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INTERPOLATION OF BESOV SPACES AND APPLICATIONS

LILIANA GABRIELA GHEORGHE

We define the analytic Besov spaces on a bounded symmetric domain
associated with a rearrangement invariant space, give a description in terms
of certain differential operators, prove an interpolation theorem and find their
dual space; finally, as an application we formulate necessary and sufficient
conditions in order to little Hankel operator Hy belongs to Sg, the Schatten
ideal associated with a given rearrangement invariant sequence space E.

1. Introduction.

Let Q be a bounded symmetric domain in C”, in its standard Harish-
Chandra realization; it is well-known (see e.g. [6]) that 2 is uniquely deter-
mined (up to biholomorphic mapping) by three analytic invariants (all of them
positive integers): r, called the rank of 2, a and b. The Bergman reproducing
kernel of €2 is

K(z, w) = zZ, we

1
h(z, w)V’
where h(z, w) is a sum of homogeneous monomials in z and w and N =
a(r — 1) + b 4+ 2 and the Bergman projection P (the orthogonal projection
of L*(dv) onto Lg(d v)) is given by the formula

_ S(w) 2
Pf(z) = /Q —h(z, o dv(w), fe€L(dv),zeQ
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where dv is the normalized volume measure on 2. Let « > —1 and let C, be
a positive constant such that the measure dv,(z) = Cyh(z, 2)* dv(z) has total
mass 1 on 2. Let Lﬁ(d vy ) be the closed subspace of all analytic functions in
L?(dvg) and denote by P, the corresponding Bergman projection

P f) =C, / h, W TW) ow). e Liduy). z€ Q.

Q h(Z, w)N+oz

Standard arguments show that P, reproduces functions in L;(dva). Let us
consider, as in [12], two radial differential operators:

h(w, w)P

Wf(rw)dv(w), fEH(Q),ZEQ

D*P f(2) = cyp lim /
r—>17 Jo

. h(w, w)**+?
Da,,gf(z):ca,,grl_lgl/me(rw)dv(w), fEH(Q),ZEQ.

D%# and D, g are well defined (the limit always exists) and continuous on
H (2) (when endowed with the topology of uniform convergence on compacts).
When ¢, g are properly chosen, we also have the following representation
formula

D*’D,sf(2) = f2), feH(Q), zeQ

(see Theorem 1 and Theorem 2 in [12]). For simplicity, we shall denote by D¢,
the operator D*? and by D,,, the oprerator Dy, .

Let E(dA) a rearrangement invariant space over the measure space
(2, d)), where

1
di(z) = G N dv(z)

is the Mdbius invariant measure on 2; we define the analytic Besov spaces
Br(2) associated with E(d)X) to be Bp(2) = PE(d)\), endowed with the
quotient norm (see Definition 1). We shall prove that a holomorphic function
f isin Bg(R) if and only if the function h(z, 7)Y DV f(z) € E(d) if and only
if for any @ > —1 and for any real $, the function h(z, z)* D%® f(z) € E(d\)
(Theorem 1 and Corollary 1); then we give an alternative description in terms of
P, (¢ > —1): Bg() = P,E(d)) (Theorem 2). When E(dX) has absolute
continuous norm, we show that Bg(2) is a separable Banach space, with
polynomials dense in it (Theorem 3) and whose dual is Bg/(€2) (Theorem 5).
Finally, we prove two interpolation theorem for pairs of Besov spaces (Theorem
5 and Proposition 2).
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The analytic Besov spaces B,(£2) over a bounded symmetric domain 2
associated with L?(d)\) were defined and studied in [11] and [12], while the
classic case of the analytic Besov spaces B, over the unit disk was studied in
[13].

The importance of these spaces in operators theory arises from their
relation with Hankel operators Hy that belongs to Schatten ideals S,; the
question of characterizing those symbols f* such that the Hankel operator Hy
belongs to the Schatten ideal S, in the Bergman or Hardy space, has received
considerable attention from many authors (see [2], [4], [7], [8], [9], [10], [11],
[12] and the references therein). When the symbol f is a holomorphic function
on the disk, it was shown in [7] that H; € S, ifand only if f € B,, 1 < p < 00;
in the theory of several complex variables, similar results were given in [2], [9]
and [10]; where is proved thatif 0 < p < 2n, then H; € S, (on Hardy as well as
on Bergman space) if and only if f is constant while if 2n < p < 0o, Hy € §, if
and only if f € B,. The first who studied necessary and sufficient condition such
that Hy € S, ,, the Schatten ideal associated with Lorentz sequence spaces [74
was Peller (see [8]); for this, he considered a new class of spaces, F,l,/ 7 defined
in terms of a maximal nontangential function defined on a annular domain and
proved that H; € S, , ifand only f € T,/

