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FREDHOLM-VOLTERRA INTEGRAL EQUATION

OF THE FIRST KIND WITH POTENTIAL KERNEL

M.H. FAHMY - M.A. ABDOU - E.I. DEEBS

A series method is used to separate the variables of position and time for
the Fredholm-Volterra integral equation of the �rst kind and the solution of
the system in L2[0, 1]× C[0, T ], 0 ≤ t ≤ T < ∞ is obtained, the Fredholm
integral equation is discussed using Krein�s method. The kernel is written in
a Legendre polynomial form. Some important relations are also, established
and discussed.

1. Introduction.

We consider an integral equation of Fredholm-Volterra integral equation
of the �rst kind, where the Fredholm integral term is measured with respect to
position while Volterra is measured with respect to time. The solution will be
obtained in the space L2[0, 1]× C[0, T ], 0 ≤ t ≤ T < ∞.

Consider the general kernel form of the Fredholm integral equation

(1.1)






kµ,λ
n,m (x , y) =

xλ

y�+λ−1
W µ

n,m (x , y),

W ν
n,m (x , y) =

� ∞

0

Jn(t x )Jm(t y)t
ν dt,
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where Jn(z) is the Bessel function of the �rst kind.
Many problems of mathematical physics, theory of elasticity, viscody-

namic �uids and mixed problems of mechanics of continuous media reduce to
Fredholm integral equation with a kernel that takes a special form of equation
(1.1) ( see [1], [2], [3], [4] ).

The monographs [5], [14] give many of spectral relationships in terms
of orthogonal polynomials for the integral operators frequently encountered in
mathematical physics, and describe a method of orthogonal polynomials based
on them. Spectral relations and their applications to the mixed problems of the
theory of elasticity are given in [1], [4]. Mkhitarian [11] used the generalized
potential theory method to obtain the spectral relationships for a Fredholm
integral equation of the �rst kind withCarleman kernel (k(x , y) = |x−y|−ν, 0 ≤
ν < 1, � = 0).

(1.2) k(x , y) =
√

x y

∞�

0

tν J± 1
2
(t x )J± 1

2
(t y) dt, ( (x , y)∈ [−1, 1] )

(for symmetric and skew - symmetric, respectively.)
The two papers [12], [13] of Mkhitarian and Abdou, respectively, using

Krein�s method, obtained the spectral relationships for the integral operator
containing Carleman�s kernel and a logarithmic kernel ( k(x , y) = − ln |x −
y|, � = 0 )

(1.3) k(x , y) =
√

x y

� ∞

0

J± 1
2
(t x ) J± 1

2
(t y) dt, ( (x , y)∈ [−1, 1] )

(for symmetric and skew - symmetric, respectively.)
Kovalenko [10] developed the Fredholm integral equation of the �rst

kind for the mechanics mixed problems of continuous media and obtained an
approximate solution for the Fredholm integral equation of the �rst kind with

an elliptic kernel k(x , y) = 1
x+y

E
�√

2 x y

x+y

�

(1.4) k(x , y) =

� ∞

0

J0(x t) J0(y t) dt, ( (x , y)∈ [−1, 1] )

The goal here is to obtain the solution of Fredholm-Volterra integral equation
of the �rst kind in the space L2[0, 1]× C[0, T ]. The method used starts with a
series form to separate the variables of position and time, secondly we solve the
Fredholm integral equation of the �rst kind, using Krein�s method for solving
the integral equation of the �rst kind with potential kernel.
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2. Basic equations.

Consider the integral equation

(2.1)

� �

�

k(x − ξ, y − η) p(ξ, η, t) dξdη +

� t

0

F(τ ) p(x , y, τ ) dτ

= π [γ (t) + β(t) x − f (x , y)],

under the conditions

(2.2)






N1(t) =

� �

�

p(x , y, t) dxdy,

N2(t) =

� �

�

x y p(x , y, t) dxdy.

