
LE MATEMATICHE
Vol. LXXIX (2024) – Issue I, pp. 27–50
doi: 10.4418/2024.79.1.2

EXISTENCE OF HOMOCLINIC SOLUTIONS FOR TWO
CLASSES OF DIFFERENTIAL SYSTEMS WITH

p−LAPLACIAN

M. TIMOUMI

In this paper, we are concerned with a class of periodic differential
systems with p−Laplacian when the potential is with superquadratic or
asymptotically quadratic growth at infinity in the second variable. Us-
ing the monotonicity trick of Jeanjean and the concentration compactness
principle, we prove the existence of homoclinic solution. Some recent
results in the literature are generalized and significantly improved.

1. Introduction

Laplacian and p−Laplacian systems are mathematical models used to describe
a wide range of phenomena in fields like physics, biology, and engineering.
Laplacian systems, being linear, are typically applied in problems such as heat
conduction, fluid dynamics, image processing (e.g., image denoising), and geo-
metric modeling. Conversely, p−Laplacian systems are nonlinear and are par-
ticularly relevant in situations where nonlinear effects play a significant role,
such as in modeling the flow of non-Newtonian fluids, phase transitions in ma-
terials, and the analysis of complex biological systems. In this paper, we will
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investigate the existence of homoclinic solutions for the following differential
p−Laplacian system
(DV)
d
dt

(
|u̇(t)|p−2 u̇(t)

)
+q(t) |u̇(t)|p−2 u̇(t)−V (t) |u(t)|p−2 u(t)+∇W (t,u(t)) = 0

where p > 1, q,V ∈ C(R,R) and W : R×RN → R is a continuous function,
differentiable with respect to the second variable with continuous derivative
∇W (t,x) = ∂W

∂x (t,x). A solution u of (DV) is said to be homoclinic (to 0)
if u(t) → 0 as |t| → +∞ and u ̸= 0. Furthermore, if u minimizes the energy
functional of (DV) among all possible nontrivial homoclinic solutions then u is
called a ground state homoclinic solution.
Many problems arising in science and engineering call for the solving of partial
or ordinary differential equations and systems. These equations or systems are
difficult to solve, and there are very few general techniques that can be applied
to solve them. In the last fourth decades, critical point theory and variational
methods have been highly successful in solving nonlinear problems in partial
and ordinary differential equations and systems.
If p = 2, the p−Laplacian system (DV) reduces to the following Laplacian
system

ü(t)+q(t)u̇(t)−V (t)u(t)+∇W (t,u(t)) = 0, t ∈ R,

which is a special case of the classical differentrial system

ü(t)+q(t)u̇(t)−L(t)u(t)+∇W (t,u(t)) = 0, t ∈ R, (1)

where L ∈ C(R,RN2
) is a symmetrick matrix. We should mention that only a

few authors have studied homoclinic solutions for system (1), see [1,5,17,18,37-
41,44,45].
When p = 2 and q = 0, then (1) reduces to the following second-order Hamil-
tonian system

ü(t)−L(t)u(t)+∇W (t,u(t)) = 0, t ∈ R. (2)

With the development of critical point theory, the existence and multiplicity of
homoclinic solutions for system (2) have been widely investigated by many au-
thors, see [2-4,6-9,11-13,15,16,19-21,23,25,27-28,30-34,,43,46,47] and the ref-
erences cited therein.
However, when p > 1 is arbitrary and q = 0, the system (DV) takes the form

d
dt

(
|u̇(t)|p−2 u̇(t)

)
−V (t) |u(t)|p−2 u(t)+∇W (t,u(t)) = 0. (3)

During the last decades there has been a growing interest in studying the ex-
istence and multiplicity of homoclinic orbits for system (3), see for example



HOMOCLINIC SOLUTIONS OF DIFFERENTIAL SYSTEMS 29

[24,26,29,35,36,42,48,49,50] and the references therein.
In recent years, Du [10] studied the existence of nontrivial homoclinic solu-
tions for system (DV) when q(t) = c is a constant, V is coercive and W (t,x) =
a(t)U(x) with a ∈C(R,R) and U ∈C1(RN ,R) is subquadratic.
Motivated by the above papers, we are interested in the present paper to the
existence of homoclinic solutions for (DV) when the nonlinearity W (t,x) is
superquadratic or asymptotically quadratic at infinity in the second variable,
by using the monotonicity trick of Jeanjean and the concentration compactness
principle. To the best of our knowledge, it seems that no similar results are ob-
tained in the literature for differentrial systems.
The remaining of this paper is organized as follows. Section 2 is devoted to
some preliminary results. In Section 3, we study the existence of ground state
homoclinic solution for (DV) under superquadratic growth. In the last Section,
we prove the existence of homoclinic solution for (DV) under asymptotically
quadratic growth.

2. Preliminaries
In order to introduce the concept of fast homoclinic solutions for (DV) conve-
niently, we firstly describe some properties of the weighted Sobolev space E on
which the certain variational functional associated with (DV) is defined and the
homoclinic solutions of (DV) are the critical points of such functional. We shall
use Lp

Q(R) to denote the Banach space of measurable functions from R into RN

under the norm

∥u∥Lp
Q
=
(∫

R
eQ(t) |u(t)|p dt

) 1
p
,

where Q(t) =
∫ t

0 q(s)ds. Similarly, Ls
Q(R) (1≤ s<∞) denotes the Banach space

of functions on R with values in RN under the norm

∥u∥Ls
Q
=
(∫

R
eQ(t) |u(t)|s dt

) 1
s

and L∞
Q(R) denotes the Banach space of functions on R with values in RN under

the norm
∥u∥L∞

Q
= esssup

{
e

Q(t)
2 |u(t)|/t ∈ R

}
.