In the last section, we investigate necessary and sufficient conditions
in order to the Hankel operator on weighted Bergman spaces on a bounded
symmetric domain h}‘-x)(g) = - Pa)(?g), g€ Lg(d vy ) belongs to Schatten
ideals Sg associated with rearrangement invariant sequence spaces and show
that if £ is a given rearrangement invariant sequence space, hjf-x) € Sg if and
only if f € Bg(2) (Theorem 6 and Corollary 2). Our approach is completely
different of those in [9] and the main point is the interpolation theorem of Besov
spaces (Theorem 5).

2. Preliminaries.

We shall remind here some basic fact of interpolation theory that we shall
use latter on; for notations, unexplained definition and details, the reader is
referred to [3].

Let (Xo, X1) be a compatible couple of Banach spaces, p a monotone
Riesz-Fischer norm and k(f, , Xo, X1) be Peetre’s little functional; then the
space

—X)
Xo. X0)p ={f €Xo[ X1+ X1 : I flltoxn, = p*(f., Xo, X1)) < 00}
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is a (monotone) interpolation space for the couple (X, X;). This implies
that for any linear (o quasilinear, when X;, i = 0,1 are Banach lattices)
operator T that is bounded both on X and on X, it follows that T is bounded
on (Xo, X1),, too. We say that (Xo, X) form a Calderon couple if all its
interpolation spaces are monotone; in this case, it forms a Gagliardo couple, too,
hence, by Theorem V 3.7 in [3], an intermediate space E for the couple (X, X1)
is an interpolation one, if and only if there exists a monotone Riesz-Fischer norm
p such that E = (X, X),. In other words, all the interpolation spaces for a
Calderon couple (X, X 1), are obtainable by using only the interpolation functor
(), defined above.

In this paper, we shall mainly deal with the Calderon couples (L0, L")
and (Sp,, Sp,), 1 < po < p1 < oo (see [5] and [1]), as well as with pairs of
Besov spaces (B, (£2), B, (£2)).

Let (R, i) denote either the measure space (€2, dA) or N endowed with
the cardinal measure; let M(R, ) be the space of all 4 measurable functions
on R and p a monotone Riesz-Fischer norm which have Fatou’s property; then
the space

E={feMR, w:|flle=p(f") < oo}

where f* is the decreasing rearrangement of f, is called rearrangement invari-
ant space (r.i.). E is said to have absolute continuous norm if for any f € E
and for any sequence of measurable sets £, | ¥, we have || f £ [l[g — O, as
n — oo. If E is r.i., then its associate,

E'=(ge MR, 1) ||g||E/=sup{}fngdu}, I1£1e <1},

is ar.i., too. Holder’s inequality

| [ sedu] < 1f1ehsle

is a consequence of the definition of E’; note that we shall always have E” = F,
foranyri. E. If g€ E', then L,(f) = f = J& du defines a continuous functional
on E; when E has absolute continuous norm, then the Banach dual E* of FE
identifies with E’, by mean of the canonic isomorphism g — L,.

Associate with any r.i. E, there are two (real) numbers 1 < pp < gg < 00,
called the Boyd indices of E. Boyd’s interpolation theorem states that if 7" is an
operator of weak type (p, p) and (g, q), then T is bounded on any r.i. £ whose
Boyd indices verify 1 < p < pg < qr < g < oo (see [3]).

Many important classes of r.i., such as the Lorentz spaces L?¢ have
absolute continuous norm if and only if have non trivial Boyd indices 1 < pg =
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gp = p < oo; in this case (L) = L4 = (LP9), % + % =1, é + % =1;
a similar fact occurs with the Orlicz spaces L®, that have absolutely continuous
norm if and only if have non trivial inferior Boyd indices and if this condition
is fulfilled, we have (L®)* = (L®Y = LV, where ¥ is the Young’s conjugate
function of ¢. Nevertheless, there exists examples of r.i. for which the two
proprieties are completely independent. The following spaces, constructed by
R. Sharpley (see[3]), furnish such an example.
Let E be an arbitrary r.i. and fix 1 < g < oo; let