Here p(x , y, t) is the unknown potential function, � is called the domain of
integration, the kernel k(x − ξ, y − η) is considered in the potential function
form as

k(x − ξ, y − η) =
1

�
(x − ξ )2 + (y − η)2

, ( k(x − ξ, y − η)∈ C([�]× [�] ),

the given function f (x , y) ∈ L2(�), while γ (t), β(t), F(t), N1(t) and N2(t)
are given positive and continuous functions belong to C(0, T ), (0 < T < ∞).

The problem is investigated from the three dimensional contact problem
of frictionless impression of a rigid surface (G, ν) having an elastic material
occupying the domain �, where f (x , y) ∈ L2(�) describing the surface of
stamp. This stamp is impressed into an elastic layer surface (plane) by a variable
known force N1(t), whose eccentricity of application e(t), and a variable known
momentum N2(t), (0 ≤ t ≤ T ), that case rigid displacements γ (t) and β(t) x ,
respectively. Here G is the displacement magnitude, ν is Poisson�s coef�cient
and F(t) represents the characterized resistance function of the material.

For t = 0, the integral equation (2.1) becomes

� �

�

k(x − ξ, y − η) p(ξ, η, 0) dξdη = π [ γ (0)+ β(0) x − f (x , y) ],

which can be written as

(2.3)

� �

�

k(x − ξ, y − η) φ(ξ, η) dξdη = g(x ),



58 M.H. FAHMY - M.A. ABDOU - E.I. DEEBS

where φ(ξ, η) = p(ξ, η, 0), and g(x ) = π [ γ (0) + β(0) x − f (x , y) ].
Equation (2.3) represents an integral equation with respect to position, while if
k(x , y) = 0 in (2.1), then we have

� t

0

F(τ ) p(x , y, τ ) dτ = π [ γ (t) + β(t) x − f (x , y) ],

which represents a Volterra integral equation with respect to time.

3. Method of separation of variables.

Consider the solution of the integral equation (2.1) in the form

p(x , y, t) =

∞�

j=0

pj (x , y, t),

that can be approximated as

(3.1) p(x , y, t) � p0(x , y, t) + p1(x , y, t),

where p0(x , y, t), p1(x , y, t) are called the complementary and the particular
solution of the integral equation (2.1), respectively.

Using (3.1) in (2.1), we have

(3.2)

� �

�

k(x − ξ, y − η) pj (ξ, η, t) dξ dη +

� t

0

F(τ ) pj (x , y, τ ) dτ

= π δj [ γ (t) + β(t) x − f (x , y) ]

where

(3.3) δj =

�
1, j = 0
0, j = 1.

Let t = 0 in the formula (3.2), we have

(3.4)

� �

�

k(x − ξ, y − η) pj (ξ, η, 0) dξ dη = π δj [γ (0)+ β(0) x − f (x , y)].

Subtracting the two equations (3.2) and (3.4), we get

(3.5)

� �

�

k(x − ξ, y − η) [ pj (ξ, η, t) − pj (ξ, η, 0) ] dξdη
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+

� t

0

F(τ ) pj (x , y, τ ) dτ = π δj [ γ (t) − γ (0) + (β(t) − β(0)) x ].

Assume the approximate solution of (3.1) in the following series expression
form

(3.6) pj (x , y, t) =

∞�

k=1

[ A
j
2k (t) p2k(x , y) + A

j
2k−1(t) p2k−1(x , y) ].

Here, we represent the solution of equation (3.5) in the form of even and odd
terms in position and time, hence equation (3.5) becomes

(3.7)

∞�

k=1

{

� �

�

[(A
j
2k (t)− A

j
2k (0)) p2k (ξ, η)+ (A

j
2k−1(t)−

−A
j
2k−1(0)) p2k−1(ξ, η) ]. k(x − ξ, y − η) dξdη} +

+

∞�

k=1

[

� t

0

[ A
j
2k (τ ) p2k(x , y)+ A

j
2k−1(τ ) p2k−1(x , y)] F(τ ) dτ ]

= π δj [ γ (t) − γ (0) + (β(t) − β(0)) x ].

