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LINE IDEMPOTENT GRAPH
OF SOME COMMUTATIVE RINGS

O. GANI MONDAL - SK. MD. ABU NAYEEM

Let X be a finite commutative ring with unity and Id(X) be the set
of idempotent elements of X . The idempotent graph GId(X) of X is a
simple undirected graph with all elements of X as vertices and two distinct
vertices x,y are adjacent if and only if x+ y ∈ Id(X). In this paper, we
have considered the idempotent graph of some commutative rings and
investigated those graph and their complement for being line graphs.

1. Introduction

After the introduction of the notion of zero divisor graphs of a commutative ring
[4] in 1999, research on graphs from algebraic structures has proliferated many-
fold in the last decade [1, 2, 8, 10, 12, 15, 18]. Akbari et al. [2] proposed the
idea of an idempotent graph of a ring X in 2013 and found some graph theoret-
ical parameters for it. According to their definition, a graph whose vertices are
the points of X and if two separate points x and y of X are such that xy = yx = 0,
then they are adjacent, is called an “idempotent graph of X .” Recently, Razzaghi
and Sahebi [20] have associated another graph with a commutative ring X with
a non-zero identity. They have assumed the ring X as the set of vertices and that
two distinct vertices x and y are adjacent if and only if (x+y)2 = (x+y), that is,
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if and only if x+y ∈ Id(X). Here, Id(X) is the set of all idempotent elements of
X . They have also named this graph the idempotent graph of X and denoted the
graph by GId(X). They have determined the necessary and sufficient conditions
for the graph to be a connected graph and found several graph theoretic pa-
rameters like chromatic index, diameter, and girth of that graph. Very recently,
Sharma and Dutta [21] have further studied that graph and obtained some other
graph theoretic parameters like radius, independence number, chromatic num-
ber, and the condition for planarity and Hamiltonicity. In the present paper, we
aim to study that graph furthermore.

While characterizing different graphs associated with algebraic structures,
researchers have concentrated on the algebraic properties of the structure for
which the obtained graph belongs to some special classes of graphs, such as
line graphs. In 2021, Barati [7] studied the line graph of the zero divisor graph
of a commutative ring, and derived the conditions under which the zero divisor
graph is a line graph or complement of a line graph. In 2022, Khojasteh [19]
carried out a similar study on the cozero-divisor graph of commutative ring.
Pranjali et al. [17] have studied the line graph of unit graphs associated with
finite commutative rings. Pirzada and Altaf [18] have also studied the line graph
of unit graphs of a commutative ring. Motivated by these studies, in this paper,
we investigate the idempotent graphs of some commutative rings and find the
conditions under which those graphs or their complements are line graphs.

Let G be a finite simple graph. Each vertex of the line graph L(G) of the
graph G corresponds to an edge of G. Two vertices of L(G) are adjacent if and
only if their corresponding edges are incident to a common vertex in G. The
graph with the same set of vertices as of G is called its complement graph Ḡ,
when two vertices are adjacent in Ḡ if and only if they are not adjacent in G.
A bipartite graph is such a graph whose vertex set is the union of two disjoint
sets of vertices U and V in a manner that each edge in the graph links a vertex
in U to a vertex in V . We denote a complete bipartite graph with |U | = m and
|V | = n by Km,n. Kn, Cn, Pn denote the complete graph, cycle graph, and path
graph with n vertices respectively. A subset of the vertex set of a graph is called
an independent set if no two elements of that set are adjacent.

When ring X contains precisely one maximal ideal, it is referred to as a local
ring. The descending chain condition on ideals is satisfied by a ring known as
an Artinian ring.

2. Preliminaries

Let X be a finite commutative ring with unity. An element x ∈ R is said to be an
idempotent element of X if it satisfies the condition x2 = x. The total number
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Figure 1: Nine induced forbidden subgraphs.

of idempotent elements in a ring Zn is 2k where k represents the number of
different prime factors of n [13].

Since we are concerned with line graphs, the following lemma will be very
useful.

Lemma 2.1. [9] The necessary and sufficient condition for a graph G to be
a line graph of some graph is that it does not contain the graphs depicted in
Figure 1 as induced subgraphs.

3. Line graph of an idempotent graph over the ring Zn

Let GId(X) be the idempotent graph of the commutative ring X . We start with
the following useful lemmas.