o0 dt\1/
A(E) = feMD,da): 1 flla, = ( fo [f**(r)goE(r>]q7’) " <o),

where f**(t) = % fot f*(s)ds is the maximal function, f* the decreasing
rearrangement of f and ¢ the fundamental function of £ and where, as usual,
if g = oo we take sup instead of integral; then, if £ has non trivial fundamental
indices, A,(E) is a ri. whose Boyd and fundamental indices coincide with
the fundamental indices of E; further, A,(E) has absolute continuous norm if
and only if 1 < g < oo and if this conditions are satisfied, then A (E)* =
Ay(E) = Ay (E') (for details, see e.g. [3], pg. 285). So, if we choose g = o0
and E having non trivial fundamental indices, then A, (E) will have non trivial
Boyd indices and its norm will not be absolute continuous. On the other hand,
if we take ¢ < oo and a r.i. E with trivial fundamental indices, then we get
A (E), ari. whose norm is absolute continuous but whose Boyd indices are
trivial.

Notations. From now on, p will always denote a monotone Riesz-Fischer
norm having Fatou property and ( ), the corresponding interpolation functor;
if 1 < po < pi <ooandif E(du) = (LP(dw), LP'(dw)),, then we shall
simply designate by E the corresponding r.i. sequence space E = ([, [""),.

3. Analytic Besov spaces.

A very useful tool in what follows is a Forelli-Rudin type theorem for
bounded symmetric domains.

Lemma 1. (see [6] or Lemma 2 in [11]). Let Q2 be a bounded symmetric do-
main, t > —1 and ¢ € R such that ¢ > “(rz—_l); then

_ h(w, w) ~ e
Ic,t(z)—fg—lh(z’ D) dv(w) ~ h(z, 2)

where, as usually, the notation f ~ g means that there exists some constant
C > 0 suchthat 1/Cg(z) < f(z) < Cg(z), Vze .
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Let us consider the following family of integral operators:

B o h(w, w)P
Va5 f(2) = h(z, 2) /Q Gz w)NTath

we shall denote, for simplicity, by V,, the operator Vj o.

fw)dv(w), ze;

Lemma 2. With the notations above, if « > N — 1 and B is an arbitrary real
constant, then the operators V, and Vy g are bounded on any E(d)).

Proof. By interpolation, it will suffice to prove their boundedness on L'(d})
and on L>°(d)). We shall give the proof for V,, as the one for Vy g is similar.
If f € L*(d)\); then, by Lemma 1

Vo f(2)| < Chz, 2)° f dviw)

a |h(z, w)|V+e

so by Lemma 1, V, is bounded on L*°(d)).
If f € L'(d)), then by Fubini’s theorem

h oa—N
/ Vo I dA() < f |f(w) f & Z))M dv(Rdv(w) ~

~ fQ ) lhw, wy™ du(w),

where the last relation follows by Lemma 1, applied fort = o« — N > —1 and
¢ = «a, taking in account thatee > N — 1 =a(r — 1) =b+ 1 > @, where
the last inequality is verified in any bounded symmetric domain €2. This proves

that V,, is bounded on L'(dA), too, ending the proof.

Definition 1. Let Bp(S2) be the set of all (analytic) functions on 2 of the form
f = Po,with ¢ € E(dL); when normed with the natural quotient norm induced
by the Bergman projection P, || f| s, = inf{ll¢l|l @), Pe = f}, it becomes
a Banach space, called the Besov space associated with E(dA).

We shall prove a first description of Bg(£2) in term of derivatives.

Theorem 1. The Besov space Bg(S2) consists of all analytic functions f on
2, integrable with respect to volume measure, such that the function fy(z) =
h(z, 2)Y D" f(z) belongs to E(d)). Moreover, we have the equivalence of the
norms: || f s, ~ | fnllE@r-
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Proof. Let f € Bp(R2) and let ¢ € E(d)) such that f = Pg;then

P d
(@ = hiz. )" D" (Pg)(2) = Cyhiz, 2)" /Q W =

N 1 / pu) B
Cnh(z, 2) /Q e o ) dv(u)dv(w) =

Cnh(z, )V / — dv(w)dv(u) =

1
o w(”)/g 1z, w2N h(u, w)

u
Cnh(z, )V / L)zzv dv(u) = Cy Vye(2) € E(d))
Q h(Z, M)

since, by Lemma 2, the operator Vy is bounded on E(dA); this shows that
fv € Ed)) and || fyllEwy =< Cll@ll.(e); passing at the infimum over all
¢ € E(d)) such that f = Pg, we obtain || fy ||E(dk) <C| f||BE(Q).