In the present paper, we consider the following condition
(C1) L ∈ C(R,RN2

) is a symmetrick and positive definite matrix, and L,Q are
T−periodic,
and we introduce the Banach space

E =

{
u ∈ Lp

Q(R)/
∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt < ∞

}
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equipped with the norm

∥u∥p =
∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt

for u ∈ E. It is well known that E is continuously embedded into Ls
Q(R) for

p ≤ s ≤ ∞ and E ↪→ Ls
Q,loc(R) is compact for all p ≤ s < ∞. Here, Ls

Q,loc(R) is
the space of measurable functions u : R→ RN such that

∫
K |u(t)|s dt < ∞ for all

compact K of R. Hence, there exists a constant ηs > 0 such that

∥u∥Ls
Q
≤ ηs ∥u∥ , ∀u ∈ E. (4)

We shall prove that system (DV) possesses a mountain pass type solution. For
this purpose, we will apply a monotonicity trick due to Jeanjean [14] together
with the concentration compactness principle [22].

Lemma 2.1. [14] Let E be a Banach space and I ⊂R+ be an interval. Consider
a family ( fλ )λ∈I of continuously differentiable functionals on E of the form

fλ (u) = A(u)−λB(u), ∀λ ∈ I,

where B(u)≥ 0 for all u ∈ E, A(u)→+∞ or B(u)→+∞ as ∥u∥→ ∞. Assume
that there exist two points v1,v2 ∈ E such that

cλ = inf
γ∈Γ

max
t∈[0,1]

fλ (γ(t))> max{ fλ (v1), fλ (v2)} , ∀λ ∈ I,

where
Γ = {γ ∈C([0,1],E)/γ(0) = v1,γ(1) = v2} .

Then, for almost λ ∈ I, there is a sequence (vn)⊂ E such that
(i) (vn) is bounded in E,
(ii) fλ (vn)→ cλ ,
(iii) f ′

λ
(vn)→ 0 on E ′.

Moreover, the map λ → cλ is continuous from the left.

Definition 2.2. Let (un) be a bounded sequence in a Banach space. We say that
(un) is vanishing if, for each R > 0,

lim
n→∞

sup
y∈R

∫ y+R

y−R
eQ(t) |un(t)|p dt = 0

and (un) is nonvanishing if there exist σ > 0, R > 0 and (yn)⊂ R such that

liminf
n→∞

∫ yn+R

yn−R
eQ(t) |un(t)|p dt ≥ σ .
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In the vanishing case, we have the following result, which is a special case
of Lions [22].

Lemma 2.3. Let (un) be a bounded sequence, if for each R > 0

lim
n→∞

sup
y∈R

∫ y+R

y−R
eQ(t) |un(t)|p dt = 0,

then un → 0 in Ls
Q(R) for p < s < ∞.

3. Superquadratic growth
In this Section, we are concerned with the existence of ground state homoclinic
solution for the differential system (DV) when W (t,x) is periodic in t and su-
perquadratic with respect to the second variable not satisfying the global (AR)
superquadratic condition. More precisely, we take the following conditions
(W1) ∇W (t,x) = o(|x|p−1) as x → 0 uniformly in t, W (t,0) = 0 and W (t,x)≥ 0
for all (t,x) ∈ R×RN ;
(W2) there exist constants µ > p and C0 > 0 such that

|∇W (t,x)| ≤C0
(
1+ |x|µ−1 ), ∀(t,x) ∈ R×RN ;

(W3) lim
|x|→∞

W (t,x)
|x|p

=+∞, f or a.e. t ∈ R;

(W4) there exists a constant σ ≥ 1 such that

W̃ (t,sx)≤ σW̃ (t,x), ∀(s, t,x) ∈ [0,1]×R×RN ,

where W̃ (t,x) = 1
p ∇W (t,x) · x−W (t,x).

Our main result in this Section reads as follows

Theorem 3.1. Assume that (C1) and (W1)− (W4) are satisfied. Then system
(DV) possesses at least one ground state homoclinic solution.

It is very important to notice that conditions (W2) and (W4) imply that
W (t,x) is superquadratic both at the origin and at infinity, which is different
from the (AR)− condition.
Let us state the following example to illustrate our Theorem 3.1.

Example 3.2. Let q(t) = sin
(2π

T t
)
, V (t) =

(3
2 +cos

(2π

T t
))

IN and W (t,x) =
(
1+

sin
(2π

T t
))

|x|p ln
(
1+ |x|p

)
for all (t,x) ∈ R×RN . It is easy to check that Q, L

and W satisfy all the conditions of Theorem 3.1. However, since W (3T
4 ,x) = 0

for all x ∈ RN , it does not satisfy the (AR)−condition.