Lemma 3.1. [20] Let X be a ring with Id(X) being trivial and x ∈ X. Then the
following conditions hold in GId(X).

(a) If Id(X) does not contain the element 2.x , then deg(x) = 2.

(b) If Id(X) contains the element 2.x, then deg(x) = 1.

Lemma 3.2. [20] If X is a ring such that Id(X) is trivial and it generates (X ,+),
then GId(X) is a path graph and vice versa.
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Figure 2: GId(Zn) is a line graph when n is even prime power.
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Figure 3: GId(Zn) is a line graph when n is odd prime power.

Lemma 3.3. [13] If gcd(a,m) = d and d|b then the congruence relation ax ≡ b
has exactly d number of solutions. Again, if d ∤ b then there does not exist any
solution of the congruence relation.

Now we put forward the following theorem characterizing GId(Zn).

Theorem 3.4. If n is a prime power, then GId(Zn) is a line graph.

Proof. Let p be a prime and n = pm, where m is any non-zero positive integer.
Then the set of vertices of GId(Zn) is {0,1, ..., pm − 1}. Since n has only one
prime factor, namely p, there are two idempotent elements of Zn, viz. the trivial
idempotents 0 and 1. By above Lemma 3.1, if an element x ∈ Zn satisfies one
of the relations 2.x ≡ 0 (mod n) or 2.x ≡ 1 (mod n) then the degree of x is 1.
Now, we have the following two cases.
Case 1. (n is even) Let us consider n = 2k, k ∈ N.
Subcase 1.1: (2.x ≡ 1 (mod n)) Since gcd(2,2k) = 2 and 2 ∤ 1, there does not
exist a solution.
Subcase 1.2: (2.x ≡ 0 (mod n)) Since gcd(2,2k) = 2 and 2|2, there are two
distinct solutions, namely 0 and pm

2 · Now from Lemma 3.1, the degree of each
of the vertices pm

2 and 0 is 1 and the degree of every other vertex is 2. This
suggests that the idempotent graph GId(Zn) (where n = pm) is a path graph, as
depicted in Figure 2. Since a path graph is a line graph, GId(Zn) is a line graph.
Case 2. (n is odd) Let us consider n = 2k+1, k ∈ N.
Subcase 2.1: (2.x ≡ 1 (mod n)) Since gcd(2,2k + 1) = 1, there is a unique
solution that is x = pm+1

2 ·
Subcase 2.2: (2.x ≡ 0 (mod n)) Since gcd(2,2k + 1) = 1, there is a unique
solution that is 0. Again from Lemma 3.1, we have that the degree of each of
the vertices pm+1

2 and 0 is 1, and that of every other vertex is 2. Therefore, they
form a path graph as depicted in Figure 3.

Lemma 3.5. [15] In the ring Zpm
1 pn

2
, there are four idempotent elements 0, 1,

pr(p2−1)pn−1
2

1 , and pt(p1−1)pm−1
1

2 where r, t are the smallest positive integers such
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that rpn−1
2 (p2 −1)−m and t pm−1

1 (p1 −1)−n are both positive, and p1 and p2
are distinct primes.

Lemma 3.6. If p1 and p2 are distinct primes, then

pr(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 ≡ 1 (mod pm
1 pn

2)·

Proof. By Euler’s theorem, we have, pφ(pn
2)

1 ≡ 1 (mod pn
2) where gcd(p1, p2) =

1. Thus pn
2|p

r(p2−1)pn−1
2

1 −1 and obviously, pn
2|p

t(p1−1)pm−1
1

2 .

Therefore, pn
2|p

r(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 −1. Similarly, we obtain that

pm
1 |p

r(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 −1. These together imply that

pm
1 pn

2|p
r(p2−1)pn−1

2
1 + pt(p1−1)pm−1

1
2 −1 or,

pr(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 ≡ 1 (mod pm
1 pn

2).

Corollary 3.7. In the graph GId(Zpm
1 pn

2
), pr(p2−1)pn−1

2
1 is adjacent to pt(p1−1)pm−1

1
2 .

Theorem 3.8. If X = Zpm
1 pn

2
, where p1, p2 are distinct primes and m, n are both

positive integers, then the graph GId(X) can not be a line graph.