Now, if f is analytic and integrable in Q2 and if fy € E(dA), we have
the representation formula f = DyD"f = Pfy, hence f € Bg(Q) and
Il fllBe < Il fnllEw@s, proving the set equality and, by the open mapping

theorem, the equivalence of norms.
We can prove now, in a similar manner a description in terms of D*#.

Corollary 1. Let Q be a bounded symmetric domain, « > N — 1 and E(d\)
ari.;let f e H(Q), then f € Bg(Q2) if and only if for any real number B, the
function h(z, 2)* D*P f(z) belongs to E(d)).

Proof. If f € Bg(K2), then there exists a function ¢ € E(dA) such that

f(z)zf (p(—w)),vdv(w), 7€Q;

Q h(Z, w

since the integral above is uniformly convergent on compact sets and since the
operator D*# is continuous on H(£2), we may derivate inside the integral sign
and obtain

D*’ f(z) = f DPlh(z, w)y M p(w) dv(w), zeQ.
Q
By the proof of Theorem 1 in [12], there exists a constant C > 0 such that

h(z, 2)%|D%* f(2)| < Ch(z, 2)* / () dv(w) = CVyup(2), z€X,

o |h(z, w)|V+e
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where the last equality serves as definition of the quasilinear operator V.
Proceeding as in the proof of Lemma 2, we can verify that V, is bounded on any
E(d)), hence, the relation above, together with the fact that E(dA) is an order
ideal, imply that h(z, 2)* D*? f(z) € E(d)).

In order to prove the converse, assume that

¢9(2) = h(z, 2" D*P f(2) € E(dh);
then, proceeding as in the proof of Theorem 4 of [12], we obtain

w, w)
e, 1D 10 = O 0| [ e g dutw| =
= |Vn.pp(2)| € E(dD),
since, by Lemma 2, the operator Vi g is bounded on E(dA).

Finally, we shall prove a description of Besov spaces in terms of the family
of Bergman type projections Pg, defined in Section 1.

Theorem 2. Let B > —1; then B,(2) = PgE(dA).
Proof. 1If f € Bg(Q), then by Corollary 1, h(z, z)Y DV f(z) € E(d\). Using

the definition of Pg, reproducing formulas and Fubini’s Theorem we obtain

Pylh(z, 2)Y DVP f(2)] = Dy s DN f(2) = f(2),

s0 Be(2) C Pg(E(dA)).
Now, if f = Pge, with ¢ € E(dA), then by Theorem 1 in [12]

h(z, )Y DV'P £(z) = h(z, z)”f h(w, w)f DYPIh(z, w)" NP Jp(w) dv(w) =
Q

h B
= h(z, )" f w. )’fN)+ﬁ (w) dv(w) = Vi pp(2) € E(d),

since Vi g is bounded on E(dX). This proves the inclusion PgE(d1) € Bg(S2),
ending the proof.

We shall discuss now the separability of Besov spaces. We begin by
making a simple remark.

Proposition 1. Any analytic Besov space Bg(§2) contain all the analytic func-
tions on 2; in particular, Bg(S2) contain all the polynomials.
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Proof. Let f € H (Q); then there exists » > 1 such that feH (),
where 2, = {rz, z € Q}; by the proof of Theorem 7 in [11], it follows that
DV feHK)DH (5); this fact implies, as one can easily check, that the
function h(z, z)¥ DN f(z) € L'(dA\)N L>®(d)\) < E(d)), hence, by Theorem 1,
f € Bi().

Theorem 3. If E(d)\) has absolute continuous norm, then the Besov space
Bg(R) is a separable Banach space, with polynomials dense in it.