32 M. TIMOUMI

3.1. Proof of Theorem 3.1

Now we are going to establish the corresponding variational framework to ob-
tain the existence of ground state homoclinic solution of (DV). For this end,
define the energy functional f associated to system (DV)

f (u) =
1
p

∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt −

∫
R

eQ(t)W (t,u(t))dt

defined on the Banach space E introduced in Section 2. By (W1) and (W2), for
any ε > 0, there exists a constant Cε > 0 such that

|∇W (t,x)| ≤ ε |x|p−1 +Cε |x|µ−1 (5)

and
0 ≤W (t,x)≤ ε

p
|x|p + Cε

µ
|x|µ (6)

for all (t,x) ∈ R×RN . Hence, it is well known that f ∈C1(E,R) and

f ′(u)v =
∫
R

eQ(t)
[
|u̇(t)|p−2 u̇(t) · v̇(t)+V (t) |u(t)|p−2 u(t) · v(t)

]
dt

−
∫
R

eQ(t)
∇W (t,u(t)) · v(t)dt

for all u,v ∈ E. Moreover, the nontrivial critical points of f on E are homoclinic
solutions of (DV). Now, we define on E the family of functionals

fλ (u) = A(u)−λB(u), λ ∈ [1,2]

where
A(u) =

1
p

∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt

and
B(u) =

∫
R

eQ(t)W (t,u(t))dt

and we present some lemmas which will be used in the subsequent discussion.

Lemma 3.3. Assume that (C1) and (W1)− (W3) are satisfied. Then
(i) There exists u0 ∈ E \{0} such that fλ (u0)< 0 for all λ ∈ [1,2],

(ii) cλ = inf
γ∈Γ

max
t∈[0,1]

fλ (γ(t))> max{ fλ (0), fλ (u0)} , ∀λ ∈ [1,2],

where
Γ = {γ ∈C([0,1],E)/γ(0) = 0,γ(1) = u0} .
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Proof. (i) Let e0 ∈ C∞
0 (R) \ {0}. By (W3), the fact W (t,x) ≥ 0 and Fatou’s

lemma, we have

lim
s→∞

fλ (se0)

sp ≤ lim
s→∞

f1(se0)

sp =
1
p
∥e0∥p− lim

s→∞

∫
e0 ̸=0

eQ(t)W (t,se0)

|se0|p
|e0|p dt =−∞,

for all λ ∈ [1,2]. Hence, there is s0 > 0 large enough such that f1(s0e0) < 0.
Then, setting u0 = s0e0, we obtain fλ (u0)≤ f1(u0)< 0 and (i) holds.
(ii) By (4) and (6), we have

∫
R

eQ(t)W (t,u)dt ≤ ε

p
∥u∥p

Lp
Q
+

Cε

µ
∥u∥µ

Lµ

Q
≤ εη

p
p

p
∥u∥p +

η
µ

µ Cε

µ
∥u∥µ ,

hence

fλ (u)≥ f2(u)≥
(1

p
− εη

p
p
)
∥u∥p −

2η
µ

µ Cε

µ
∥u∥µ .

By taking ε small enough, we deduce that there exist constants α > 0 and 0 <
ρ < ∥u0∥ such that

fλ|∂Bρ
≥ α f or all λ ∈ [1,2], where Bρ = {u ∈ E/∥u∥< ρ} .

Letting Γ = {γ ∈C([0,1],E)/γ(0) = 0,γ(1) = u0}. Since, for any γ ∈ Γ, we
have γ(0) = 0 < ρ < γ(1) = ∥u0∥, then there exists tγ ∈]0,1[ such that ρ = γ(tγ)
and so

cλ = inf
γ∈Γ

max
t∈[0,1]

fλ (γ(t))≥ α > max{ fλ (0), fλ (u0)} .

The proof of Lemma 3.3 is completed.

Combining Lemmas 2.1,3.3, we obtain

Lemma 3.4. Assume that (C1) and (W1)− (W3) are satisfied. Then, for any
λ ∈ [1,2], there exists a bounded sequence (un)⊂ E such that fλ (un)→ cλ and
f ′
λ
(un)→ 0 as n → ∞.

Lemma 3.5. Assume that (W1) and (W2) are satisfied. Then, for any bounded
vanishing sequence (un)⊂ E, we have

lim
n→∞

∫
R

eQ(t)W̃ (t,un)dt = 0.
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Proof. Using (5) and (6), we obtain∫
R

eQ(t)W (t,un)dt ≤ ε

p
∥un∥p

Lp
Q
+

Cε

µ
∥un∥µ

Lµ

Q

and ∣∣∣∣∫R eQ(t)
∇W (t,un) ·undt

∣∣∣∣≤ ε ∥un∥p
Lp

Q
+Cε ∥un∥µ

Lµ

Q
.

Since (un) is vanishing, Lemma 2.3 implies that∫
R

eQ(t)W (t,un)dt → 0 and
∫
R

eQ(t)
∇W (t,un) ·undt → 0

as n → ∞, and the proof of Lemma 3.5 is completed.

Lemma 3.6. Assume that (W1), (W2) and (W4) are satisfied. Then, for all
bounded sequence (un)⊂ E satisfying

0 < lim
n→∞

fλ (un)≤ cλ and lim
n→∞

f ′
λ
(un) = 0,

there is (yn)⊂ Z such that, up to a subsequence, ũn(t) = un(t + ynT ) satisfies

ũn ⇀ uλ ̸= 0, fλ (uλ )≤ cλ and f ′
λ
(uλ ) = 0.

Proof. Since f ′
λ
(un)un → 0, one has

lim
n→∞

λ

∫
R

eQ(t)W̃ (t,un)dt = lim
n→∞

(
fλ (un)−

1
p

f ′
λ
(un)un

)
= lim

n→∞
fλ (un)> 0

which with Lemma 3.5 implies that (un) is nonvanishing. Hence, there exist
constants σ > 0, R > 0 and a subsequence (ỹn)⊂ R such that

liminf
n→∞

∫ ỹn+R

ỹn−R
eQ(t) |un|p dt ≥ σ > 0.

