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ON HADAMARD ALGEBRAS

CARLOS C. PE �NA

Topological algebras of sequences of complex numbers are introduced,
endowed with a Hadamard product type. The complex homomorphisms on
these algebras are characterized, and units, prime cyclic ideals, prime closed
ideals, and prime minimal ideals, discussed. Existence of closed and maximal
ideals are investigated, and it is shown that the Jacobson and nilradicals are
both trivial.

1. Introduction and topological preliminaries.

Nowadays there is an increasing attention in research in Fractional Calcu-
lus applied to certain classes of analytic functions. Fractional operators such as
Riemann - Liouville, Weyl and Kober, and their various generalizations among
others have successfully been applied in obtaining characterization properties,
coef�cient estimates, distortion inequalities, convolution structures for various
subclasses of analytic functions, etc., ([2], [4], [5], [6]). Recently various distor-
tion theorems were established on certain subclasses of the class A of functions
f (z) de�ned by

(1) f (z) = z −

∞�

n=2

an z
n , an ≥ 0, n ∈ N
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which are analytic in the complex unit disk. Moreover, if f (z) is given by (1)
and belongs to one of these subclasses, and

g(z) = z −

∞�

n=2

bn z
n

belongs to another subclass, then their Hadamard product

( f ∗ g)(z) = z −

∞�

n=2

an bn z
n

belongs to a third such subclass (see [1]). More generally, let us consider the set
A0 of complex sequences a = (an)n≥0 such that the number ρ(a) = lim |an |

1/n

is �nite 1. Given a = (an)n≥0, b = (bn)n≥0 ∈ A0, ζ ∈ C and a sequence
ε = (εn)n≥0 such that |εn| = 1 for each n ≥ 0 we de�ne ζ · a + b ∈ A0

and a �ε b ∈ A0 as

ζ · a + b = (ζ an + bn)n≥0 and a �ε b = (εn an bn)n≥0.

Proposition 1. The set (A0, +, ·, �ε) is an abelian - unit - complex algebra.

Proof. With the above notation, will show that if a, b ∈ A0 and ζ is complex
then

(2) ρ(a + b) ≤ ρ(a)+ ρ(b),

(3) ρ(ζ · a) = ρ(a) if ζ �= 0,

(4) ρ(a �ε b) ≤ ρ(a) ρ(b).

For (2) we observe that |an + bn|
1/n ≤ |an|

1/n + |bn |
1/n for all n ∈ N and hence

lim |an + bn |
1/n ≤ lim

�
|an|

1/n + |bn|
1/n

�
≤ lim |an|

1/n + lim |bn|
1/n.

Since lim |an bn |
1/n ≤ lim |an|

1/n lim |bn|
1/n the inequality (4) holds. Moreover,

if {sn}n≥0 , {tn}n≥0 are sequences of non negative numbers, the �rst convergent
to a �nite limit and lim tn < +∞ then lim (sn tn) = lim sn lim tn . Thus (3)
follows. Now it is clear that we get a complex abelian algebra which has the
element ε∗ = (εn)n≥0 as unit. �

Remark 1. If r is nonnegative let An(r) be the set of analytic functions in the
open circle D(0, 1/r) with center zero and radius 1/r . In particular, An(0)
denotes the set of entire functions. Since the family {An(r)}r≥0 is increasing
with respect to inclusion we can write A0 = lim An(r).

1 Since we are concerned with superior limits the evaluation of nth radicals causes
no trouble in the case n = 0.
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Remark 2. We shall consider An(r) with the topology of uniform convergence
on compact subsets, i.e. the compact open topology. On the other hand, let
A0(r) be the set of those elements a ∈ A0 such that ρ(a) ≤ r. There is a natural
map

�r : A0(r) → An(r),

�r (a)(z) =

∞�

n=0

an zn ,

which is clearly injective. If ρ
�
( f (n)(0)/n!)n≥0

�
> r > 0 for f ∈ An(r), we

would choose a number t such that 1/
�
ρ
�
( f (n)(0)/n!)n≥0

��
< t < 1/r and

|z| ρ
�
( f (n)(0)/n!)n≥0

�
> 1 if |z| = t , which contradicts the absolute conver-

gence of f on compact subsets of D(0, 1/r). Hence ρ
�
( f (n)(0)/n!)n≥0

�
≤ r

and �r

�
( f (n)(0)/n!)n≥0

�
= f . Analogously, ρ

�
( f (n)(0)/n!)n≥0

�
= 0 if f is

an entire function 2. Now, given (an)n≥0 ⊆ A0(r), a ∈ A0(r) we shall write
an → a if and only if �r (an) → �r (a) in An(r), i.e. A0(r) has the topology
with respect to which �r becomes an homeomorphism. In particular, A0(r) is a
complete space as can be seen by standard arguments.