Proof. Let us denote all vertices of GId(X) as the set V . In this case V = Zpm
1 pn

2
.

From Lemma 3.5, the idempotent elements of Zpm
1 pn

2
are{

0,1, pr(p2−1)pn−1
2

1 , pt(p1−1)pm−1
1

2

}
, where r, t are the smallest positive integers

such that rpn−1
2 (p2 −1)−m and t pm−1

1 (p1 −1)−n are positive integers. Now,

we consider the subset S =
{

1, pm
1 pn

2 −1, pr(p2−1)pn−1
2

1 −1, pt(p1−1)pm−1
1

2 −1
}

of
V . We show below that except for p2 = 3, p1 = 2 with n = 1,m = 1, the sub-

set D =
{

pm
1 pn

2 −1, pr(p2−1)pn−1
2

1 −1, pt(p1−1)pm−1
1

2 −1
}

of S is an independent set
and the element 1 ∈ S is adjacent to every element in D, i.e., the subgraph in-
duced by S is K1,3. The following three cases may arise.

Case 1.
(

pm
1 pn

2 − 1+ pr(p2−1)pn−1
2

1 − 1 ≡ 0 or 1 or pr(p2−1)pn−1
2

1 and pt(p1−1)pm−1
1

2

(mod pm
1 pn

2)
)

Subcase 1.1: If pm
1 pn

2 −1+ pr(p2−1)pn−1
2

1 −1 ≡ 0 (mod pm
1 pn

2), then

pm
1 pn

2|(pr(p2−1)pn−1
2

1 −2). It is possible only when p1 = 2 and then r = 1
(p2−1)p(n−1)

2

·
As such, r will be a positive integer only when n = 1 and p2 = 2, which contra-
dicts that gcd(p1, p2) = 1.
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Subcase 1.2: If pm
1 pn

2 −1+ pr(p2−1)pn−1
2

1 −1 ≡ 1 (mod pm
1 pn

2), then

pm
1 pn

2|p
r(p2−1)pn−1

2
1 −3. It is possible only when p1 = 3, p2 = 2 with n= 1,m= 1.

Subcase 1.3: If pm
1 pn

2 − 1+ pr(p2−1)pn−1
2

1 − 1 ≡ pr(p2−1)pn−1
2

1 (mod pm
1 pn

2), then
pm

1 pn
2|pm

1 pn
2 −2 which is not possible.

Subcase 1.4: If pm
1 pn

2 − 1+ pr(p2−1)pn−1
2

1 − 1 ≡ pt(p1−1)pm−1
1

2 (mod pm
1 pn

2), then

pm
1 pn

2|p
r(p2−1)pn−1

2
1 −pt(p1−1)pm−1

1
2 −2 which is possible only when pr(p2−1)pn−1

2
1 −

pt(p1−1)pm−1
1

2 −2 = 0,

i.e., pr(p2−1)pn−1
2

1 −1 = 1+ pt(p1−1)pm−1
1

2 . By Euler’s theorem, pn
2|p

r(p2−1)pn−1
2

1 −1

that is pn
2|1+ pt(p1−1)pm−1

1
2 . This is possible only when p2 = 1 which contradicts

the fact that p2 is a prime.

Case 2.
(

pm
1 pn

2 − 1+ pt(p1−1)pm−1
1

2 − 1 ≡ 0 or 1 and pr(p2−1)pn−1
2

1 or pt(p1−1)pm−1
1

2

(mod pm
1 pn

2)
)

Similar to Case 1 above, we can show that D is an independent
set except for p2 = 3, p1 = 2 and n = 1,m = 1.

Case 3.
(

p
r(p2−1)pn−1

2
1 −1+ p

t(p1−1)pm−1
1

2 −1 ≡ 0 or 1 and p
r(p2−1)pn−1

2
1 or p

t(p1−1)pm−1
1

2

(mod pm
1 pn

2)
)

Subcase 3.1:
(

pr(p2−1)pn−1
2

1 −1+ pt(p1−1)pm−1
1

2 −1 ≡ 0 (mod pm
1 pn

2)
)

.
From the above Lemma 3.6 we have,

pr(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 ≡ 1 (mod pm
1 pn

2).