Assume in (3.7) the following notations

(3.8)

�
A

j
2k (t) − A

j
2k (0) = B

j
2k(t),

A
j
2k−1(t) − A

j
2k−1(0) = B

j
2k−1(t),

we obtain

(3.9)

∞�

k=1

{

� �

�

[B
j
2k (t) p2k(ξ, η)+ B

j
2k−1(t) p2k−1(ξ, η)] k(x −ξ, y−η) dξ dη}

+

∞�

k=1

{

� t

0

[ A
j
2k (τ ) p2k (x , y) + A

j
2k−1 (τ ) p2k−1(x , y) ] F(τ ) dτ }

= π δj [ γ (t) − γ (0) + (β(t) − β(0)) x ].

Firstly, let j = 1 in (3.9), we obtain

(3.10) A1k (t) + Nk

� t

0

A1k (τ ) F(τ ) dτ = A1k (0), (Nk = (λk )
−1),
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where, we use the spectral relation theorem [4]

(3.11)

� �

�

pk(ξ, η) k(x − ξ, y − η) dξdη = λk pk (x , y), (k ≥ 1).

Secondly, we let j = 0 in the formula (3.9), we have

(3.12)






A02k (t) + N2k

� t

0

A02k (τ ) F(τ ) dτ =

= π N2k C2k (x , y) [ γ (t) − γ (0) ],

A02k−1(t)+ N2k−1

� t

0

A02k−1(τ ) F(τ ) dτ =

= π N2k−1 C2k−1 (x , y) [ β(t)− β(0) ],

where

(3.13)

∞�

k=1

C2k (x , y) p2k(x , y) = 1,

∞�

k=1

C2k−1(x , y) p2k−1(x , y) = x .

and A02k (0) = A02k−1(0) = 0. From the two equations (3.11) and (3.12), we can
assume that the solution p(x , y, t) takes the form

(3.14) p(x , y, t) =

∞�

k=1

[ A0k (t) + A1k (t) ] pk (x , y),

under the condition of convergence

| A0k (t) + A1k (t) |
2 < �, (� < 1).

Equation (3.10) and the two formulae of equation (3.12) represent a Volterra
integral equation of the second kind with continuous kernel, i.e. the three inte-
gral equations are equivalent to the following formula, on noting the difference
notation

(3.15) φ(t) + λ

� t

0

k(τ ) φ(τ ) dτ = f (t).

To solve the integral equation (3.15), many different methods are stated and used
in [9], [15], one of thesemethods is changing the integral equation to differential
equation. So, differentiate (3.15) with respect to t , one has

dφ

dt
+ λ k(t) φ(t) = f �(t),
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which represents a linear differential equation of the �rst kind and its solution
is given by using the integrating factor. Hence, we have

φ(t) = e−λ
�

k(t ) dt [

�

eλ
�

k(t ) dt f �(t) dt + C ],

where C is the constant of integration, which can be determined from the
boundary conditions.

Now, we are going to solve the Fredholm integral equation of the �rst kind
which obtained from the mixed problem by using Krein�s method when the
contact domain � takes the form

� =
�
(x , y)∈ � :

�
x 2 + y2 ≤ a, z = 0

�
.

4. Krein�s method for solving Fredholm integral equation of the �rst kind.

Many different methods can be used to obtain the solution of Fredholm
integral equation of the �rst kind with singular kernel. Krein�s method is
considered as one of the best methods in the theory of elasticity, for solving
the singular integral equations, where the singularity disappears and the integral
equations can be solved directly without singularity.

Principal of Krein�s method [1].

The principal of Krein�s method is : to solve the integral equation

(4.1)

� b

a

k(x , y) φ(y) dy = π f (x ),

we must �nd a function q(x , a) that satis�es the integral equation

� b

a

k(x , y) q(y, a) dy = 1,

and, in this case, equation (4.1) has a unique solution in the form

φ(x ) =
1

2M �(a)

�
d

du

� a

−a

q(y, a) f (y) dy

�

q(x , a)

−
1

2

� a

|x|

q(x , u)
d

du

�
1

M �(u)

d

du

� u

−u

q(y, u) f (y) dy

�

du
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−
1

2

d

dx

� a

|x|

q(x , u)

M �(u)

� � u

−u

q(y, u) d f (y)

�

du, (| x |< a),

where

M(u) =

� a

0

q(y, u) dy,

M �(u) =
d

du
M(u).

