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AN ADDITIVE PERTURBATION LEMMA FOR LINEAR
M-ACCRETIVE OPERATORS IN HILBERT SPACES

M. BENHARRAT

In this paper, we give a new sufficient condition for the sum of a lin-
ear maximal accretive operator and an accretive one to be maximal ac-
cretive in Hilbert spaces setting. As an application, an extended result to
the operator-norm error bound estimate for the exponential Trotter-Kato
product formula is given.

1. introduction

A linear operator T with domain D(T ) in a complex Hilbert space H is said to
be accretive if

Re < T x,x >≥ 0 for all x ∈ D(T )

or, equivalently if

∥(λ +T )x∥ ≥ λ∥x∥ for all x ∈ D(T ) and λ > 0.

Further, if R(λ +T ) =H for some (and hence for every) λ > 0, we say that T
is maximal accretive, or m-accretive for short, where R(T ) denote the range of
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an operator T . In particular, every m-accretive operator is accretive and closed
densely defined, its adjoint is also m-accretive (cf. [9], p. 279). Furthermore,

(λ +T )−1 ∈ B (H) and
∥∥(λ +T )−1∥∥≤ 1

λ
for all λ > 0,

where, B(H) denote the Banach space of all bounded linear operators on H.
In particular, a bounded accretive operator is m-accretive. An operator T is
called dissipative (resp. m-dissipative) if −T is accretive (resp. m-accretive).
A normal operator T (bounded or not) is m-accretive if and only if its spectrum
is contained in the half complex plane C+. Hence a normal accretive opera-
tor is m-accretive. For more details about linear accretive operators, see for
instance [9–11].

Consider two linear operators T and A in Hilbert space H, such that D(T )⊂
D(A). Assume furthermore that T is m-accretive and A is an accretive operator.
Then the question is:

Under which conditions the sum T +A is m-accretive?
Many papers have been devoted to this problem and most results treat pairs

T , A of relatively bounded or resolvent commuting operators. We refer the
reader to [4, 5, 7, 8, 17, 19, 20, 22–24]. Since T is closed it follows that there
are two nonnegative constants a, b such that

∥Ax∥2 ≤ a∥x∥2 +b∥T x∥2 , for all x ∈ D(T )⊂D(A). (1)

In this case, A is called relatively bounded with respect to T or simply T -
bounded, and refer to b as a relative bound.

Gustafson, [6], showed that that T +A is also m-accretive if A is T -bounded,
with b < 1 (see [6, Theorem 2.]). This is an extension of the basic work of
Rellich, Kato, and others (cf. [9]), form selfadjoint operators to m-accretive
one. Okazawa showed in [16] that the closure of the sum T +A is m-accretive,
if the bounded operator A(t +T )−1 on H is a contraction for some t > 0, [16,
Theorem 1.]. In particular, he also showed that the validity of (1) with b = 1
implies that the closure of T +A is m-accretive, [16, Corollary 1.]. Later, the
same author in [15] gave a variant of perturbation by assumed the existence of
two nonnegative constants a and β ≤ 1 such that

Re < T x,Ax >+a∥x∥2 +β ∥T x∥2 ≥ 0, for all x ∈ D(T ). (2)

If β < 1, then T +A is m-accretive and also the closure of T +A is m-accretive
for β = 1, [15, Theorem 4.1]. Note that this result cover the case of relatively
bounded perturbation, see [15, Remark 4.4]. There are many papers on the
question of such perturbation, see [17–19, 21, 23] for more results. In recent
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years, a prominent development out of this is the applications to various fields,
see [1–3, 8, 12–14, 19].

The aim of this paper is to establish a new perturbation results on the m-
accretivity of the operator sum T + A. This may be viewed as a slight im-
provement and generalization of the perturbation results, particularly, those of
Okazawa, [15, 17]. Namely, we prove the following lemma.

Lemma 1.1. Let T and A two operators such that D(T ) ⊂ D(A). Assume that
T is m-accretive, A is accretive and there exists c ≥ 0, such that

Re < T x,Ax >≥ c∥Ax∥2 , for all x ∈ D(T ). (3)

If we take b = max{c ≥ 0 : (3) holds }, we have,

1. if 0 ≤ b ≤ 1, then T +A is also m-accretive,

2. if b > 1 then T +A is m-ω-accretive, with ω = π/2− arcsin(
b−1

b
).