So, pm
1 pn

2|p
r(p2−1)pn−1

2
1 + pt(p1−1)pm−1

1
2 −1,

i.e., pm
1 pn

2 ∤ (pr(p2−1)pn−1
2

1 + pt(p1−1)pm−1
1

2 −1)−1.

Thus, pr(p2−1)pn−1
2

1 −1+ pt(p1−1)pm−1
1

2 −1≡ 0 (mod pm
1 pn

2) which is not possible.

Subcase 3.2: If pr(p2−1)pn−1
2

1 − 1+ pt(p1−1)pm−1
1

2 − 1 ≡ 1, that is, pr(p2−1)pn−1
2

1 +

pt(p1−1)pm−1
1

2 − 1 ≡ 2 (mod pm
1 pn

2), then by above Lemma 3.6 pm
1 pn

2|pm
1 pn

2 − 2,
which is not possible.

Subcase 3.3: If pr(p2−1)pn−1
2

1 − 1+ pt(p1−1)pm−1
1

2 − 1 ≡ pr(p2−1)pn−1
2

1 (mod pm
1 pn

2),
then
pm

1 pn
2|p

t(p1−1)pm−1
1

2 −2. It is possible only when p2 = 2 and then t = 1
(p1−1)p(m−1)

1

·
As such, t will be positive integer only when m = 1 and p1 = 2, which contra-
dicts the fact that gcd(p1, p2) = 1.

Subcase 3.4: If pr(p2−1)pn−1
2

1 − 1+ pt(p1−1)pm−1
1

2 − 1 ≡ pt(p1−1)pm−1
1

2 (mod pm
1 pn

2),
then



LINE IDEMPOTENT GRAPH 85

pm
1 pn

2|p
r(p2−1)pn−1

2
1 −2. It is possible only when p1 = 2 and then r = 1

(p2−1)p(n−1)
2

·
As such, r is a positive integer only when n = 1 and p2 = 2 which contradicts
the fact that gcd(p1, p2) = 1.

From all the above cases, we conclude that except for p2 = 3, p1 = 2 with
n = 1,m = 1, D is an independent set, and K1,3 being an induced subgraph,
induced by S, GId(Zpm

1 pn
2
) can not be a line graph. For p2 = 3, p1 = 2 with

n = 1,m = 1, i.e., when pm
1 pn

2 = 6, we consider the subset S = {0,1,2,3,4} of
the vertex set V = {0,1,2,3,4,5} of GId(Zpm

1 pn
2
). Clearly, S forms a subgraph

which is isomorphic to κ2 shown in Figure 1. Hence, GId(Zpm
1 pn

2
) can not be a

line graph.

4. Line graph of the idempotent graph of Artinian ring

Consider X to be a finite Artinian ring. Then X ∼= X1×X2×·· ·×Xn where each
Xi, 1 ≤ i ≤ n is a local ring [6].

Lemma 4.1. If r is a positive integer and r ≥ 3 then r−1 is not an idempotent
element of an Artinian Ring X ∼= Zr.

Proof. If possible, let r− 1 ∈ Id(Zr). Then (r− 1)2 ≡ (r− 1) (mod r) ⇒ r−
1 ≡ 1 (mod r)⇒ r|r−2, which is not possible for r ≥ 3. Thus, r−1 /∈ Id(Zr).

Lemma 4.2. If r is a positive integer and r ≥ 4, then 2(r−1) is not an idempo-
tent element of an Artinian ring X ∼= Zr.

Proof. If possible, let 2(r− 1) ∈ Id(Zr). Then [2(r− 1)]2 ≡ 2(r− 1) (mod r)
⇒ 2(r−1)≡ 4 (mod r)⇒ r−1 ≡ 2 (mod r)⇒ r|r−3, which is not possible
for r ≥ 4. Thus, 2(r−1) /∈ Id(Zr) for r ≥ 4.

Theorem 4.3. Let X = X1×X2 be an Artinian ring. Then GId(X) is a line graph
if only if X ∼= Z2 ×Z2.

Proof. We examine the following instances.
Case 1.