Here, the Fredholm integral equation of the �rst kind, with a kernel takes one
form of Weber - Sonin integral, will established from the integral equation with
a potential kernel. Also, Krein�s method is used to solve the Fredholm integral
equation.

Let us consider the integral equation

� �

�

p(ξ, η) dξdη
�
(x − ξ )2 + (y − η)2

= π g∗(x , y), (g∗(x , y) = θ [δ − f (x , y)])

{� = (x , y, z)∈ � :
�

x 2 + y2 ≤ a, z = 0},

under the static condition

� �

�

p(x , y) dxdy = P < ∞.

Using the polar coordinates

x = r cos θ, y = r sin θ,

ξ = ρ cosφ, η = ρ sinφ,

we have

(4.2)

� a

0

� π

−π

p(ρ, φ)ρ dρdφ
�

r2 + ρ2 − 2rρ cos(θ − φ)
= g(r, θ ),

(4.3)

� a

0

� π

−π

p(ρ, φ)ρ dρdφ = P,

where g(r, θ ) = 2πθ [δ − g∗(r, θ )].
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To separate the variables, we assume

(4.4) p(r, θ ) = pm (r)
�
cosmθ

sinmθ
, g(r, θ ) = gm(r)

�
cosmθ

sinmθ
,

substituting from (4.4) in (4.2), we get

� a

0

� π

−π

cosmφ dφ
�

r2 + ρ2 − 2 r ρ cos(θ − φ)
pm(ρ) ρ dρ = gm(r) cosmθ.

Using the substitution γ = θ − φ , we obtain

(4.5)

� a

0

km (r, ρ) pm(ρ) dρ = gm(r),

where

(4.6) km (r, ρ) =

� π

−π

cosmφ dφ
�

r2 + ρ2 − 2rρ cosφ
.

Also, the boundary condition (4.3) takes the form

(4.7)

� a

0

pm(ρ) dρ =

�
P
2π

, m = 0
0 , m ≥ 1

To write the kernel (4.6) in one forms of equation (1.1), �rstly, we use the
following relation [6]

(4.8)

� 2π

0

cosmφ dφ

[1− 2 z cosφ + z2]α
=
2 π (α)m zm

m!
F(α, m + α; m + 1; z2),

and

(4.9) F(α, α +
1

2
− β; β +

1

2
; z2) = (1+ z)−2α F(α, β; 2 β;

4z

1+ z2
),

( | z | < 1, Re(α) > 0; (α)m =
�(m + α)

�(α)
),

where (α)m is called the Pochhmmer symbol, and F(a, b; c; z) is the Gauss
hypergeometric function. Hence, equation (4.6) can be written as

km (r, ρ) =
2

√
π �(m + 1

2
) rm

rhom m!
F(m +

1

2
,
1

2
; m + 1;

ρ2

r2
), ( ρ < r ),
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one can, also, proves that

km (r, ρ) =
2
√

π �(m + 1
2
) rm

ρm m!
F(m +

1

2
,
1

2
; m + 1;

r2

ρ2
), ( r < ρ ).

Using the formula (4.9), we have

(4.10) km (r, ρ) =
2
√

π�(m + 1
2
)(r ρ)m

(r + ρ)2m+1 m!
F(m+

1

2
, m+

1

2
; 2m+1;

4 r ρ

r2 + ρ2
).

The formula (4.10) tells us that the value of km (r, ρ) is independent of r < ρ or
ρ < r .

Secondly, using the famous relation [7]

(4.11)

� ∞

0

Jα(ax ) Jα(bx ) x−β dx

=
aα bα 2−β �(α + 1−β

2
)

(a + b)2α−β+1�(α + 1)�( 1+β

2
)
F(α +

1− β

2
, α +

1

2
; 2α + 1;

4ab

(a + b)2
),

if α = m, β = 0, a = r, b = ρ , in equation (4.11), we get

(4.12)

� ∞

0

Jm(rx )Jm(ρx ) dx =
�(m + 1

2
)(rρ)m

√
π(r + ρ)2m+1m!