Remark 3. If r < s the topology of An(r) is stronger than that induced on
it by An(s). In particular, the inclusion ιr,s : An(r) �→ An(s) is continuous.
Of course, the same holds if we replace An(r) and An(s) by A0(r) and A0(s)
respectively.

Remark 4. Given an unbounded strictly increasing sequence {rn}n≥1 of non
negative numbers we have A0 = limA0(rn ). We shall consider A0 as a
countable union space in the sense of Gelfand and Shilov [3]. So, a sequence
{ak}k≥1 is said to converge to a in A0 if all the ak and a belong to some
particular A0(rn) and {ak}k≥1 converges to a in A0(rn). As usual, this concept
of convergence is independent of the sequence {rn}n≥1 . Indeed, the space A0

has a Fréchet structure 3.

Theorem 1. Let an = (anm )m≥0 , n = 0, 1, . . . be a sequence of elements of A0 .
The following assertions are equivalent:

(i) an → 0 in A0 .

2 In particular, we can improve (2) by observing that ρ(a + b) ≤ max{ρ(a), ρ(b)} if
a, b∈ A0 .

3 The same conclusion holds for the space U0 = lim An(r) of analytic functions at
zero.



46 CARLOS C. PE �NA

(ii) �r (an) → 0 in An(r), r ≥ 0.
(iii) There is r > 0 such that ρ(an) ≤ r for n ≥ 0 and for all δ > 0 there exist

n0 such that |anm | ≤ δ rm if n ≥ n0 and m ∈ N0.

Proof. Clearly (i) ⇔ (ii). Moreover, if (i) holds there is r > 0 such that
ρ(an) ≤ r for n ≥ 0 and �r (an) → 0 in A0(r). So, given δ > 0 and
0 < s < 1/r there exist n0 such that |�r (an)(z)| ≤ δ if |z| = s and n ≥ n0. If
m ≥ 0 and n ≥ n0 we get

|anm | =

�
�
�
�
�

1

2πsm

� π

−π

�r (an)(s exp(ix )) exp(−imx ) dx

�
�
�
�
�

≤
1

2πsm

� π

−π

|�r (an)(s exp(ix ))| dx ≤ δ s−m.

Letting s → 1/r on the right, we see that (iii) holds. Finally, let us assume
(iii), we show that (ii) holds. For, let ξ > 0, (mn)n≥1 be an increasing sequence
of positive integers such that sup

m≥mn

|anm |1/m ≤ r for n = 1, 2, . . . Therefore, if

|z| ≤ s < 1/r , we can write

(5)
�
��r (an)(z)

�
� ≤

mn−1�

m=0

|anm | |z|m +

∞�

m=mn

(rs)m .

There is n0 ∈ N such that

(6)

∞�

m=mn

(rs)m ≤ ξ/2 and |anm | ≤
(1− rs)ξ

2
rm

for m ∈ N0 and n ≥ n0. Using (5) and (6), we have

�
��r (an)(z)

�
� ≤

(1− rs)ξ

2

mn−1�

m=0

rm sm +
ξ

2
≤ ξ

for n ≥ n0 and |z| ≤ s < 1/r . Since s is arbitrary, therefore �r (an) → 0
uniformly on compact subsets of the circle with center zero and radius 1/r .

�

Proposition 2. (A0, +, ·, �ε) is a topological algebra.
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Proof. Let r, s ∈ R≥0, a ∈ A0(r), b∈ A0(s) and W be a neighborhood of a+b
inA0. There are positive numbers δj and compact subsets Kj of D(0, 1/(r+s)),
1 ≤ j ≤ n, such that

n�

j=1

�

h ∈ An(r + s) : sup
Kj

|�r (a)+ �s (b)− h| < δj

�

⊆ �r+s (W ).