Choose (yn)⊂ Z such that, letting ũn(t) = un(t + ynT ),

liminf
n→∞

∫ 2R

−2R
eQ(t) |ũn|p dt ≥ σ

2
> 0. (7)

Since Q(t), V (t) and W (t,x) are T−periodic in t, then ∥ũn∥ = ∥un∥, fλ (ũn) =
fλ (un) and

f ′
λ
(ũn)→ 0 as n → ∞. (8)
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Indeed, for any v ∈ E, set vn(t) = v(t − ynT ). It is clear that ∥vn∥= ∥v∥ and∣∣ f ′
λ
(ũn)v

∣∣= ∣∣∣∣∫R eQ(t)
[∣∣ ˙̃un

∣∣p−2 ˙̃un · v̇+V (t) |ũn|p−2 ũn · v−λ∇W (t, ũn) · v
]
dt
∣∣∣∣

=

∣∣∣∣∫R eQ(t)
[
|u̇n|p−2 u̇n · v̇n +V (t) |un|p−2 un · vn −λ∇W (t,un) · vn

]
dt
∣∣∣∣

=
∣∣ f ′

λ
(un)vn

∣∣≤ ∥∥ f ′
λ
(un)

∥∥∥vn∥=
∥∥ f ′

λ
(un)

∥∥∥v∥→ 0,

which implies (8). Since (ũn) is still bounded, up to a subsequence if necessary,
there exists uλ ∈ E such that

ũn ⇀ uλ in E,

ũn → uλ in Ls
Q,loc(R) f or s ∈]p,∞[,

ũn → uλ a.e. in R,
(9)

and uλ ̸= 0 by (7). We claim that for all compact K ⊂R, ∇W (t, ũn)→∇W (t,uλ )

in Lp′
Q (K). Arguing indirectly, we may assume that there exist a constant ε0 > 0

and a subsequence (ũnk) such that∫
K

eQ(t) |∇W (t, ũnk)−∇W (t,uλ )|p
′
dt ≥ ε0, ∀k ∈ N. (10)

By (9), we can assume that

∞

∑
k=1

∥ũnk −uλ∥Lp
Q(K) < ∞ and

∞

∑
k=1

∥ũnk −uλ∥Lp′(µ−1)
Q (K)

< ∞.

Let w(t) = ∑
∞
k=1 |ũnk(t)−uλ (t)| for all t ∈ K. Then w ∈ Lp

Q(K)
⋂

Lp′(µ−1)
Q (K).

By (5), there holds for all k ∈ N and t ∈ R

|∇W (t, ũnk)−∇W (t,uλ )|p
′
≤ 2p′−1

(
|∇W (t, ũnk)|

p′ + |∇W (t,uλ )|p
′
)

≤ 2p′−1
[(

ε |ũnk |
p−1 +Cε |ũnk |

µ−1
)p′

+[
(

ε |uλ |p−1 +Cε |uλ |µ−1
)p′]

≤C1

[
|ũnk |

p + |ũnk |
p′(µ−1)+ |uλ |p + |uλ |p

′(µ−1)
]

≤C1

[(
|ũnk −uλ |+ |uλ |

)p′

+
(
|ũnk −uλ |

+ |uλ |
)p′(µ−1)

+ |uλ |p + |uλ |p
′(µ−1)

]
≤C2

[
|w|p + |w|p

′(µ−1)+ |uλ |p + |uλ |p
′(µ−1)

]
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where C1,C2 are positive constants. Combining this with (9), Lebesgue’s Dom-
inated Convergence Theorem implies

lim
k→∞

∫
K

eQ(t) |∇W (t, ũnk)−∇W (t,uλ )|p
′
dt = 0

which contradicts (10). Hence the claim above is true. It follows that

lim
n→∞

∫
R

eQ(t)
(

∇W (t, ũn)−∇W (t,uλ )
)

ψdt = 0, ∀ψ ∈C∞
0 (R,RN)

which implies that f ′
λ

is weakly sequentially continuous. Hence, by (8), we
deduce

f ′
λ
(uλ ) = 0. (11)

Now, by (W4) and Fatou’s lemma, one gets

cλ ≥ lim
n→∞

(
fλ (ũn)−

1
p

f ′
λ
(ũn)ũn

)
= lim

n→∞
λ

∫
R

eQ(t)W̃ (t, ũn)dt

≥ λ

∫
R

eQ(t)W̃ (t,uλ )dt

= fλ (uλ )−
1
p

f ′
λ
(uλ )uλ

= fλ (uλ )

The proof of Lemma 3.6 is completed.

As a consequence of Lemmas 3.4,3.6, we have the following

Lemma 3.7. Assume that (C1), (W1), (W2) and (W4) are satisfied. Then there
exist (λn)⊂ [1,2] and (un)⊂ E \{0} such that

λn → 1, fλn(un)≤ cλn and f ′
λn
(un) = 0.

Lemma 3.8. Under the assumptions of Theorem 3.1, the sequence (un) obtained
in Lemma 3.7 is bounded.

Proof. Suppose by contradiction that ∥un∥→ ∞ as n → ∞. Set wn =
un

∥un∥ . Then
∥wn∥= 1, and by Lion’s concentration compactness principle [22], either (wn) is
vanishing or it is nonvanishing. Hence the proof of the lemma will be completed
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if we show that (wn) is neither vanishing nor nonvanishing. Assume that (wn)
is vanishing. Let (sn)⊂ [0,1] be a sequence such that

fλn(snun) = max
s∈[0,1]

fλn(sun).

