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LIE PRODUCT AND FIXED POINTS PRESERVERS

A. TAGHAVI - R. NEMATI

Let B(X) be the algebra of all bounded linear operators on a complex
Banach space X . In this paper, it is determined the form of surjective maps
φ : B(X) → B(X) that satisfy F (φ(A)φ(B)−φ(B)φ(A)) = F (AB−BA)
for every A,B ∈ B(X), where F(A) denotes the set of all fixed points of
an operator A ∈ B(X).

1. Introduction

Preserving problems on operator algebras have attracted attention of many au-
thors in the last decades. These problems concern the question of characterizing
the form of all maps on operator algebras that leave invariant a certain property,
and many results exposing the algebraic structure of such maps are obtained.
Recently, some preserver problems concern certain properties of different types
of products of operators (cf. [1, 2, 4–13]).

Let B(X) denote the algebra of all bounded linear operators on a complex
Banach space X . Let A ∈ B(X). Recall that a vector x ∈ X is a fixed point of
A, whenever we have Ax = x. It is clear that the set of all fixed points of A is a
subspace of X . Denote by F(A) and dim F(A) the set of all fixed points of A
and the dimension of F(A), respectively.

Given a vector x ∈ X and a linear functional f ∈ X∗. The rank at most one
operator, x⊗ f is defined by (x⊗ f )z = f (z)x for all z ∈ X . Note that
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x⊗ f is nilpotent if and only if f (x) = 0,

and

x⊗ f is idempotent if and only if f (x) = 1.

Denote by P1(X) the set of all rank one idempotent operators.
Recall the lattice, Lat(A), is the set of all invariant subspaces of A and so

F(A) ∈ Lat(A) for every A ∈ B(X) (see [3]). Recall also that the set of fixed
points of the operator x⊗ f is given by:

F(x⊗ f ) =

{
span{x} if x⊗ f is idempotent,
{0} if x⊗ f is not idempotent.

Authors in [11] characterized the forms of surjective maps on B(X) which
preserve the dimension of fixed points of products of operators. More pre-
cisely, it was shown that if φ : B(X) → B(X) is a surjective map which satis-
fies dim F(AB) = dim F(φ(A)φ(B)), for every A,B ∈ B(X), then there exists
an invertible operator S ∈ B(X) such that φ(A) = SAS−1 for all A ∈ B(X) or
φ(A) = −SAS−1 for all A ∈ B(X). Authors in [13], considered the maps φ :
B(X)→ B(X) and φ : MnB(X)→ B(X) satisfying F(A+B) = F(φ(A)+φ(B))
and dimF(A+B) = dimF(φ(A)+ φ(B)), respectively. Moreover, authors in
[12], considered the forms of surjective maps on B(X) which preserve the fixed
points of triple Jordan products of operators, i.e., F(ABA) = F(φ(A)φ(B)φ(A)),
for all A,B ∈ B(X).

Authors in [4] characterized the forms of surjective maps on B(X) which
preserve the Jordan product. More precisely, it was shown that if φ : B(X) →
B(X) is a surjective map which satisfies

F (φ(T )φ(A)+φ(A)φ(T )) = F (TA+AT )

for all A,T ∈ B(X), then there exists a nonzero scalar α ∈ C with α2 = 1 such
that φ(T ) = αT for all T ∈ B(X).

In [7] author showed that if φ : B(X) → B(X) is a surjective additive map
which satisfies

F (AB+BA)⊆ F (φ(A)φ(B)+φ(B)φ(A)) ,

for every A,B ∈ B(X), then φ(A) = A, for every A ∈ B(X) or φ(A) = −A, for
every A ∈ B(X).

The Lie product of A,B ∈ B(X) is defined as [A,B] = AB−BA. The aim of
this paper is to continue these works by studying maps on B(X) which preserve
the fixed points of Lie products of operators. The complete form of our main
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result is as following:
Main theorem. Let X be a complex Banach space with dimX ≥ 4. Let φ :
B(X)→ B(X) be a surjective map. Then φ satisfies

F (φ(A)φ(B)−φ(B)φ(A)) = F (AB−BA) ,

for all A,B ∈ B(X) if and only if there exist a nonzero scalar γ ∈ C with γ2 = 1
and a scalar function τ : B(X)→C such that φ(A)= γA+τ(A)I for all A∈B(X).