F(m +
1

2
, m +

1

2
; 2m + 1;

4 r ρ

(r + ρ)2
).

Hence, using equation (4.12) in (4.10), we obtain

(4.13) km (r, ρ) = 2 π

� ∞

0

Jm(rt) Jm(ρt) dt .

The kernel of equation (4.13) represents as one form of Weber - Sonin integral
formula.

Method of solution

UsingKrein�s method [1], the general solutionof the Fredholm integral equation

K φ =

� a

0

k(t, s)sφ(s) ds = f (t),
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with a kernel in the form of equation (4.13) and under the static condition (4.7)
can be written in the form

(4.14) φ(s) =
γ

π2
√
1 − s2

−
1

π2

� 1

0

du
√

u2 − s2

d2

du2

� u

0

t f (t) dt
√

u2 − t2
,

where

(4.15) γ =

�
d

du

� u

0

t f (t) dt
√

u2 − t2

�

u=1

, (a = 1).

The solution of the problem can be derived in the following theorem.

Theorem 1.1. The eigenfunctions of equation (4.14), when the known function
takes a Legendre polynomial form, has the form

(4.16) φ(s) =
(−1)n An 2

2n (2n + 1) (n!)2

π2
√
1− s2 (2n)!

P2n(
�
1− s2),

where P2n(y) is the Legendre polynomial.

The proof of this theorem depends on the following two lemmas.

Lemma 1.1. For all integers (n > 0), the value of the integro - differential term

(4.17) Ln(u) =
d2

du2

� u

0

t P2n(
√
1− t2)

√
u2 − t2

dt,

takes the form

(4.18) Ln(u) = (2n+1) u An

�
3P

(0, 3
2 )

n−1 (2u2−1)+(2n+3)u2 P
(1, 52 )

n−2 (2u
2−1)

�
,

where

(4.19) An =
(−1)n

√
π �(n + 1)

2 �(n + 3
2
)

,

and P
(α, β)
n (x ) is the Jacobi polynomial of order n (n ≥ 0), (P

(α, β)
n (x ) = 0,

n < 0).
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Proof. To prove this lemma, let us assume the following parameters

ξ =
�
1 − u2 , η =

�
1 − t2,

in the integral form

(4.20) Ln(u) =

� u

0

t P2n(
√
1 − t2)

√
u2 − t2

dt,

to obtain

(4.21) Ln(u) = Ln(
�
1 − ξ2) =

� 1

ξ

η P2n(η)
�

η2 − ξ2
dη.

Using the following relations (see [7])

P2n(x ) = C
1
2

2n (x ) = P
(0, − 1

2
)

n (2x 2 − 1),

we have

(4.22) Ln(u) =

� 1

ξ

P
(0, − 1

2 )
n (2 η2 − 1) η

�
η2 − ξ2

dη,

where Cλ
n (x ) is the Gegenbauer polynomial. Putting t = 2 ξ2−1, v = 2 η2−1,

in equation (4.22), we obtain

(4.23) Ln(u) = 2− 3
2

� 1

t

P
(0, − 1

2
)

n (v) dv
√

v − t .

Taking in (4.23) the transformation v = 1− (1− t) τ , we have

(4.24) Ln(u) = 2− 3
2

� 1

0

(1− t)
1
2 (1− τ )

−1
2 P

(0, − 1
2 )

n [1− (1− t) τ ] dτ.

Using the integral relation (see Eq. (7. 392), pp. 856 of [8])

(4.25)

� 1

0

tλ−1 (1− t)µ−1 P (α, β)
n (1− γ t) dt =

=
�(n + α + 1) �(λ) �(µ)

�(1+ α) �(λ + µ) n!
.3F2(−n, n + α + β + 1, λ; α + 1, λ + µ;

γ

2
),
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and the following relation (see [7])

(4.26) P (α, β)
n (y) =

�
n + α

n

�

F(−n, n + α + β + 1; α + 1;
1− y

2
).