(
|Xi|= ri ≥ 4 for both i = 1,2

)
Since |Id(X1)| ≥ 2 and |Id(X2)| ≥ 2, |Id(X1 ×X2)| ≥ 4, ri −1, 2(ri −1), i = 1,2
are not idempotents. We consider the vertex subset S = {(1,1),(0,r2 −1),(r1 −
1,r2 −1),(r1 −1,0)} of GId(X) and then S forms the subgraph K1,3 which is a
forbidden subgraph for a line graph. Hence, GId(X) can not be a line graph.

Case 2.
(
|X1|= r1 < 4 and |X2|= r2 ≥ 4

)
Then we choose a vertex subset S = {(1,1),(0,r2 − 1),(r1 − 1,r2 − 1),(r1 −



86 O. GANI MONDAL - SK. MD. ABU NAYEEM

(1,1) (0,1)

(1,2)

(1,0)

(0,0)

Figure 4: Induced subgraph of GId(Z2 ×Z3).

1,0)} which forms an induced subgraph K1,3 in GId(X). So, GId(X) can not be
a line graph.
Case 3.

(
|X1|= r1 ≥ 4 and |X2|= r2 < 4

)
Same as Case 2.
Case 4.

(
X ∼= Z3 ×Z3

)
In this case, we consider the subset S = {(0,0),(1,1),(0,2),(2,0)} which again
forms an induced subgraph K1,3 in GId(X). So GId(X) can not be a line graph.

Case 5.
(

X ∼= Z2 ×Z3

)
Then we take the subset S = {(0,0),(0,1),(1,1),(1,0),(1,2)} of vertices which
forms an induced subgraph κ2, as depicted in Figure 4. Therefore, GId(X) can
not be a line graph.
Case 6.

(
X ∼= Z3 ×Z2

)
Same as Case 5.
Case 7.

(
X ∼= Z2 ×Z2

)
In this case, {(1,0),(0,1),(1,1),(0,0)} are the vertices, each of which is adja-
cent to the other. Thus, the graph is the complete graph K4 and L(K1,4) ∼= K4.
So it implies that GId(Z2 ×Z2) is a line graph of some graph.

Theorem 4.4. If X ∼= X1 ×X2 ×·· ·×Xn, n ≥ 3 is an Artinian ring, then GId(X)
is a line graph if and only if X1 ∼= X2 ∼= · · · ∼= Xn ∼= Z2.

Proof. Let, |Xi| ≥ 3 for at least one i. Without loss of generality, we consider
that |Xn| ≥ 3. Here, all elements of X are the vertices of GId(X). Since 2 can
not be an idempotent element of Xn, any n-tuple of the form (−,−, . . . ,2) can
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(0,0, ...,0)

(1,0, ...,1) (0,0, ...,1)

(0, ...1,1)

Figure 5: K1,3.

not be an idempotent element of X . Thus, the set of vertices S = {(0,0, ...0),
(1,0, ...,1), (0,0, ...,1),(0, ...1,1)} forms an induced subgraph K1,3 as depicted
in Figure 5. So GId(X) can not be a line graph.

Again, if X1 ∼= X2 ∼= · · · ∼= Xn ∼= Z2,GId(X) being the complete graph K2n , is
a line graph of K1,2n . Hence, the theorem follows.

In [22], Mathil et al. have studied the planarity of the idempotent graph of a
ring. They have established the below lemma.

Lemma 4.5. The idempotent graph of a non-local commutative ring X ∼= X1 ×
X2 × ·· · ×Xn is planar if and only if X ∼= X1 ×X2 and either of the following
holds:

(i) (X1,+) = ⟨Id(X1)⟩ and (X2,+) = ⟨Id(X2)⟩
(ii) (X1,+) = ⟨Id(X1)⟩ and char(X2) = 2

(iii) char(X1) = 2 and char(X2) = 2.

Although the idempotent graph GId(Z2 ×Z2) is both a line graph and a pla-
nar graph, it may be noted that neither every line idempotent graph is planar, nor
every planar idempotent graph is a line graph. For example, GId(Z2 ×Z2 ×Z2)
being the complete graph K8 is a line graph, but not a planar graph. On the other
hand, if X ∼= X1 ×X2 satisfies the conditions (X1,+) = ⟨Id(X1)⟩ and (X2,+) =
⟨Id(X2)⟩, then GId(X) is a planar graph but not a line graph as it contains K1,3
as an induced subgraph (see Figure 3, [22]). If X ∼= X1 ×X2 satisfies the condi-
tions (X1,+) = ⟨Id(X1)⟩ and char(X2) = 2 then also GId(X) is a planar graph,
but not a line graph. This is evidenced by considering the idempotent graph
GId(Z3 ×Z2) which contains κ2 as an induced subgraph.