2. Preliminaries and Notations

In this text, we denote by F1(X) and N1(X) the set of all rank at most one
operators and the set of all rank one nilpotent operators on X , respectively on
X . For every operator T ∈ B(X), let N(T ) be the kernel of T , and R(T ) be its
range.

Lemma 2.1. Let A ∈ B(X). The following statements are equivalent:
(i) A ∈ CI,
(ii) F (AT −TA) = {0}, for all T ∈ P1(X).

Proof. Since (i)⇒ (ii) is obvious, we need only to prove the implication (ii)⇒
(i). To prove this claim, we show that for every x ∈ X , x and Ax are linearly de-
pendent. Suppose it is not, so there exists x ∈ X such that x and Ax are linearly
independent. We distinguish two cases:

Case 1. Let x,Ax and A2x are linearly independent, it follows that there
exists f ∈ X∗ such that

f (x) = 1, f (Ax) = 0, f
(
A2x

)
=−2.

Set x⊗ f . So if T = x⊗ f then (AT −TA)(x+Ax) = x+Ax, hence we get
x+Ax ∈ F(AT −TA). This is a contradiction.

Case 2. If not, then there exist a ̸= 0 and b ∈ C such that Ax = aA2x+ bx.
Let f ∈ X∗ such that f (x) = 1 and f (Ax) = 1−η , where η is a complex scalar
satisfying η2a+η(1− 2a)+ b− 1 = 0. Consider an operator T ∈ B(X) such
that T = x ⊗ f . Hence we have (AT −TA)(ηx+Ax) = ηx + Ax which is a
contradiction. So for every x ∈ X , x and Ax are linearly dependent and hence
according to the statement of [8, Lemma 2.4] should be included there exists a
scalar λ ∈ C such that A = λ I.
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Lemma 2.2. Let A and B be two operators. The following statements are equiv-
alent:
(i) There exists a scalar λ ∈ C such that A = B+λ I,
(ii) F(AT −TA) = F(BT −T B) for all T ∈ P1(X).

Proof. (i)⇒ (ii) is obvious.
(ii) ⇒ (i). If F(AT − TA) = F(BT − T B) = {0} for all T ∈ P1(X), then

from Lemma 2.1 we have A,B ∈ CI. It is easily shown that A = B+ λ I, for
some scalar λ ∈ C.

Assume that F(AT − TA) ̸= {0} for some T ∈ P1(X). It follows from
Lemma 2.1, that there exists x ∈ X such that x and Ax are linearly independent.
Suppose x,Ax and Bx are linearly independent. Similar to proof of Lemma 2.1,
we obtain ηx+Ax ∈ F(AT −TA), where η ∈ C. On the other hand F(BT −
T B) ⊆ span{x,Bx} which follows ηx+Ax ∈ span{x,Bx}. This is a contradic-
tion.
Now, x,Ax and Bx are linearly dependent for all x ∈ X . Lemma 2.4 in [9] tell us
that there exist β ,λ ∈C such that A = βB+λ I. By hypothesis, F(BT −T B) =
F((βB+λ I)T −T (βB+λ I)). Hence F(BT −T B) = F(β (BT −T B). Since
F(BT −T B) ̸= {0}, we conclude β = 1.

Lemma 2.3. For a nonzero operator A ∈ B(X), the following statements are
equivalent:
(i) A ∈ F1(X)+CI (ii) dim F(AT −TA)≤ 1, f or all T ∈ B(X)

Proof. For (i) ⇒ (ii), let T ∈ B(X) be an arbitrary operator, and consider a
operator A = x⊗ f +λ I where x ∈ X , f ∈ X∗ and λ ∈ C. Note that for every
y ∈ X we have (AT −TA)y = f (Ty)x− f (y)T x.

If A = x ⊗ f is non nilpotent we have x /∈ F (AT −TA). If it’s nilpotent
then one of two vectors x or T x is not in F (AT −TA). Hence, we obtain that
dim F (AT −TA)≤ 1.

Conversely, if A = λ I where λ is a nonzero scalar, then the sentence is
complete. Suppose that there exists a vector x ∈ X such that x,Ax and A2x are
linearly independent. Let T ∈ B(X) such that

T x = 0, TAx =−x and T
(
A2x

)
=−2Ax.