Proof. Let f € Bg(2); there exists ¢ € E(dX) such that f = Pg; consider
Q, 1 2 a compact exhaustion of 2 and let ¢, = ¢xq,, n > 1; then
o € E(d)), as E(d)) has absolute continuous norm. Let & > o and choose
N, such that ||¢ — ¢n, [lE@a) < €/2 denote, for simplicity of notations by
g = Poy,; then || f — gllp. @ < &/2. Since ¢, were chosen to be compactly
supported in €2, we can easily see that the function g € H(R); so there exists
r > 1 such that g € H(R,), where €, is defined as above and the function
h(z, 2)Y DN g(z) € L'(dX) N L°°(d1) < E(dA); at this point, if we proceed as
in the proof of Theorem 7 in [11], we obtain

| (z, Z)NDNg(Z)”E(dA) < llh(z, Z)NDNg(Z)”L](dA)ﬁLOO(dA) =<
z
= sup{ID"g(=)], z€ Q).

Since the function DVg is holomorphic in , its homogeneous expansion
converges uniformly and absolutely on €2, ; so, if we replace g by its remainder
in its homogeneous expansion in the above estimation, we find a polynomial p €
Bg(€2) that approximates g in the norm of Bg(€2) with an error < &/2; putting
all this together, we obtain || f — plla, ) < If — gllsy + 18 — Plly) < €
ending the proof.

Lemma 3. (see [11], Lemma 16). Let E(d)) be a r.i. with absolute continuous
norm. Then, for all f € E(d)\) and g € E'(d}), the following proprieties hold.:

1) Vo%f = Vozf
2) VaPaf = Vaf
3) Pavaf = Paf

4) /Q Vo f(2)g(2) dM(z) = fQ F(@)Veg(@) dr(2).

Proof. First observe that the operators V,, V(f and V, P, are all bounded on
E(dA\). Since, by hypothesis, E(dA) has absolute continuous norm, it will
coincide with the closure of all bounded functions that are compactly supported
on 2. This means that it will suffice to check the proprieties 1-4 only for such
functions f. But this requires straightforward computations that involves the
reproducing proprieties of Py, D, and Fubini’s theorem.



38 LILIANA GABRIELA GHEORGHE
Theorem 4. If E(dA) has absolute continuous norm, then with respect to the
pairing
< [, 8§ >e= / Vo f(2)Veg(2) dA(2),
Q

we have By(2) = Bp(q).

Proof. Let g € Bp/g) and consider the functional

Ly(f) = /Q Vo f(2)Vag(2) dM(2);

then clearly L, is a bounded linear functional on E(dX), as, by Holder’s
inequality, we have

[Lg(] < 1 Vaf NE@ Vgl ey = 1 f 1B 1811 B,
this prove that Bg/(2) < Bg(£2), continuously.

Let now F be an arbitrary bounded functional on Bg(£2); we have to prove
that there exists a function g € E'(d) such that F = L,. As V, maps Bg(2)
boundedly to E(dA), we may extend the functional F oV UV (Be(RQ)) — C,
by using Hahn-Banach theorem, up to a bounded linear functional on E(dA),
denoted by F oV !. Since E(d)) has absolute continuous norm, its dual
E(d))* is canonically isomorphic with its associate space E’(d1), so there exists
a function y» € E'(d)), such that

FoV,\(h) = f h@Y()dMz), Yhe E@dL):;
Q
consequently,
HﬁzF:%W%ﬁ=AWJ@W5M@,Vfdmm-

By Lemma 3

Awmﬁ@wwzﬁﬁmﬁﬁwwz

=/WJ@WW@M@,f€&M)

Q

So if we take g = V,¢, then we obtain g € B/(2) and F(f) = L,(f),
f € Bp(R2).

We shall prove now an interpolation theorems for Besov spaces, which
shall be the key tool for the study of Schatten ideals of little Hankel operators.
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Theorem 5. If p be a monotone Riesz - Fischer norm, 1 < py < p; < oo and
E(d)) = (LP°(dA), L, (dX)),, then (B, (2), B, (R2)), = Be(R).

Proof. Consider again the linear operator Vy f(z) = h(z, z)Y DV f(z); since
Vy is bounded from B (£2) to L?(2),i = 0,1 by interpolation, Vy maps
boundedly (B,,(S2), B, (£2)), to E(d)); hence for all f € (B,,(£2), B, (£2)),,
we have

N N
I f ey = 1A (2, 22D f(@Ew@n < I1f 8,98, @),
0 1

proving the continuous inclusion (B, (£2), B, (£2)), <> Bg(2).

Now assume that f € B;(€2) and let f = P¢, where ¢ € E(d)); we want
to proof that f € (B, (£2), B, (£2)),.