For any M > 0, let vn =
(

2
√

M
∥un∥

)
un = 2

√
Mwn. Since (vn) is vanishing and

bounded, by Lemma 3.5 and (5), one has∫
R

eQ(t)W̃ (t,vn)dt → 0 as n → ∞.

Now, for n large enough, 2
√

M
∥un∥ ∈]0,1[, and by the definition of sn, we deduce

that
fλn(snun)≥ fλn(vn) = 2M−λn

∫
R

eQ(t)W (t,vn)dt ≥ M,

which implies that
fλn(snun)→+∞ as n → ∞. (12)

Since fλn(0) = 0 and fλn(un)≤ cλn ≤ c1, then sn ∈]0,1[ and

f ′
λn
(snun)snun = sn

d
ds

(
fλn(sun)

)
|s=sn

= 0. (13)

Therefore, using (12) and (13), we deduce that∫
R

eQ(t)W̃ (t,snun)dt =
1
λn

(
fλn(snun)−

1
p

f ′
λn
(snun)snun

)
=

1
λn

fλn(snun)→+∞ as n → ∞.

However, it follows from (W4) and Lemma 3.7 that∫
R

eQ(t)W̃ (t,snun)dt ≤ σ

∫
R

eQ(t)W̃ (t,un)dt

≤ σ

λn

[
fλn(un)−

1
p

f ′
λn
(un)un

]
=

σ

λn
fλn(un)≤

σ

λn
cλn ≤ σc1, ∀n ∈ N,

yielding a contradiction.
Assume that (wn) is nonvanishing. Then, as in the proof of (10), by the transla-
tion invariance of system (DV), one has wn ⇀w in E and wn(t)→w(t) a.e. in R
for some w ∈ E \{0}. On the set Ω = {t ∈ R/w(t) ̸= 0}, one has |un(t)| →+∞,
and then by (W3),

W (t,un)

|un|p
|wn|p →+∞ as n → ∞.
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Therefore, taking into account meas(Ω)> 0 and using Fatou’s lemma, we obtain

∫
R

eQ(t)W (t,un)

∥un∥p dt ≥
∫

Ω

eQ(t)W (t,un

|un|p
|wn|p dt →+∞ as n → ∞.

On the other hand, since 0 ≤ fλn(un)≤ cλn ≤ c1, we deduce that

lim
n→∞

∫
R

eQ(t)W (t,un)

∥un∥p dt =
1
p
,

a contradiction. The proof of Lemma 3.8 is completed.

Now, we are in the position to complete the proof of Theorem 3.1. By
Lemmas 3.7, 3.8 and (5), we have for any v ∈ E

f ′(un)v = f ′
λn
(un)v+(λn −1)

∫
R

eQ(t)
∇W (t,un) · vdt → 0 as n → ∞.

Hence f ′(un)→ 0. Combining (5) and Lemma 3.8 yields

∥un∥p = λn

∫
R

eQ(t)
∇W (t,un) ·undt

≤ ε ∥un∥p
Lp

Q
+Cε ∥un∥µ

Lµ

Q

≤ εη
p
p ∥un∥p +Cεη

µ

µ ∥un∥µ

(14)

which implies that ∥un∥ ≥ d, ∀n ∈ N for some constant d > 0. If (un) is van-
ishing, Lemma 2.3 and (14) imply that un → 0, a contradiction. Hence (un) is
nonvanishing. Proceeding as in the proof of Lemma 3.7, we can obtain a se-
quence (yn) ⊂ Z such that if ũn(t) = un(t + ynT ), then ũn → ũ and f ′(ũ) = 0.
Therefore system (DV) possesses a nontrivial homoclinic solution.
Finally, we prove the existence of ground state homoclinic solution of (DV). Set
K = {u ∈ E \{0}/ f ′(u) = 0} and m= infK f (u). Using (W4) and the fact ũ∈K,
we get 0 ≤ m ≤ f (ũ). By the definition of m, there exists a sequence (vn) ⊂ K
such that f (vn)→m as n→∞. Following the same procedures as in the proof of
Lemma 3.8, we have (vn) is bounded. Since (vn)⊂ K and f ′(vn) = 0, similar to
(14), we obtain ∥vn∥ ≥ d1 > 0 for all n and (vn) is nonvanishing. Hence, arguing
as in (9)-(11), there exists ṽ ∈ E \{0} such that f ′(ṽ) = 0 and f (ṽ)≤ m. Noting
that ṽ ∈ K, one has f (ṽ)≥ m. Thus f (ṽ) = m. This ends the proof of Theorem
3.1.
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4. Asymptotically quadratic growth

In this Section, we are concerned with the existence of homoclinic solution for
the differentrial system (DV) when W (t,x) is periodic in t and asymtotically
quadratic with respect to the second variable. More precisely, we assume that
W (t,x) is of the form

W (t,x) =
1
p

S |x|p +V (t,x)

where S is a positive constant and we take the following assumptions:

(W5) W (t,x)≥ 0, ∀(t,x) ∈ R×RN ,

(W6) There exist positive constants c,r and µ > p such that

|∇W (t,x)| ≤ c |x|µ−1 , ∀t ∈ R, |x| ≤ r,

(W7) V (t,x) = o(|x|p−1) as |x| → ∞,

(W8) W̃ (t,x) = 1
p ∇W (t,x) ·x−W (t,x)≥ 0 for all (t,x) ∈R×RN , and there are

positive constants a,b > 0, R > r and α ∈]1, p[ such that

W̃ (t,x)≥
{

a |x|µ , ∀t ∈ R, |x| ≤ r,
b |x|α , ∀t ∈ R, |x| ≥ R.