We summarize the above observation in the form of a theorem as given
below.
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κ1 κ2 κ3 κ4 κ5

κ6 κ7 κ8 κ9

Figure 6: Forbidden induced subgraphs of complements of line graphs.

Theorem 4.6. A line idempotent graph GId(X) of a non-local commutative ring
X ∼= X1 ×X2 ×·· ·×Xn is planar if and only if X ∼= Z2 ×Z2.

5. When the idempotent graphs are the line graph’s complement

We study the case when a line graph’s complement is isomorphic to the graph
GId(Zn) for some positive integer n.

Lemma 5.1. [9] The graph GId(Zn) is a line graph’s complement if and only if
none of the following graphs κ̄i is contained in GId(Zn) as an induced subgraph.

Lemma 5.2. [11] The path graph Pn,n ≥ 6, is not a line graph’s complement.

Proof. Let us take a path graph with at least 6 vertices, as depicted in Figure 7.
If we delete the vertex v4 from the graph, then the remaining parts of the graph
form a subgraph that is isomorphic to κ2. Hence, Pn can not be a line graph’s
complement.

v1 v2 v3 v4 v5 v6
. . .

Figure 7: Pn,n ≥ 6.
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v1 v2

v3v7

v5

v4v6

Figure 8: Cn,n ≥ 7.

Lemma 5.3. [11] The cycle graph Cn,n ≥ 7, is not a line graph’s complement.

Proof. Let us take a cycle graph with at least 7 vertices, as depicted in Figure
8. If we delete the vertices v4 and v7 from the graph, then the remaining part of
the graph forms a subgraph that is isomorphic to κ2. So, Cn,n ≥ 7 is not a line
graph’s complement.

Theorem 5.4. Let X be a finite commutative ring and X ∼= X1 ×X2 ×·· ·×Xk,
k ≥ 3, where each Xi,1 ≤ i ≤ k is a local ring and |Xi| ≥ 3 for at least one
i ∈ {1,2, . . . ,k}. Then GId(X) is not a line graph’s complement.

Proof. Let us consider |Xi|= n. Choose the subset S = {(0,0, ...,0),(1,0, ...,0),
(0,1, ...,0),(0,0, ...,n−1)} of the vertex set V of GId(X). Clearly, S induces the
subgraph κ1. Therefore, GId(X) is not a line graph’s complement.

Theorem 5.5. Let X ∼= X1 ×X2 be a finite commutative ring, where Xi, i = 1,2
are local rings. Then GId(X) is a line graph’s complement if and only if X ∼=
Z2 ×Z2 or Z2 ×Z3.

Proof. We consider the following instances.
Case 1.

(
|X1|= n1 ≥ 3 and |X2|= n2 ≥ 3

)
Consider the vertex subset S = {(0,0),(1,0),(0,1),(n1 −1,n2 −1)}. Clearly, S
induces the graph κ1. So, for this case, GId(X) is not a line graph’s complement.

Case 2.
(
|X1|= 2 and |X2|= n > 3

)
There are two possibilities.
Subcase 2.1:

(
3 /∈ Id(X2)

)
Consider the subset S = {(0,0),(1,0),(0,1),(1,2)} which induces the subgraph
κ1.
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(0,1) (1,1)
(0,2)

(1,0)

(0,0)

(1,2)

Figure 9: GId(X = Z2 ×Z3).

Subcase 2.2:
(

3 ∈ Id(X2)
)

Choose the subset S = {(0,1),(1,0),(1,1),(0,2),(0,3),(1,3)} of the vertex set
of GId(X). Clearly, it induces the subgraph κ6.

Case 3.
(
|X1|= 2 and |X2|= 3, i.e., X ∼= Z2 ×Z3

)
In Figure 9, the graph is shown.

Case 4.
(
|X1|= 2 and |X2|= 2, i.e., X ∼= Z2 ×Z2

)
The graph is a complete graph. Obviously, GId(X) is the line graph’s comple-
ment.

Evidently, GId(X) is a line graph’s complement in all possible cases.
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