Here, T is m-ω-accretive if e±iθ T is m-accretive for θ = π

2 −ω , 0 < ω ≤
π/2 ( or m-sectorial as it was introduced, e.g., in the Kato book [9, Ch.IX, §1]).
In this case, −T generates an holomorphic contraction semigroup on the sector
|arg(λ )|< ω . In this connection, we note that for any ε > 0

∥∥(λ +T )−1∥∥≤ Mε

|λ |
, for |arg(λ )| ≤ π

2
+ω − ε

with Mε is independent of λ (see [9, pp. 490]).
The novelty of the lemma is the optimality of b such that (3) holds. Clearly,

(3) implies Re < T x,Ax >≥ 0 for all x ∈ D(T ), this exactly the assumption
of [16, Theorem 2.]. Hence, we conclude that T +A is also m-accretive. Our
result is a refinement of this result by given a more precise sector containing the
numerical range W (T +A) of operator T +A as of function of the constant b.
Also, from (3), we have for b > 0,

∥Ax∥ ≤ 1
b
∥T x∥ , for all x ∈ D(T ). (4)

Thus the assumption (3) is stronger than the relative boundedness with respect

to T . In particular, if b > 1 the lower bound
1
b
< 1, so according to [6, Theorem

2.], T +A is m-accretive. Here, we say more, T +A is m-ω-accretive with ω

depends of the lower bound
1
b
< 1.
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2. Proof

Proof of Lemma 1.1. Let b = max{c ≥ 0 : (3) holds }. If b = 0, this exactly the
[16, Theorem 2.]. Assume that 0 < b ≤ 1. We obtain from (3)

0 ≤ Re < T x,Ax >−b∥Ax∥2

≤ Re < T x,Ax >+(α −b)∥Ax∥2

for some α > 1. Using (4), we get

0 ≤ Re < T x,Ax >+
α −b

b2 ∥T x∥2 .

Choosing α such that β =
α −b

b2 < 1, by (2) we conclude that T + A is m-
accretive (cf.[15, Theorem 4.1]).

Now, suppose that that b > 1. Let x ∈ D(T ), then for every t > 0, we have

Re < tx+T x,Ax >= tRe < x,Ax >+Re < T x,Ax >

≥ b∥Ax∥2 .

Thus we have
∥Ax∥ ≤ 1

b
∥tx+T x∥ . (5)

Since T is m-accretive, then∥∥A(t +T )−1x
∥∥≤ 1

b
∥x∥ , for all x ∈H.

Hence it follows that ∥∥A(t +T )−1∥∥≤ 1
b
< 1. (6)

Then the operator I +A(t +T )−1 is invertible and

∥∥(I +A(t +T )−1)−1∥∥≤ b
b−1

.

The fact that
t +T +A = [I +A(t +T )−1](t +T ),

it follows that −t ∈ ρ(T +A) and

∥∥t(t +T +A)−1∥∥≤ b
b−1

= M, for all t > 0,
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with M > 1. Since T +A is accretive, ρ(T +A) contains also the half plane {z ∈
C : Re(z) < 0}. Put S = {z ∈ C : z ̸= 0; |arg(z)| < π/2− arcsin(

1
M
) = θ} and

M′ := 1/sin(π/2−θ ′) with 0 < θ < θ ′ < π/2, clearly M′ > M. Let µ ∈C such

that |arg(µ)| ≤ θ ′ and fix λ with Reλ = −t < 0. Let |µ −λ | ≤ |λ |
M′ , we have

that
∥∥(µ −λ )(t +T +A)−1

∥∥≤ M
M′ < 1. Hence it follows that µ ∈ ρ(T +A) and

(µ +T +A)−1 = (λ +T +A)−1[I +(µ −λ )(λ +T +A)−1]−1.

Thus ∥∥µ(µ +T +A)−1∥∥≤ |µ|
|λ |

1

1− M
M′

M

≤ (1+
1

M′ )
1

1− M
M′

M.

On the other hand,

(1+
1

M′ )
1

1− M
M′

M =
1+ sin(π/2−θ ′)

sin(π/2−ω)− sin(π/2−θ ′)

≤ 1
sin((θ ′−θ)/2)sin((θ ′+θ)/2)

≤ 1
sin(θ ′−θ)sin(θ)

≤ 1

sin(θ ′−θ)sin(π/2− arcsin(
1
M
))

≤ 1

sin(θ ′−θ)cos(arcsin(
1
M
))

≤ 1

sin(θ ′−θ)

√
1− 1

M2

≤ M

sin(θ ′−θ)
√

M2 −1
.