Theorem 4.1. Assume that (C1), (W5)− (W8) and the following condition

(C2) inf
u∈E,u̸=0

∫
R eQ(t)[|u̇(t)|p +V (t) |u(t)|p]dt∫

R |u(t)|
p dt

< S

are satisfied. Then the differentrial system (DV) possesses at least one homo-
clinic solution.

Remark 4.2. Let

W (t,x) =

{ ( 1
p S−a(t)

)
|x|p i f |x| ≤ 1,

1
p S |x|p −a(t) |x|α i f |x| ≥ 1,

where a ∈ C(R,R) is periodic in t, 0 < inft∈R a(t) ≤ supt∈R a(t) < S
p and 1 <

α < p. It is easy to check that the above function W satisfies conditions (W5)−
(W8).
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4.1. Proof of Theorem 4.1

Consider the functional f defined on the space E introduced in Section 2 by

f (u) =
1
p

∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt −

∫
R

eQ(t)W (t,u(t))dt

=
1
p
∥u∥p −

∫
R

eQ(t)W (t,u(t))dt.

It is well known that f is continuously differentiable on E and for all u,v ∈ E,
we have

f ′(u)v =
∫
R

eQ(t)
[
|u̇(t)|p−2 u(t) · v̇(t)+V (t) |u(t)|p−2 u(t) · v(t)

]
dt

−
∫
R

eQ(t)
∇W (t,u(t)) · v(t)dt.

Moreover, critical points of f are classical solutions of (DV) satisfying u̇(t)→ 0
as |t| → ∞.
In the following, we will reason by successive lemmas.

Lemma 4.3. Assume that (C1), (W6) and (W7) are satisfied. Then for any
bounded vanishing sequence (un) ∈ E, we have

lim
n→∞

∫
R

eQ(t)W̃ (t,un(t))dt = 0.

Proof. By (W6) and (W7), for every ε > 0 there exists a positive constant Cε

such that

|∇W (t,x)| ≤ ε |x|p−1 +Cε |x|µ−1 , ∀(t,x) ∈ R×RN . (15)

Since W (t,0) = 0, we deduce

|W (t,x)| ≤ ε

p
|x|p + Cε

µ
|x|µ , ∀(t,x) ∈ R×RN . (16)

Let (un)⊂ E be a bounded vanishing sequence. Then Lemma 2.3 implies that
un → 0 in Ls

Q(R) for all s ∈]p,∞[. Combining this with (15) and (16) yields∣∣∣∣∫R eQ(t)
∇W (t,un(t)) ·un(t)dt

∣∣∣∣≤ ε ∥un∥p
Lp

Q
+Cε ∥un∥µ

Lµ

Q
→ 0 as n → ∞

and ∫
R

eQ(t)W (t,un(t))≤
ε

p
∥un∥p

Lp
Q
+

Cε

µ
∥un∥µ

Lµ

Q
→ 0 as n → ∞.

Hence
∫
R eQ(t)W̃ (t,un(t))dt → 0 as n → ∞ and the proof of Lemma 4.3 is com-

pleted.
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In the following, we define on E the family of functionals

fλ (u) = A(u)−λB(u), λ ∈ [1,2]

where
A(u) =

1
2

∫
R

eQ(t)
[
|u̇(t)|p +V (t) |u(t)|p

]
dt

and
B(u) =

∫
R

eQ(t)W (t,u(t))dt.

Lemma 4.4. Assume that (C1), (C2) and (W7) are satisfied, then there exists
v0 ∈ E \{0} such that f1(v0) = f (v0)< 0.

Proof. By (C2), we can choose a nonnegative function ϕ ∈ E such that∫
R

eQ(t) |ϕ(t)|p dt = 1 and
∫
R

eQ(t)
[
|ϕ̇(t)|p +V (t) |ϕ(t)|p

]
dt < S.

Assumption (W7) implies that for all t ∈ R with ϕ(t) ̸= 0

lim
s→∞

W (t,sϕ(t))
sp = lim

s→∞

W (t,sϕ(t))
|sϕ(t)|p

|ϕ(t)|p = 1
p

S |ϕ(t)|p ,

which together with (C2) and Fatou’s lemma implies

lim
s→∞

f (sϕ)

sp =
1
p

∫
R

[
|ϕ̇(t)|p +V (t) |ϕ(t)|p

]
dt − lim

s→∞

∫
R

eQ(t)W (t,sϕ(t))
sp dt

<
S
p
−

∫
R

eQ(t) lim
s→∞

W (t,sϕ(t))
sp dt

≤ S
p
−

∫
R

eQ(t) S
p
|ϕ(t)|p dt = 0.

Consequently, there exists a positive constant s0 large enough such that the el-
ement v0 = s0ϕ satisfies v0 ̸= 0 and f (v0) < 0. The proof of Lemma 4.4 is
completed.

Now, let
cλ = inf

γ∈Γ
sup

t∈[0,1]
fλ (γ(t))

where
Γ = {γ ∈C([0,1],E)/γ(0) = 0,γ(1) = v0} .
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Lemma 4.5. Assume that (W6)− (W8) are satisfied. Then for any sequence
(un)⊂ E satisfying

0 < lim
n→∞

fλ (un)≤ cλ and f ′
λ
(un)→ 0 as n → ∞,

there exists a subsequence (unk) such that

unk ⇀ uλ ̸= 0 with fλ (uλ )≤ cλ and f ′
λ
(uλ ) = 0.