The integral formula (4.24) becomes

Ln(u) = 2− 1
2

√
1− t

�( 3
2
) �(n + 1)

�(n + 3
2
)

P
( 12 , −1)
n (t).

Using the substitution t = 2ξ2 − 1, ξ =
√
1− u2, we get

(4.27) Ln(u) = u An P
(−1, 1

2 )
n (2u2 − 1),

where

An =
(−1)n

√
π �(n + 1)

2 �(n + 3
2
)

.

In the view of the Jacobi differential relation (see [7])

(4.28) D P (α, β)
n (x ) =

n + α + β + 1

2
P
(α+1, β+1)
n−1 (x ),

the �rst derivative of equation (4.27) takes the form

(4.29)
d

du
Ln(u) = An

�
P
(−1, 1

2
)

n (2u2 − 1)+ (2n + 1) u2 P
(0, 3

2
)

n−1 (2u2 − 1)
�
.

The required result of equation (4.17) is obtained, after differentiating equation
(4.29) with respect to u, and using equation (4.28), again.

Hence, the lemma can be proved. The value of the constant γ is obtained
by putting u = 1 in equation (4.29), to obtain

(4.30) γ = (2n + 1) An .

Lemma 1.2. With the aid of the two equations (4.25) and (4.26), we can obtain
the following two relations

(4.31) z . 3F2(−n + 2, n +
5

2
, 1; 2,

5

2
; z)

=
3

(2n + 3) (n − 1)
−

3
√

π (n − 2)!

2 (2n + 3) �(n + 1
2
)

P
( 12 , 1)

n−1 (1− 2z),

and

(4.32) z . 3F2(−n + 2, n +
5

2
, 1; 2,

3

2
; z)

=
1

(2n + 3) (n − 1)
−

√
π (n − 2)!

(2n + 3) �(n − 1
2
)

P
(− 1

2 , 2)

n−1 (1− 2 z),

where 3F2(α1, α2, α3; β1, β2; z) is the generalized hypergeometric series.
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Proof. Using the relation (4.25), we get

� 1

0

(1− t)
1
2 P

(1, 5
2
)

n−2 [1− (1−ξ )t] dt =
2(n − 1)

3
.3F2(−n +2, n +

5

2
, 1; 2,

5

2
; z),

where

3F2(−n + 2, n +
5

2
, 1; 2,

5

2
; z) =

∞�

m=0

(−n + 2)m (n + 5
2
)m (1)m

m! (2)m (
5
2
)m

zm .

Putting

f (z) = z . 3F2(−n + 2, n +
5

2
, 1; 2,

5

2
; z),

and differentiating it, we obtain

d f (z)

dz
= F(−n + 2, n +

5

2
;
5

2
; z),

hence, using equation (4.26), we get

d f (z)

dz
=
3

√
π (n − 2)!

4 �(n + 1
2
)

P
( 32 , 2)

n−2 (1− 2z).

Finally, integrating the above equation with respect to z and using the formula
(4.28) with the boundary condition f (0) = 0, we have

(4.33) f (z) =
3

(2n + 3) (n − 1)
−

3
√

π (n − 2)!

2 (2n + 3) �(n + 1
2
)

P
( 12 , 1)

n−1 (1− 2z).

Similarly, for the equation (4.32), we put

g(z) = z . 3F2(−n + 2, n +
5

2
, 1; 2,

3

2
; z),

and we �nd

(4.34) g(z) =
1

(2n + 3)(n − 1)
−

√
π (n − 2)!

(2n + 3)�(n − 1
2
)

P
(− 1

2 , 2)

n−1 (1− 2z),

which completes the proof.
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Now, we are in a position to evaluate the integral

(4.35) Bn(t) =
1

π2

� 1

t

du
√

u2 − t2

d2

du2

� u

0

s f (s) ds
√

u2 − s2
.

