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AN ADDITIVE PERTURBATION LEMMA FOR LINEAR
M-ACCRETIVE OPERATORS IN HILBERT SPACES

M. BENHARRAT

In this paper, we give a new sufficient condition for the sum of a lin-
ear maximal accretive operator and an accretive one to be maximal ac-
cretive in Hilbert spaces setting. As an application, an extended result to
the operator-norm error bound estimate for the exponential Trotter-Kato
product formula is given.

1. introduction

A linear operator T with domain D(T') in a complex Hilbert space H is said to
be accretive if
Re < Tx,x >>0 forall x € D(T)

or, equivalently if
(A +T)x|| > Al|x]] forall x € D(T) and A > 0.

Further, if R(A 4+ T) = H for some (and hence for every) A > 0, we say that T
is maximal accretive, or m-accretive for short, where R(7') denote the range of
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an operator 7. In particular, every m-accretive operator is accretive and closed
densely defined, its adjoint is also m-accretive (cf. [9], p. 279). Furthermore,

(A+T)'€B(H) and H(/I+T)*1H§%forauz>o,

where, B(#) denote the Banach space of all bounded linear operators on .
In particular, a bounded accretive operator is m-accretive. An operator T is
called dissipative (resp. m-dissipative) if —7 is accretive (resp. m-accretive).
A normal operator 7' (bounded or not) is m-accretive if and only if its spectrum
is contained in the half complex plane C,. Hence a normal accretive opera-
tor is m-accretive. For more details about linear accretive operators, see for
instance [9-11].

Consider two linear operators T and A in Hilbert space H, such that D(T') C
D(A). Assume furthermore that T is m-accretive and A is an accretive operator.
Then the question is:

Under which conditions the sum 7 + A is m-accretive?

Many papers have been devoted to this problem and most results treat pairs
T, A of relatively bounded or resolvent commuting operators. We refer the
reader to [4, 5,7, 8, 17, 19, 20, 22-24]. Since T is closed it follows that there
are two nonnegative constants a, b such that

|Ax||* < allx||*+b||Tx||*, forall x e D(T) C D(A). (1)

In this case, A is called relatively bounded with respect to T or simply 7-
bounded, and refer to b as a relative bound.

Gustafson, [6], showed that that T+ A is also m-accretive if A is T-bounded,
with b < 1 (see [6, Theorem 2.]). This is an extension of the basic work of
Rellich, Kato, and others (cf. [9]), form selfadjoint operators to m-accretive
one. Okazawa showed in [16] that the closure of the sum T + A is m-accretive,
if the bounded operator A(t +T)~! on H is a contraction for some ¢ > 0, [16,
Theorem 1.]. In particular, he also showed that the validity of (1) with b =1
implies that the closure of 7'+ A is m-accretive, [16, Corollary 1.]. Later, the
same author in [15] gave a variant of perturbation by assumed the existence of
two nonnegative constants ¢ and § < 1 such that

Re < Tx,Ax > +allx||*+ B ||Tx|* >0, forallxeD(T). 2)

If B < 1, then T + A is m-accretive and also the closure of 7' + A is m-accretive
for B =1, [15, Theorem 4.1]. Note that this result cover the case of relatively
bounded perturbation, see [15, Remark 4.4]. There are many papers on the
question of such perturbation, see [17-19, 21, 23] for more results. In recent
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years, a prominent development out of this is the applications to various fields,
see [1-3, 8, 12-14, 19].

The aim of this paper is to establish a new perturbation results on the m-
accretivity of the operator sum 7 4+ A. This may be viewed as a slight im-
provement and generalization of the perturbation results, particularly, those of
Okazawa, [15, 17]. Namely, we prove the following lemma.

Lemma 1.1. Let T and A two operators such that D(T) C D(A). Assume that
T is m-accretive, A is accretive and there exists ¢ > 0, such that

Re < Tx,Ax >> c||Ax||*, forallx e D(T). 3)
If we take b = max{c > 0: (3) holds }, we have,

1. if0< b <1, then T +A is also m-accretive,

. . . . . b—1
2. ifb>1then T + A is m-w-accretive, with ® = 1t /2 — arcsin( ).
Here, T is m-o-accretive if e**®T is m-accretive for 6 = 2 —, 0 < o <
7 /2 (or m-sectorial as it was introduced, e.g., in the Kato book [9, Ch.IX, §1]).
In this case, —T generates an holomorphic contraction semigroup on the sector
larg(A)| < o. In this connection, we note that for any € > 0

T

H(?L—FT)AH < Me for |arg(A)| < 3

, +w—¢
A

with M is independent of A (see [9, pp. 490]).

The novelty of the lemma is the optimality of b such that (3) holds. Clearly,
(3) implies Re < Tx,Ax >> 0 for all x € D(T), this exactly the assumption
of [16, Theorem 2.]. Hence, we conclude that T + A is also m-accretive. Our
result is a refinement of this result by given a more precise sector containing the
numerical range W (T +A) of operator T + A as of function of the constant b.
Also, from (3), we have for b > 0,

1
| Ax|| < A |Tx||, forallxe D(T). )

Thus the assumption (3) is stronger than the relative boundedness with respect

to T. In particular, if b > 1 the lower bound b < 1, so according to [6, Theorem

2.], T + A is m-accretive. Here, we say more, T + A is m-w-accretive with @

1
depends of the lower bound A <1.
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2. Proof

Proof of Lemma 1.1. Let b=max{c > 0:(3) holds }. If b = 0, this exactly the
[16, Theorem 2.]. Assume that 0 < b < 1. We obtain from (3)

0 <Re < Tx,Ax > —b||Ax|]®
< Re < Tx,Ax > +(at — b) | Ax||?

for some o > 1. Using (4), we get

a —
Choosing ¢ such that f = —

accretive (cf.[15, Theorem 4.1]).
Now, suppose that that b > 1. Let x € D(T), then for every ¢ > 0, we have

Re <tx+Tx,Ax > =1tRe < x,Ax > +Re < Tx,Ax >
> b||Ax|%.
Thus we have |
lAx] < o e+ Tl ©))

Since T is m-accretive, then

|A(r+T)~ x||<foH for all x € H.