Proof. Note that∫
R

eQ(t)W̃ (t,un(t))dt =
1
λ

[
fλ (un)−

1
p

f ′
λ
(un)un

]
→ 1

λ
lim
n→∞

fλ (un)> 0.

Since (un) is bounded, then Lemma 4.3 implies that (un) does not vanish, i.e.,
there exist positive constants r,δ > 0 and a sequence (sn)⊂ R such that

lim
n→∞

∫
Ir(sn)

eQ(t) |un|p dt ≥ δ , (17)

where Ir(sn) = [sn − r,sn + r]. From the boundedness of (un), we can assume,
after passing to a subsequence, that un ⇀ uλ in E and un → uλ in Lp

Q,loc(R),
which with (17) implies that uλ ̸= 0. By the weakly sequentially continuity of
fλ and the fact f ′

λ
(un)→ 0 as n → ∞, we obtain

f ′
λ
(uλ )v = lim

n→∞
f ′
λ
(un)v = 0, ∀v ∈ E.

Hence f ′
λ
(uλ ) = 0. Combining (W8) with Fatou’s lemma yields

cλ ≥ lim
n→∞

fλ (un) = lim
n→∞

[
fλ (un)−

1
p

f ′
λ
(un)un

]
= lim

n→∞
λ

∫
R

eQ(t)W̃ (t,un(t))dt ≥ λ

∫
R

eQ(t)W̃ (t,uλ (t))dt

= fλ (uλ )−
1
p

f ′
λ
(uλ )uλ = fλ (uλ ).

The proof of Lemma 4.5 is completed.

Lemma 4.6. Assume that (W5)− (W7) are satisfied. Then for any λ ∈ [1,2],
there exists a sequence (vn)⊂ E such that

(vn) is bounded, fλ (vn)→ cλ and f ′
λ
(vn)→ 0. (18)
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Proof. For the v0 ∈ E obtained in Lemma 4.4, we have f (v0) < 0. It follows
from (W5) that fλ (v0)≤ f (v0)< 0, for all λ ∈ [1,2]. By (16) and (4), we get∫

R
eQ(t)W (t,u(t))dt ≤ ε

p
η

p
p ∥u∥p +

Cε

µ
η

µ

µ ∥u∥µ , ∀u ∈ E.

Since ε is arbitrary, then∫
R

eQ(t)W (t,u(t))dt = o(∥u∥p) as u → 0.

Hence, there exists a constant 0 < r0 < ∥v0∥ such that∫
R

eQ(t)W (t,u(t))dt ≤ 1
2p

∥u∥p , ∀∥u∥ ≤ r0.

For all γ ∈ Γ, there is sγ ∈ [0,1] such that
∥∥γ(sγ)

∥∥= r0 and

max
s∈[0,1]

fλ (γ(s)) = fλ (γ(sγ))

=
1
p

∥∥γ(sγ)
∥∥p −

∫
R

eQ(t)W (t,γ(sγ))dt

≥ 1
2p

∥∥γ(sγ)
∥∥p

=
rp

0
2p

which implies that

cλ = inf
γ∈Γ

max
s∈[0,1]

fλ (γ(s))≥
rp

0
2p

> 0, ∀λ ∈ [1,2]

and
cλ > max{ fλ (0), fλ (v0)} .

Hence, the family ( fλ )λ∈[1,2] satisfies the hypotheses of Lemma 2.1, which com-
pletes the proof of Lemma 4.6.

Combining Lemmas 4.5 and 4.6, we deduce that there exist a sequence
(λn)⊂ [1,2] converging to 1 and a sequence (un)⊂ E satisfying

un ̸= 0, fλn(un)≤ cλn and f ′
λn
(un) = 0. (19)

Since
1
p
∥un∥p −λn

∫
R

eQ(t)W (t,un(t))dt ≤ cλn

and
∥un∥p = λn

∫
R

eQ(t)
∇W (t,un(t)) ·undt,
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we deduce that ∫
R

eQ(t)W̃ (t,un(t))dt ≤
cλn

λn
, ∀n ∈ N.

It is clear that ( cλn
λn
) is decreasing and bounded by c1, which implies that∫

R
eQ(t)W̃ (t,un(t))dt ≤ c1, ∀n ∈ N.

Lemma 4.7. Assume that (C1) and (W6)−(W8) are satisfied. Then the sequence
obtained in (19) is bounded.

Proof. Using (W7) and (W8) respectively, we can find a positive constant C1
such that∫

{t∈R/|un(t)|≥r}
eQ(t) |∇W (t,un(t))| |un|dt ≤C1

∫
{t∈R/|un(t)|≥r}

eQ(t) |un(t)|p dt

(20)
and∫

{t∈R/|un(t)|≥r}
eQ(t)W̃ (t,un(t))dt

=
∫
{t∈R/r≤|un(t)|≤R}

eQ(t)W̃ (t,un(t))dt +
∫
{t∈R/|un(t)|≥R}

eQ(t)W̃ (t,un(t))dt

≥ 1
Rα

inf
{t∈R,r≤|x|≤R}

W̃ (t,x)
∫
{t∈R/r≤|un(t)|≤R}

eQ(t) |un(t)|α dt

+b
∫
{t∈R/|un(t)|≥R}

eQ(t) |un(t)|α dt

≥C2

∫
{t∈R/|un(t)|≥r}

eQ(t) |un(t)|α dt

(21)
where C2 = inf

{
1

Rα inf{t∈R,r≤|x|≤R}W̃ (t,x),b
}

. By (18), we have for a positive
constant C3

fλn(un)− 1
p f ′

λn
(un)un

λn
≤C3,

which with (W8) and (21) implies

C3 ≥
fλn(un)− 1

p f ′
λn
(un)un

λn
=

∫
R

eQ(t)W̃ (t,un(t))dt

=
∫
{t∈R/|un(t)|≤r}

eQ(t)W̃ (t,un(t))dt +
∫
{t∈R/|un(t)|≥r}

eQ(t)W̃ (t,un(t))dt

≥ a
∫
{t∈R/|un(t)|≤r}

eQ(t) |un|µ dt +C2

∫
{t∈R/|un(t)|≥r}

eQ(t) |un|α dt.