Then {
(AT −TA)x = x
(AT −TA)Ax = Ax

which implies that span{x,Ax} ⊆ F (AT −TA) is a contradiction.
Therefore x,Ax and A2x are linearly dependent for all x ∈ X , then from Lemma
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2.4 in [9] we have

A2 = λA+aI, f or some scalars λ ,a ∈ C. (1)

Case 1. Let A be a non-scalar operator such that A is injective. We have a ̸=
0. Indeed, if a = 0 then A(A− λ I)x = 0 for every x ∈ X . From dimN(A) =
0 follows A = λ I which is a contradiction. Thus A is invertible and so it is
surjective. Since A is a non-scalar operator there exist linearly independent
vectors xi ∈ X , i = 1,2 such that Ax1 = x2. From dimX ≥ 4 and invertibility of A
there exist xi ∈ X , i = 3,4 such that xi ∈ X , i = 1,2,3,4 are linearly independent
vectors and Ax3 = x4. We choose T ∈ B(X) to be an operator satisfying

T xi = 0, i = 1,3 and T x j =−x j−1, j = 2,4.

It is easy to show (AT −TA)xi = xi, i = 1,3. This is a contradiction.

Case 2 If A is not injective then we obtain a = 0. Hence (A−λ I)A = 0. It
follows that R(A−λ I)⊂ N(A).

Suppose that dimR(A− λ I) ≥ 2. There exist xi,yi ∈ X , i = 1,2 such that
(A−λ I)xi = yi and y1,y2 ∈ N(A) are linearly independent vectors. Hence Axi ̸=
λxi. Since y1,y2 ∈ N(A) we can obtain {x1,y1,y2} and {x2,y1,y2} are linearly
independent vectors.

Now, we choose T ∈ B(X) to be an operator satisfying

T xi = 0, and TAxi =−xi, i = 1,2.

One can get (AT −TA)(xi) = xi for i = 1,2. Note that from linearity y1 and y2
we obtain x1 and x2 are linearly independent vectors. This is a contradiction.
Therefore, we have dimR(A−λ I)≤ 1 and so A ∈ F1(X)+CI.

3. Proof of Main Theorem

Clearly, we only need to prove the necessary implication.
Step 1. For every operator R ∈ B(X), we have φ(R) ∈ F1(X)+CI if and

only if R ∈ F1(X)+CI.
If φ(R) ∈ F1(X)+CI, then for all T ∈ B(X) we have

dimF(RT −T R) = dimF(φ(R)φ(T )−φ(T )φ(R))≤ 1.
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By Lemma 2.3 we have R ∈ F1(X)+CI.
Conversely, if dim F(RT −T R)≤ 1, then using Lemma 2.3 and surjectivity of
φ we have

φ(R) ∈ F1(X)+CI.

Step 2. For every A ∈ N1(X) there exist scalars λA,γA ∈C such that φ(A) =
γAA+λAI.

Let A = z⊗h ∈ N1(X). From Step 1, there exist z
′ ∈ X , h

′ ∈ X∗ and λ ∈ C
such that φ(z⊗ h) = z

′ ⊗ h
′
+ λ I. Firstly, we show that z and z

′
are linearly

dependent. Assume that z and z
′
are linearly independent. There exists x ̸∈ N(h)

such that x and z
′

are linearly independent. We can choose f ∈ X∗, such that
f (x) = 0 = f (z

′
) and f (z)h(x) = 1. From step 1, there exist y ∈ X , g ∈ X∗ and

γ ∈ C such that φ(x⊗ f ) = y⊗g+ γI. We have

span{z}= F((z⊗h)(x⊗ f )− (x⊗ f )(z⊗h))

= F(φ(z⊗h)φ(x⊗ f )−φ(x⊗ f )φ(z⊗h)

= F((z
′ ⊗h

′
)(y⊗g)− (y⊗g)(z

′ ⊗h
′
)).

Hence we have

g(z)h
′
(y)z

′ −h
′
(z)g(z

′
)y = z. (2)

Also,

span{x}= F((x⊗ f )(z⊗h)− (z⊗h)(x⊗ f ))

= F(φ(x⊗ f )φ(z⊗h)−φ(z⊗h)φ(x⊗ f ))

= F(y⊗gz
′ ⊗h

′ − z
′ ⊗h

′
y⊗g),

which follows

h
′
(x)g(z

′
)y−g(x)h

′
(y)z

′
= x. (3)

By acting f on both direction equation (3) we obtain

h
′
(x)g(z

′
) f (y) = 0. (4)

It follows h
′
(x)g(z

′
) = 0 or f (y) = 0.