But An(r) + An(s) ⊆ An(r + s) and if we write

U =

n�

j=1

�

h ∈ An(r) : sup
Kj

|�r (a)− h| <
δj

2

�

,

V =

n�

j=1

�

h ∈ An(s) : sup
Kj

|�s(b)− h| <
δj

2

�

,

then (�r )
−1(U ) and (�s )

−1(V ) are neighborhoods of a in A0(r) and of b in
A0(s) such that (�r )

−1(U ) + (�s )
−1(V ) ⊆ W . Now, let γ ∈ C, c ∈ A0(t) and

S be a neighborhood of γ · c in A0(t). Let {Ck }1≤k≤m a be family of compact
subsets of D(0, 1/t) such that

m�

k=1

�

h ∈ An(t) : sup
Ck

|�t (γ · c)− h| < ηk

�

⊆ �t (S)

for certain positive numbers η1, . . . , ηm . If β ∈ C and b∈ A0(t), then we have

|�t (γ · c)−�t (β · b)| ≤ |β −γ | [|�t (c)−�t (b)|+ |�t (c)|]+|γ (�t (c)−�t (b))|.

Given ε any positive number, let

T =

m�

k=1

�

h ∈ An(t) : sup
Ck

|�t (c)− h| <
ηk

ε + |γ |

�

if c = 0,

or let

ε =
mink ηk

2 max∪Ck
|�t (c)|

,

T =

m�

k=1

�

h ∈ An(t) : sup
Ck

|�t (c)− h| <
ηk

2(ε + |γ |)

�

if c �= 0.
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In both cases we get D(γ, ε) · (�t )
−1(T ) ⊆ S , and the binary operation · is

continuous. In order to show that the Hadamard product is bicontinuous, let
an → a in A0(r), bn → b in A0(s), where an = (am

n )m≥0 , bn = (bm
n )m≥0 ,

a = (am)m≥0 and b = (bm)m≥0. Since ρ(a) ≤ r and ρ(b) ≤ s there are positive
constants A, B such that |am| ≤ A rm and |bm | ≤ B sm for m ∈ N0. Given
δ > 0, we can choose ξ > 0 such that ξ (ξ + A+ B) < δ . Furthermore, let N be
a positive integer such that |am

n − am | ≤ ξ rm and |bm
n − bm | ≤ ξ sm if n ≥ N

and m ≥ 0. Then

(7) |(an �ε bn − a �ε b)m | ≤ |am
n − am | |bm

n | + |am | |bm
n − bm |

≤ ξ [|bm
n | rm + |am| sm]

≤ ξ [(|bm | + ξ sm) rm + |am | sm]

≤ ξ [(ξ + A) sm + B rm ] rm .

Since the Hadamard product is commutative we can assume that r ≤ s , so that
(7) becomes

|(an �ε bn − a �ε b)m | ≤ ξ (ξ + A + B) (rs)m ≤ δ (rs)m

and the conclusion follows by Theorem 1. �

2. Linear forms and Hadamard homomorphisms.

Proposition 3. Let ϕ : U0 → C be a linear form. Then ϕ is continuous if and
only if for all r ≥ 0 and all s > r there is a positive constant Cr,s such that
|� f, ϕ�| ≤ Cr,s sup|z|≤1/s | f (z)|.

Proof. The condition is obviously suf�cient. Let us suppose the existence of
r ≥ 0, s > r and of a sequence { fn } ⊆ An(r) such that

|� fn, ϕ�| > n2 sup
|z|≤1/s

| fn (z)|.

Since ϕ is linear each fn �= 0. Let

gn(z) = n−1( sup
|z|≤1/s

| fn (z)|)
−1 fn (z), n ≥ 1, |z| < 1/s.

Then {gn} ⊆ An(s), and if s < t we have sup|z|≤1/t |gn(z)| ≤ 1/n, i.e. gn → 0
in An(s). But |�gn, ϕ�| > n for all n and so ϕ is not continuous. �

Lemma 1. Let 0 < r < 1, a = (an)n≥0 , a ∈ A0(r) such that |an | < 1 for all n.
Then the element ε∗ − a is invertible and (ε∗ − a)−1 =

�∞
m=0 a

m.
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Proof. It will suf�ce to show that

�
�M

m=0 a
m

�

M≥0

is a Cauchy sequence

because A0 is a Fréchet space. For, let aM,P =

�
�M+P

m=M (εn an)
m

�

n≥0

, with

M, P ∈ N0. We have aM,P ∈ A0(r) because A0(r
m) ⊆ A0(r) for all m. Given

δ > 0 let N be a positive integer suf�ciently large so that |an | ≤ rn and
rn−1 ≤ δ (1 − r) if n ≥ N . On writing η = sup0≤n<N |an| we can choose
M0 ∈ N such that 2ηm ≤ δ (1 − η) r N if m ≥ M0. Thus, if n ≥ N , P ≥ 0 we
have

|aM,P(n)| ≤

M+P�

m=M

|an|
m ≤

M+P�

m=M

rnm ≤ rnM
P�

k=0

r Nk ≤
rn+M−1

1− r
≤ δ rn .