(22)
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Take s ∈]0, α

p [, then Hölder’s inequality, (22) and (4) imply

∫
{t∈R/|un(t)|≥r}

eQ(t) |un|p dt

=
∫
{t∈R/|un(t)|≥r}

eQ(t) |un|ps |un|p(1−s) dt

≤
(∫

{t∈R/|un(t)|≥r}
eQ(t) |un|α dt

) ps
α
(∫

{t∈R/|un(t)|≥r}
eQ(t) |un|

pα(1−s)
α−ps dt

) α−ps
α

≤C4 ∥un∥p(1−s) ,

where C4 =
(

C3
C2

) ps
α

η
p(1−s)
pα(1−s)

α−s

and pα(1−s)
α−s ≥ p. Now, since f ′

λn
(un)un = 0, then

(W6), (20), (22) and (4) imply

∥un∥p = λn

∫
R

eQ(t)
∇W (t,un(t)) ·un(t)dt

≤ 2
∫
{t∈R/|un(t)|≤r}

eQ(t)
∇W (t,un(t)) ·un(t)dt

+2
∫
{t∈R/|un(t)|≥r}

eQ(t)
∇W (t,un(t)) ·un(t)dt

≤ 2c
∫
{t∈R/|un(t)|≤r}

eQ(t) |un(t)|µ dt +2C1

∫
{t∈R/|un(t)|≥r}

eQ(t) |un(t)|p dt

≤ 2c
C3

a
+2C1C4 ∥un∥p(1−s)

(23)
where p(1− s) < p. Hence (23) implies that (un) is bounded and the proof of

Lemma 4.7 is completed.

Now, we are in position to prove Theorem 4.1. Let (un) be the bounded
sequence obtained in (19). By taking a subsequence if necessary, we can assume
that un ⇀ u and un → u a.e. on R. Using (19), we get for all v ∈ E

lim
n→∞

f ′(un)v = lim
n→∞

[
f ′
λn
(un)v+(λn −1)

∫
R

eQ(t)
∇W (t,un(t)) · v(t)dt

]
= 0.

We distingsh two cases.
First case: limsupn→∞ fλn(un)> 0. In this case, the result follows from Lemma
4.5.
Second case: limsupn→∞ fλn(un)≤ 0. Let (sn)⊂ [0,1] be such that

fλn(snun) = max
s∈[0,1]

fλn(sun),
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we denote by (vn) the sequence defined by vn = snun. It is clear that (vn) is
bounded. Using (4) and (15), we get for all n ∈ N and u ∈ E

f ′
λn
(u)u = ∥u∥p −λn

∫
R

eQ(t)
∇W (t,u(t)) ·u(t)dt

≥ ∥u∥p −2
∫
R

eQ(t)
∇W (t,u(t)) ·u(t)dt

≥ ∥u∥p −2εη
p
p ∥u∥p −2Cεη

µ

µ ∥u∥µ .

Take ε = 1
4η

µ

µ

, we obtain

f ′
λn
(u)u ≥ 1

2

[
1−4Cεη

µ

µ ∥u∥µ−p
]
∥u∥p .

Let r1 =
(

8Cεη
µ

µ

)− 1
µ−2

, then we have

f ′
λn
(u)u ≥ 1

4
∥u∥p , ∀u ∈ B(0,r1). (24)

Similarly, using (4) and (16), we can find a positive constant r2 such that

fλn(u)≥
1

4p
∥u∥p , ∀u ∈ B(0,r2).

Combining (24) with the fact f ′
λn
(un) = 0 yields

∥un∥ ≥ θ , ∀n ∈ N

where θ = inf(r1,r2). Let 0 < ξ < 1, then for all n ∈N, s̄n = ξ
θ

∥un∥ ∈]0,1[. Note
that by (4.22)

fλn(snun)≥ fλn(s̄nun)≥
1

4p
s̄p

n ∥un∥p ≥ 1
4p

(ξ θ)p, (25)

which with fλn(0) = 0 implies that sn > 0. Moreover, we have

limsup
n→∞

f (un) = limsup
n→∞

[
fλn(un)+(λn −1)

∫
R

eQ(t)W (t,un(t))dt
]

= limsup
n→∞

fλn(un)≤ 0,

which with (25) implies sn < 1. Hence sn ∈]0,1[ and then f ′
λn
(vn)vn = 0 for all

n ∈ N and

λn

∫
R

eQ(t)W̃ (t,vn(t))dt = fλn(vn)−
1
p

f ′
λn
(vn)vn = fλn(vn).
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Consequently, we deduce from (25)

limsup
n→∞

∫
R

eQ(t)W̃ (t,vn(t))dt = limsup
n→∞

fλn(vn)> 0.

Since (vn) is bounded, it follows from Lemma 4.3 that (vn) does not vanish,
so (un) does not vanish. By going to a subsequence if necessary, Lemma 4.5
implies that vn ⇀ v ̸= 0 with f ′(v) = 0 and the proof of Theorem 4.1 is finished.
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