ω(u(t))dµ +(log((eλu +1)2)− log(4))

∫
T

ψ(u(t))dµ).

On the other hand, X contains each constant function taking its value in I, which
implies that for all λ ∈ [0,1]

inf
u∈X

(
λ

∫
T

ω(u(t))dµ + γ(λ )
∫

T
ψ(u(t))dµ

)
= µ(T )inf

x∈I
(λω(x)+ γ(λ )ψ(x)).

Hence, we have

sup
λ∈[0,1]

inf
u∈X

(λ
∫

T
ω(u(t))dµ + γ(λ )

∫
T

ψ(u(t))dµ) = µ(T ) sup
λ∈[0,1]

inf
x∈I

(λω(x)+ γ(λ )ψ(x)). (2)

Now, the conclusion follows directly from (1) and (2).

Theorem 3.4. Let (ω,ψ) ∈ AI , X ∈ BI and q > 1. Set

a := inf
x∈I

(
ω(x)
ψ(x)

) 1
q−1

, b := sup
x∈I

(
ω(x)
ψ(x)

) 1
q−1

and suppose that b <+∞. Then, one has

inf
u∈X

(
(q−1)(

∫
T ω(u(t))dµ)

q
q−1 +(

∫
T ψ(u(t)dµ)

q
q−1

(
∫

T ψ(u(t)dµ)
1

q−1
) = µ(T ) sup

λ∈[a,b]
inf
x∈I

(qλω(x)

+(1−λ
q)ψ(x)).
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Proof. By Remark 3.2, we have

a ≤
(∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

) 1
q−1

≤ b for all u ∈ X .

Since X contains each constant function taking its value in I, we clearly have
for all λ ∈ [a,b]

inf
u∈X

(
qλ

∫
T

ω(u(t))dµ +(1−λ
q)

∫
T

ψ(u(t))dµ

)
= µ(T )inf

x∈I
(qλω(x)+(1−λ

q)ψ(x)).

Hence, we obtain

sup
λ∈[a,b]

inf
u∈X

(
qλ

∫
T

ω(u(t))dµ +(1−λ
q)

∫
T

ψ(u(t))dµ

)
= µ(T ) sup

λ∈[a,b]
inf
x∈I

(qλω(x)+(1−λ
q)ψ(x)). (3)

We can apply Theorem 2.1, with ϕ = 0, γ(λ ) = 1−λ q (and qω instead of ω),
obtaining

sup
λ∈[a,b]

inf
u∈X

(
qλ

∫
T

ω(u(t)dµ +(1−λ
q)

∫
T

ψ(u(t)dµ

)
= inf

u∈X
sup

λ∈[a,b]

(
qλ

∫
T

ω(u(t)dµ +(1−λ
q)

∫
T

ψ(u(t)dµ

)
. (4)

Fix u ∈ X . The function F : λ → qλ
∫

T ω(u(t)dµ + (1− λ q)
∫

T ψ(u(t)dµ is
concave in [0,+∞[ and its derivative is given by

F ′(λ ) = q
∫

T
ω(u(t)dµ −qλ

q−1
∫

T
ψ(u(t)dµ,

which vanishes at the point
( ∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

) 1
q−1

which lies in [a,b]. Consequently,
we have

inf
u∈X

sup
λ∈[a,b]

(qλ

∫
T

ω(u(t))dµ +(1−λ
q)

∫
T

ψ(u(t))dµ) = inf
u∈X

(
(q−1)(

∫
T ω(u(t))dµ)

q
q−1 +(

∫
T ψ(u(t)dµ)

q
q−1

(
∫

T ψ(u(t)dµ)
1

q−1
)

which, jointly with (3.3) and (3.4), gives the conclusion.

Now, from Theorem 3.4, we get the following result



412 M. AIT MANSOUR - J. LAHRACHE - N. ZIANE

Corollary 3.5. Let E = R, I =]c,d[, and let (ω,ψ) ∈AI . Assume that ω,ψ are
continuous and concave in [c,d] and that ω(d) = 0, ψ(c)< ψ(d) and

sup
x∈I

ω(x)
ψ(x)

= 1 .

Set

δ :=
ω(c)

ψ(d)−ψ(c)

and, if ψ(c)> 0, assume that√
δ 2 +1−δ ≤ ω(c)

ψ(c)
.

Then, for every X ∈ BI , one has

inf
u∈X

(
(
∫

T ω(u(t))dµ)2 +(
∫

T ψ(u(t)dµ)2∫
T ψ(u(t)dµ

)
= 2µ(T )δ (

√
δ 2 +1−δ )ψ(d) .

Proof. Fix λ ∈ [0,1]. Since the function 2λω +(1−λ 2)ψ is concave in [c,d]
its infimum is attained either at c or at d. That is to say (recalling that ω(d) = 0)

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) = min{2λω(c)+(1−λ

2)ψ(c),(1−λ
2)ψ(d)} .

On the other hand, we have

2λω(c)+(1−λ
2)ψ(c)≤ (1−λ

2)ψ(d)

if and only if λ ≤−δ +
√

δ 2 +1. Consequently

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) =


2λω(c)+(1−λ

2)ψ(c) i f λ ∈
[
0,−δ +

√
δ 2 +1

]
(1−λ

2)ψ(d) i f λ ∈
[
−δ +

√
δ 2 +1,1

]
.

From this, it clearly follows that

sup
λ∈[0,1]

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) = 2δ (

√
δ 2 +1−δ )ψ(d) .

Now, the conclusion follows directly from Theorem 3.4 applied with q = 2.



SOME APPLICATIONS OF TWO MINIMAX THEOREMS 413

Remark 3.6. Concerning Corollary 3.1, it is very important to observe that the
infimum of the restriction of functional u → (

∫
T ω(u(t))dµ)2+(

∫
T ψ(u(t)dµ)2∫

T ψ(u(t)dµ
to the

set of all constant functions taking their values in ]c,d[ (say X̃) can be strictly
larger than 2µ(T )δ (

√
δ 2 +1−δ )ψ(d). To see this, it is enough to consider the

following setting: [c,d] = [0,1], ω(x) = 1− x2, ψ(x) = x+ 1. Indeed, in this
case, we have δ = 1 and

inf
u∈X̃

(
(
∫

T (1−u(t))dµ)2 +(
∫

T (u(t)+1)dµ)2∫
T (u(t)+1)dµ

)
= µ(T )

50
27

> 4µ(T )(
√

2−1) .
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