This implies that∥∥(µ +T +A)−1∥∥≤ M

|µ|sin(θ ′−θ)
√

M2 −1
.
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This shows that the sector S belongs to ρ(T +A) and for any ε > 0,∥∥(µ +T +A)−1∥∥≤ Mε

|µ|
for |arg(µ)| ≤ π/2− arcsin(

1
M
)+ ε,

with Mε =
M

sin(ε)
√

M2 −1
and θ ′− θ = ε . Clearly, Mε is independent of µ .

Hence, T +A is m-ω-accretive, with ω = π/2− arcsin(
b−1

b
).

Remark 2.1. 1. As seen in the last paragraph of the proof, the condition (2)
implies (3) at least for 0 ≤ b ≤ 1. Thus [15, Theorem 4.1] is covered by
Lemma 1.1.

2. If the assumptions of Lemma 1.1 are satisfied, we can see that Re < tx+
T x,Ax >≥ 0 for all x ∈D(T ). Therefore A(t +T )−1 is bounded accretive
operator for any t > 0.

Corollary 2.2. Let T and A as in Lemma 1.1 obeying (3). Then

1. −(T +A) generates contractive one-parameter semigroup for 0 ≤ b ≤ 1.

2. −(T +A) generates contractive holomorphic one-parameter semigroup

with angle ω = arcsin(
b−1

b
) for b > 1.

3. An application

One of interest is the operator-norm error bound estimate for the exponential
Trotter-Kato product formula in the case of accretive perturbations, see [3] and
a recent book [25] Ch.9, Sect.9.4, or [14] for a short survey. Let A be a semi-
bounded from below densely defined self-adjoint operator and B an m-accretive
operator in a Hilbert space H.

In [3, Theorem 3.4] it has been shown that if B is A-bounded with lower
bound < 1 and

D((A+B)α)⊂D(Aα)∩D((B∗)α) ̸= {0} for some α ∈ (0.1] , (7)

then there is a constant Lα > 0 such that the estimates∥∥∥(e−tB/ne−tA/n
)n

− e−t(A+B)
∥∥∥≤ Lα

lnn
nα

(8)

and ∥∥∥(e−tA∗/ne−tB∗/n
)n

− e−t(A+B)∗
∥∥∥≤ Lα

lnn
nα

(9)
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hold for some α ∈ (0.1] and n = 1,2, . . . uniformly in t ≥ 0. Here T α denotes
the fractional powers of an m-accretive operator, see [10, 11].

The aim of the present result is to extend [3, Theorem 3.4]. This extension
is accomplished by replacing the relative boundedness by the assumption (3).
More precisely, we have

Theorem 3.1. Let A be a semibounded from below densely defined self-adjoint
operator and B an m-accretive operator with (3) for some b > 1. Assume that
(7) holds. Then there is a constant Lα > 0 such that the estimates (8) and (9)
hold for some α ∈ (0.1] and n = 1,2, . . . uniformly in t ≥ 0.

Proof. From (3), we have for b > 1,

∥Bx∥ ≤ a∥Ax∥ , for all x ∈ D(A), (10)

with a = 1
b < 1. Hence B is A-bounded with lower bound a < 1. Also, by

lemma 1.1, A+B is m-ω-accretive, with ω = π/2− arcsin(
b−1

b
). Now, all

assumptions of [3, Theorem 3.4] are fulfilled. Hence we obtain the desired
result.

Remark 3.2. It well known that, for an m-accretive operator T , the fractional
powers T α are m-(απ)/2-accretive and, if α∈(0,1/2), then D(T α) =D(T ∗α),
see [11, Theorem 1.1]. Since A, B and A+B are m-accretive operators, we
deduce that

D((A+B)∗α) =D((A+B)α)⊂D(Aα)∩D(Bα) =D(Aα)∩D((B∗)α),

for some α ∈ (0,1/2[. Thus, the condition (7) may be omitted in Theorem 3.1
if we take α ∈ (0,1/2[ (cf. [3, Theorem 4.1]).
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