If 0 ≤ n < N , P ≥ 0, M ≥ M0 then

|aM,P(n)| =

�
�
�
�
�

aM
n [1− (εn an)

P+1]

1− εn an

�
�
�
�
�
≤
2|an|

M

1− |an|
≤
2ηM

1− η
≤ δ rn.

By Th. 1 we deduce that

�
�M

m=0 a
m

�

M≥0

is a Cauchy sequence and the result

follows. �

Proposition 4. If r, s are positive then A0(r) and A0(s) are linearly homeo-
morphic.

Proof. We set �r,s : A0(r) → A0(s), �r,s [(an)n≥0] = ((s/r)nan)n≥0 . Since
ρ[�r,s (a)] = s/r ρ(a) ≤ s the function �r,s is well de�ned and it is clearly
linear. Indeed, let an → 0 inA0(r). If δ > 0, there is N such that if n ≥ N and
m ∈ N0 then |anm | ≤ δ rm , i.e. |(�r,s (an))m | ≤ δ sm and �r,s (an)→ 0 inA0(s).
Finally, we have [�r,s ]

−1 = �s,r . �

Corollary 1. Every complex valued Hadamard homomorphism is continuous.

Proof. First assume that 0 < r < 1. We shall denote Ur for the set of elements
a = (an)n≥0 , a ∈ A0(r), such that |an | < 1 for all n. Let us suppose that
|χ (a)| > 1 for a Hadamard homomorphism χ : A0 → C and a ∈ Ur . Since
ρ(a/χ (a)) = ρ(a), then a/χ (a) ∈ A0(r) and |an/χ (a)| < 1 for n ≥ 0, i.e.
ε∗ − a/χ (a)∈ ker(χ ) and it is invertible, which is absurd. Thus |χ (a)| ≤ 1 if
a ∈Ur . We observe that µ(a) = supn≥0 |an| is �nite if a ∈ A0(r). Moreover, if
a �= 0 then |an|/µ(a) ≤ 1 for all n, i.e. [r/µ(a)] · a ∈Ur , i.e. |χ (a)| ≤ µ(a)/r .
In particular, this inequality holds even if a = 0. By applying Th. 1 we see that
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µ(an) → 0 if an → 0 in A0(r) and so χ (an) → 0. For the general case, if
an → 0 in A0(r) we choose 0 < s < 1/r . We can write

χ (an) = χ [(s−m)m≥0 �ε �r,rs (εm anm )m≥0]

= χ [(s−m)m≥0] χ [�r,rs (εm anm )m≥0].

Indeed, by Prop. 4 we know that �r,rs (εm anm )m≥0 → 0 in A0(rs), i.e.
χ (an) → 0. �

Remark 5. With the above notation, if f ∈ An(r), g ∈ An(s) it is natural to
de�ne f �ε g = �rs [(�r )

−1 f �ε (�s )
−1g] (see (4) and Remark 2). If r ≤ s

we already know that �s |A0(r) = �r , so that f �ε g is a well de�ned element of
U0.

Corollary 2. For every non zero Hadamard homomorphism � : U0 → C there
is a unique p ∈ N0 such that � f, �� = εp f (p)(0)/p!, f ∈ U0.

Proof. Given f ∈ A0, let r > 0 such that a ∈ An(r). Since its Taylor expansion
f (z) =

�∞
n=0 f (n)(0)/n! zn is convergent on compact subsets of D(0, 1/r), we

have

(8) � f, �� =

∞�

n=0

f (n)(0)/n! ��, zn�.

But zk �ε zh = εk δkh zh , where δ denotes Kronecker�s delta function. Thus

��, zk� ��, zh� = ��, zk �ε zh � = εk δkh ��, zh �,

so for k, h ∈ N0 we have ��, zk� ��, zh� = 0 if k �= h and ��, zk�2 = εk ��, zk �.
Since � �= 0 there must be a unique p ∈ N0 such that ��, zk� = εp δkp , k ∈ N0

and the conclusion follows from (8). �

Remark 6. Let χp : A0 → C be the complex homomorphism χp(a) = εp ap ,
p ≥ 0. Then ker(χp) is a maximal closed ideal of A0. Indeed, it is cyclic and
ker(χp) = �((1− δpn) εn)n≥0�.

Corollary 3. The Hadamard ring (U0, +, �ε) has a trivial Jacobson radical.
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3. On Hadamard units.