If h
′
(x)g(z

′
)= 0, then from (3) we have x and z′ are linearly dependent which

is a contradiction.
If f (y) = 0, then by acting f on both direction equation (2) we obtain f (z) =

0 which is a contradiction. Therefore, z and z
′
are linearly dependent.
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Without loss of generality, we can write φ(z⊗h) = z⊗h
′
+λ I.

Now, we show h and h
′

are linearly dependent. If not, there exist x ∈ X
such that h(x) ̸= 0 and h

′
(x) = 0. Hence, we can choose f ∈ X∗ such that

f (x) = 0 and f (z)h(x) = 1. As above there exist f
′ ∈ X∗ and γ ∈ C such that

φ(x⊗ f ) = y⊗ f
′
+ γI. We have

span{z}= F((z⊗h)(x⊗ f )− (x⊗ f )(z⊗h))

= F(φ(z⊗h)φ(x⊗ f )−φ(x⊗ f )φ(z⊗h))

= F((z⊗h
′
)(y⊗ f

′
)− (y⊗ f

′
)(z⊗h

′
))

= {0}.

That is a contradiction. Therefore, there exist two scalar γA,λA ∈ C such that
φ(A) = γAA+λAI.

Step 3. There exist a nonzero scalar γ ∈ C with γ2 = 1 and a map λ :
B(X)→ C such that φ(A) = γA+λ (A)I for every A ∈ P1(X).
Let A = x⊗ f ∈ P1(X) and N = z⊗ h ∈ N1(X). By Step 1 and Step 2 there
exist y ∈ X , g ∈ X∗ and η ∈ C such that φ(x⊗ f ) = y⊗g+λAI and φ(z⊗h) =
γNz⊗h+λNI. Assume that x and y are linearly independent.
We continue to prove this Step in the following two cases.
Case 1. f ,g are linearly independent.

Then we can choose z ∈ Ker f \Kerg and h ∈ X∗ such that γAg(z)h(y) = 1
and h(z) = 0. We can conclude

{0}= F((z⊗h)(x⊗ f )− (x⊗ f )(z⊗h))

= F(φ(z⊗h)φ(x⊗ f )−φ(x⊗ f )φ(z⊗h))

= F(γA((z⊗h)(y⊗g)− (y⊗g)(z⊗h))

= span{z}.

That is a contradiction.
Case 2. f ,g are linearly dependent. We can choose z /∈ Ker f and define h ∈ X∗

such that γAg(z)h(y) =−1, f (z)h(x) = 1 and h(z) = 0, where, A = z⊗h. Then

z ∈ F((z⊗h)(x⊗ f )− (x⊗ f )(z⊗h)).

But
z ̸∈ F((z⊗h)(y⊗g)− (y⊗g)(z⊗h)).

That is a contradiction. Therefore, without of we can write φ(x⊗ f ) = x⊗g+
λAI.
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Now, suppose that g and f are linearly independent. There exists z ∈ X such
that h(z) = 0 = g(z) and f (z)h(x) = 1. Hence, we can write

span{z}= F((z⊗h)(x⊗ f )− (x⊗ f )(z⊗h))

= F(φ(z⊗h)φ(x⊗ f )−φ(x⊗ f )φ(z⊗h))

= F((z⊗h)(x⊗g)− (x⊗g)(z⊗h))

= {0}.

That is a contradiction. Therefore, φ(A) = γAA+λ I.
Let A ∈ P1(X), in fact A is a non-scalar operator and A ̸= 0. By Lemma 2.1 there
exists B ∈ P1(X) such that F(AB−BA) ̸= {0}. We can conclude

F(AB−BA) = F(φ(A)φ(B)−φ(B)φ(A))

= F(γAγB(AB−BA)).

It follows γAγB = 1.
For A ∈ P1(X) we have

{0}= F(AI − IA)

= F(φ(A)φ(I)−φ(I)φ(A))

= F(γA(Aφ(I)−φ(I)A))

= F((A(γA)φ(I)− (γAφ(I))A)).

which follows γAφ(I) = β I. Because this equality holds for every A ∈ P1(X),
we have γA = cte and so we obtain φ(A) = γA+λAI with γ2 = 1.

Step 4. φ takes the desired form.
From Step 3 we have

F(AT −TA) = F(φ(A)φ(T )−φ(T )φ(A))

= F(γφ(A)T − γT φ(A)),

for every T ∈ P1(X) and A ∈ B(X). This identity together with Lemma 2.2
proved that there exists a map τ : B(X)→C such that φ(A) = γA+τ(A)I for all
A ∈ B(X) with γ2 = 1.
This completes the proof.
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