By the definition of the Besov spaces, the Bergman projection maps
boundedly LP/(dA) onto B, (£2),i = 0, 1 hence, by interpolation, we deduce
that P maps boundedly E(d)) to (B,,(£2), B, (£2)),. So, if f € Bg(£2) and
(VRS E(d)\.) is such that P(/) = f, then ”f”(BPo(Q)’BP] (), < ||(P||E(dx)§ ﬁnally, we
get | f i, @),8s @0, = I fllBe(e), proving that Bg(§2) < (B,,(€2), Bp,(£2)),
continuously.

We may prove a Boyd type theorem for Besov spaces. We say that a
quasilinear operator T is of weak type (p, g) if T is bounded from B, ; to
B, ., where we denoted by B, , the space By r.aa)(£2).

Proposition 1. Let E(d)\) be a r.i. over (2, dA), and let p and q be such that
1 <p < pp <qr <q < 0o, where pg and qg are the Boyd indices of E(d).).
Then any operator T that is of weak type (p, q) and (q, q) is bounded on Bg(£2).

Proof. By Theorem 1, the linear operator Vy f(z) = h(z, z)" DN f(2) is
bounded from Bg(S2) to E(dA), so the quasilinear operator Vyy o T o P is of
(classic) weak type (p, p) and (g, g) so, according to Boyd’s theorem (see [3],
chap III), it is bounded on E(dA), too and there exists a constant C > 0 such
that [Vy o T o Pollewn < Cllellewny ¢ € E(dA). Now fix f € Bg(S2); then
there exists ¢ € E(dA) such that f = Pg,so |[Vy o Tf|lewny < Cllellewy;
passing at the infimum over all ¢ € E(dA) such that f = Pg¢, we get
IV o Tfllewy < CllfllBug), forall f € Bg(£2). Since the function T f
is analytic, the latter relation implies that 7 f € Bg(2) and || T f |5, < CI f 1,
for all f € Bg(2), proving that T is bounded on Bg(€2).
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4. Schatten ideals of Hankel operators.

Let E be a monotone Riesz-Fischer sequences space and denote by
Sg ={T : L2(dvy) — L2(dv,), T compact :

ITNs, = {sn(T)}nen £ < 00}

the Schatten ideal associated with the r.i. sequence space E where
s,(T) = inf{||T — R||, rankR < n}

is the n'” singular number of the compact operator T'; {s,},cn form a decreasing
sequence, that coincides with the decreasing rearrangement of the eigenvalues of
the compact and positive operator (T'T*)!/?; when E = 7, we shall denote by
S, the classic Schatten ideal Sp. The interpolation proprieties of the Calderon
couple S, Sp,) were investigated in [1]. We shall remind this useful result.

Lemma 4. (see [1], Theorem 2). If p is a monotone Riesz-Fischer norm, 1 <
Po = p1 =00, then (Sp,, Sp))p = Supy, 1p1),-

Now we shall reformulate a result which is implicitly proved in [11].

Lemma S. (see [11], Lemma 21). With the notations above, if 1 < py < p; <
00, and if f € E(dM), then the little Hankel operator hy € Sg.

Proof. Justuse Lemma 2 in [11] and Lemma 4.

At this point, if we proceed as in the proof of Theorem 22 in [11] and use
the previous lemma, we can easily deduce the following.

Lemma 6. Let E(dA) be a ri. with absolute continuous norm; then for all
f € E(d)) and g € E'(d)), the operator h7h§ is in the trace class S and

Tr(hfhg) = /Q Vaf(z)Vag(z) d)u(Z).

Finally, we may prove

Theorem 6. Let « > —1, f € L>(R,dv,) and E(d)\) a ri. with absolute
continuous norm; then we have h7 e Sgifandonly if Vy f € E(d)).
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Proof. By [11], Lemma 20, we have hy— = h+, forall f € L*(2, dv,), hence,
since by hypothesis V,, f € E(d)), by Lemma 5 it follows that h € Skg.

For the converse, if f € L*(2, dv,) and hf € Sk, then usmg Lemma 6,
the boundedness from E’(dA) to Sg: of the operator g — hz and a duality
argument, we obtain

| Vo f 1l E@r) = sup ” /Q Vo f(w)gw) drw)|,  lIgllewn < 1} =

sup{Tr(hth), lgllEw@ny < 1} < oo.

Corollary 2. Under the same hypothesis of Theorem 6, if f is holomorphic on
Q, then we have h7 eSgifandonlyif f € Bg.
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