Theorem 2. An element a ∈ A0 is a unit, i.e. a ∈ U(A0), if and only if an �= 0
for all n and lim |an|

1/n > 0.

Proof. If the condition holds we write b = (εn/(εn an)n≥0 . Since

lim |bn|
1/n = lim |an |

−1/n = (lim |an|
1/n)−1 < +∞,

it is clear that b is the multiplicative inverse of a. Reciprocally, if the equation
a �ε b = ε∗ is solvable in A0 it is immediate that an �= 0 for all n. If
lim |an |

1/n = 0 there is an in�nite sequence (nk ) such that |ank |
1/nk → 0. But it

yields lim |bn|
1/n = lim |an|

−1/n = +∞, a contradiction. �

Example 1. Let f ∈ U0 be given as f (z) = z−1 log(1 − z)−1 . If |ω| = 1 and
ε = (ωn)n≥1 then f ∈ U(U0), its inverse being f −1(z) = 1/(1 − z/ω2)2 . Here
we have f ∈ An(1) and �1(ε

∗)(z) = ω/(w− z) is the Hadamard neutral product
element, i.e. g �ε �1(ε

∗) = g for all g ∈ U0.

Proposition 5. Let a ∈ A0 , Ma(b) = a �ε b, b ∈ A0 . If ρ(a) > 0 and s ≥ 0
then

(i) Ma : A0(s) → A0(ρ(a) s) is injective if and only if an �= 0 for all n ≥ 0.
(ii) It is surjective if and only if a ∈ U(A0 .

Proof. If ak = 0 for some k ≥ 0 then Ma

�
(δnk )n≥ 0

�
= 0 and Ma is not

injective. Since the condition is obviously suf�cient (i) holds. On the other
hand, let a ∈ U(A0). Given c ∈ A0(ρ(a) s) let b be the Hadamard inverse
of a. Thus ρ(b �ε c) ≤ (lim |cn |

1/n)/ρ(a) ≤ s , Ma(b �ε c) = c and the
condition in (ii) is suf�cient. If Ma : A0(s) → A0(ρ(a) s) is surjective it is
immediate that an �= 0 for all n. Let us suppose lim |an|

1/n = 0 and let (nj )
be an strictly increasing subsequence of N such that lim |anj

|1/nj = 0. If s > 0
there is b ∈ A0(s) such that Ma(b) = ((rs)n)n≥0 . So |bnj

|1/nj = (rs)/|anj
|1/nj ,

i.e. |bnj
|1/nj → +∞. Nevertheless ρ(b) ≤ s , i.e. there is N ∈ N such that

|bn|
1/n ≤ s if n ≥ N and so lim |an |

1/n > 0. Finally, if s = 0 let c = (cp)p≥0 ,
where cp = anj

if p = nj , cp = 0 if p �= nj for all j , p = 0, 1, . . . Then
c ∈ A0(0)− Im(Ma). �

Corollary 4. If ρ(a) > 0 and s ≥ 0 then Ma : A0(s) → A0(ρ(a) s) is a linear
homeomorphism if and only if it is surjective.

Remark 6. If a ∈ A0 will write Supp(a) for the set of those n ∈ N0 such that
an �= 0. Then

�a� =

�

b∈ A0 : Supp(b) ⊆ Supp(a) and lim n/an �=0

�
�
�
�
�

bn

an

�
�
�
�
�

1/n

< +∞

�

.
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4. On certain ideals of (A0, +, �ε).

We already know that kernels of non zero complex Hadamard homomor-
phisms are closed maximal cyclic ideals. In particular, all maximal ideals that
contain those elements a ∈ A0 such that an = 0 for all but a �nite number of
indexes n�s are dense in A0.

Proposition 6. Every prime cyclic ideal of A0 is the kernel of a complex
Hadamard homomorphism.

Proof. Let a ∈ A0 such that �a� is a prime ideal. If there are indexes p, q
such that ap = aq = 0, p �= q , then (δnp)n≥0 �ε (δnq )n≥0 ∈ �a�, (δnp)n≥0 /∈ A0

and (δnq )n≥0 /∈ A0. If an �= 0 for all n then lim |an|
1/n = 0. As before, let

(nj ) be an strictly increasing subsequence of N such that lim |anj
|1/nj = 0. If S

is an in�nite subsequence of (nj ) such that its complement is also in�nite, we
consider b = (�S(n) εn)n≥0 , where �S(n) = 1 or 0 according as n belongs or
does not belong to S respectively. Thus b�ε (ε−b)∈ �a�, but b nor ε−b do not
belong to �a�. E.g. if b ∈ �a� let c ∈ A0 such that b = a �ε c. Then an cn = 1
if n ∈ S , i.e. limn∈S,n→∞ |cn |

1/n = limn∈S,n→∞ |an |
−1/n = +∞. But (|cn |

1/n)n
should be bounded because c ∈A0. So there must be an only index r such that
ar = 0 and �a� = ker(χr ). �

Proposition 7. All proper closed prime ideals π of A0 are maximal.