Hence it follows that .
lag+T) M <4 <1 (6)

Then the operator / +A(t 4+ T)~! is invertible and

b
<5

|(T+A@+T)"! -

The fact that
t+THA=[I+AC+T) (1 +T),

it follows that —¢ € p(T +A) and

;Z,

-1
|t +T+A)7| < -

=M, forallt>0,
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with M > 1. Since T +A is accretive, p(T +A) contains also the half plane {z €
1
C:Re(z) <0}. Put S={z€C:z#0;larg(z)| < m/2— arcsin(ﬁ) =0} and

M :=1/sin(n/2—0") with0 < 0 < 8’ < /2, clearly M’ > M. Let u € C such
2]

that |arg(u)| < 0’ and fix A with ReA = —¢ < 0. Let [u —A| < e Ve have

M
that H(/.L —A)(+T+A)! H < YG < 1. Hence it follows that t € p(T +A) and

(WMWHTHA) ' =A+TH+A) T+ -2)A+T+A)"17L
Thus

Jutu+7+4) ) < o
=

<(1+i)¥M

_— M/ M .

M

M

On the other hand,

11 | +sin(m/2 — 6')
1+ — M =
( +M/)1_ﬂ Sin(7/2 — o) —sin(x/2— 6

M/

1
sin((6’ —6)/2)sin((6'+0)/2)
1
sin(6’— 0)sin(0)
1

IN

IN

IN

sin(6’ — ) sin(m/2 — arcsin(%))
1

IN

sin(6’ — 0) cos(arcsin(%))

IN

IN

This implies that

-1
UGS R B |1|sin(@’ — 0)VM? —1
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This shows that the sector S belongs to p(7 +A) and for any € > 0,

M 1
|(u+T +A)~! | < ﬁ for |arg(n)| < m/2— arcsin(M) +e&,
. M p .
with M = —————— and 8’ — 0 = €. Clearly, M, is independent of p.
sin(e)vM? —1
-1
Hence, T + A is m-w-accretive, with @ = /2 — arcsin( ). O

Remark 2.1. 1. As seen in the last paragraph of the proof, the condition (2)
implies (3) at least for 0 < b < 1. Thus [15, Theorem 4.1] is covered by
Lemma 1.1.

2. If the assumptions of Lemma 1.1 are satisfied, we can see that Re < tx+
Tx,Ax >> 0 for all x € D(T). Therefore A(t + T)~! is bounded accretive
operator for any ¢ > 0.

Corollary 2.2. Let T and A as in Lemma 1.1 obeying (3). Then
1. —(T +A) generates contractive one-parameter semigroup for 0 < b < 1.

2. —(T +A) generates contractive holomorphic one-parameter semigroup

b—1
) for b > 1.

with angle @ = arcsin( 5

3. An application

One of interest is the operator-norm error bound estimate for the exponential
Trotter-Kato product formula in the case of accretive perturbations, see [3] and
a recent book [25] Ch.9, Sect.9.4, or [14] for a short survey. Let A be a semi-
bounded from below densely defined self-adjoint operator and B an m-accretive
operator in a Hilbert space H.

In [3, Theorem 3.4] it has been shown that if B is A-bounded with lower
bound < 1 and

D((A+B)*) c D(A*)ND((B*)¥) # {0} forsome a € (0.1],  (7)

then there is a constant L, > 0 such that the estimates

. 1
H (e—tB/ne—tA/n) . e—l‘(A—‘rB) H < L(x% (8)
and |
H (eftA*/neftB*/n> _ e*f(A#’B)* S La% (9)
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hold for some « € (0.1] and n = 1,2, ... uniformly in 7 > 0. Here T% denotes
the fractional powers of an m-accretive operator, see [10, 11].

The aim of the present result is to extend [3, Theorem 3.4]. This extension
is accomplished by replacing the relative boundedness by the assumption (3).
More precisely, we have

Theorem 3.1. Let A be a semibounded from below densely defined self-adjoint
operator and B an m-accretive operator with (3) for some b > 1. Assume that
(7) holds. Then there is a constant Lo, > 0 such that the estimates (8) and (9)
hold for some a € (0.1] and n = 1,2,... uniformly int > 0.

Proof. From (3), we have for b > 1,
|Bx|| < allAx||, forallx € D(A), (10)

with a = % < 1. Hence B is A-bounded with lower bound a < 1. Also, by

lemma 1.1, A + B is m-w-accretive, with @ = /2 — arcsin( ). Now, all
assumptions of [3, Theorem 3.4] are fulfilled. Hence we obtain the desired
result. O

Remark 3.2. It well known that, for an m-accretive operator T, the fractional
powers T% are m-(am)/2-accretive and, if @ € (0,1/2), then D(T%*) = D(T*%),
see [11, Theorem 1.1]. Since A, B and A + B are m-accretive operators, we
deduce that

D((A+B)") = D((A+B)*) C D(A%)ND(B%) = D(A%) ND((B")%),

for some a € (0,1/2[. Thus, the condition (7) may be omitted in Theorem 3.1
if we take o € (0,1/2[ (cf. [3, Theorem 4.1]).
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