Proof. Let π be a proper closed prime ideal π ofA0, m ∈ N0 such that δm /∈ π,

where δm = (δnm )n≥0 . Since π is prime we have {δn : n �= m} ⊆ π . Since π is
closed ker(χm) ⊆ π and π becomes maximal. �

Remark 7. In what follows, we shall analyze relationships between prime
ideals of A0 and ultra�lters of the class P(N0) of subsets of N0. Recall that
if X is a non empty set and F ⊆ P(X ), F �= ∅, then F is a �lter if the
following two conditions hold:

(i) If A∈ F , B ⊆ A then B ∈ F .
(ii) If A, B ∈ F then A ∪ B ∈ F .
It is known that a necessary and suf�cient condition in order that F be a
maximal �lter (or ultra�lter) is
(iii) For all A∈ P(X ), A∈ F or Ac ∈ F .
Will denote Pr(A0) and U f (N0) for the classes of prime ideals of A0 and
ultra�lters of N0 respectively.

Theorem 3. The following functions are well de�ned

�
� : Pr(A0) → U f (N0)
�(π ) = {A∈ P(N0) : a ∈ π if a ∈ A0 and Supp(a) ⊆ A},
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�
� : U f (N0) → Pr(A0)
�(F ) = {a ∈ A0 : Supp(a)∈ F }.

Proof. Clearly �(π ) satis�es condition (i) of �lters. If A, B ∈ �(π ) then
A ∪ B ∈ �(π ). In fact, if a ∈ A0 and Supp(a) ⊆ A ∪ B we have

a = (�A−B (n) an)n≥0 + (�B−A(n) an)n≥0 + (�A∩B (n) an)n≥0,

i.e. a can be written as the sum of three elements of π and therefore belongs
to π . Now, if C ∈ P(N0), C /∈ �(π ) and Cc /∈ �(π ) there exist elements
b, c of A0 not belonging to π such that Supp(b) ⊆ C , Supp(c) ⊆ Cc . But
b�ε c = 0 and it is contradicted the primality of π . On the other hand, let F be
an ultra�lter of N0, a, b∈ �(F ). Since Supp(a+b) ⊆ Supp(a)∪ Supp(b) and
Supp(a)∪Supp(b)∈ F then Supp(a+b)∈ F , i.e. a+b ∈ �(F ). If c ∈ �(F ),
d ∈ A0 then

Supp(c �ε d) = Supp(c) ∩ Supp(d) ⊆ Supp(c)

and Supp(c) ∈ F . So Supp(c �ε d) ∈ F and c �ε d ∈ �(F ). Finally, let
a, b ∈ A0 such that a �ε b ∈ �(F ). If they not belong to �(F ) their supports
do not belong to F . Consequently Supp(a)c and Supp(b)c belong to F and

Supp(a)c ∪ Supp(b)c = Supp(a �ε b)c

is an element of F . But Supp(a �ε b)∈ F and so F is not a proper subclass of
P(N0). Thus �(F ) is a prime ideal of A0. �

Theorem 4. Given π ∈ Pr(A0) the following assertions are equivalent:

(i) �[�(π )] = π .
(ii) π ∈ Im(�).
(iii) Every element of π is supported in a proper subset of N0 .
(iv) π is minimal.

Proof. Clearly (i) ⇒ (ii). If π = �(F ) then F contains the supports of the
elements of π . Since F is a �lter all these supports must be proper subsets of
N0 and so (ii) ⇒ (iii). To see that (iii) ⇒ (iv) let p be a prime ideal such that
there is a ∈ π − p. Since Supp(a) /∈ �(p) we have Supp(a)c ∈ �(p), i.e. p

contains those elements of A0 whose supports are contained in Supp(a)c . Thus
a + (�Supp(a)c(n) εn)n≥0 ∈ π and its support is N0. Finally if �[�(π )] �= π then
�[�(π )] is a proper prime ideal of π and (iv) ⇒ (i). �
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