Introducing (4.18) in (4.35) to get

Bn(t) =
(2n + 1) An

π2

�
3

� 1

t

u P
(0, 3

2
)

n−1 (2u2 − 1) du
√

u2 − t2

+ (2n + 3)

� 1

t

u3 P
(1, 5

2 )

n−2 (2u2 − 1) du
√

u2 − t2

�
,

then using the substitution ξ = 2t2 − 1, η = 2u2 − 1, we obtain

(4.36) Bn(t) =
(2n + 1) An

2
√
2 π2

�
3

� 1

ξ

(η − ξ )−
1
2 P

(0, 3
2 )

n−1 (η) dη +
(2n + 3)

2

� 1

ξ

(η − ξ )
1
2 P

(1, 52 )

n−2 (η) dη +
(2n + 3)

2
(1+ ξ )

� 1

ξ

(η − ξ )−
1
2 P

(1, 5
2 )

n−2 (η) dη

�
.

Taking the parameter η = 1 − (1 − ξ ) τ, (0 < τ < 1), the formula (4.36) can
be written in the form

(4.37) Bn(t) =
(2n + 1) An

2
3
2 π2

�
1− ξ

�
3Gn(ξ ) +

1

2
(2n + 3) (1− ξ ) Qn(ξ )

+
1

2
(2n + 3) (1+ ξ ) Hn(ξ )

�
, (ξ = 2t2 − 1),

where

Gn(ξ ) =

� 1

0

(1− τ )−
1
2 P

(0, 3
2 )

n−1 [1− (1− ξ ) τ ] dτ,

Qn(ξ ) =

� 1

0

(1− τ )
1
2 P

(1, 5
2 )

n−2 [1− (1− ξ ) τ ] dτ,

and

Hn(ξ ) =

� 1

0

(1− τ )−
1
2 P

(1, 5
2 )

n−2 [1− (1− ξ ) τ ] dτ.

If we use the famous integral relation of (4.25), we get

(4.38) Gn(ξ ) =

√
π (n − 1)!

�(n + 1
2
)

P
( 12 , 1)

n−1 (ξ ).



70 M.H. FAHMY - M.A. ABDOU - E.I. DEEBS

Similarly, for Qn(ξ ), by following the same previous steps, we obtain

(4.39) Qn(ξ ) =
2

(2n + 3) (1− ξ )

�
2−

√
π (n − 1)!

�(n + 1
2
)

P
( 12 , 1)

n−1 (ξ )
�
.

Also, for Hn(ξ ), we have

(4.40) Hn(ξ ) =
4

(2n + 3) (1− ξ )

�
1−

√
π (n − 1)!

�(n − 1
2
)

P
(− 1

2
, 2)

n−1 (ξ )
�
.

Finally, substituting from equations (4.38), (4.39) and (4.40) in equation (4.37),
we get

(4.41) Bn(t) = (2n + 1) An2
3
2

�
1− ξ π2

� 2
√

π (n − 1)!

�(n − 1
2
)

� 1− ξ

n − 1
2

P
( 1
2
, 1)

n−1 (ξ ) − (1+ ξ ) P
(− 1

2
, 2)

n−1 (ξ )
�

+ 4
�
,

where ξ = 2t2 − 1.

We write the following relations

L(1)n (ξ ) =
1− ξ

n − 1
2

P
( 12 , 1)

n−1 (ξ ),

L(2)n (ξ ) = (1+ ξ ) P
(− 1

2 , 2)

n−1 (ξ ),

to represent the Jacobi polynomial in the Legendre polynomial form, we write

P
( 1
2
, 1)

n−1 (ξ ) =
(−1)n

(2n + 1) t

d

dt

�
P2n(

�
1− t2)

�
,

hence, L(1)n (ξ ) becomes

(4.42) L(1)n (ξ ) =
4 (−1)n+1

(4n2 − 1)

√
1− t2

t2

�
(1− y2) P �

2n(y)
�
, (y =

�
1− t2).

If we use the recurrence relation (see [7])

(1− x 2) P �
n(x ) = (n + 1) [ x Pn(x )− Pn+1(x ) ],
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then, the formula (4.42) becomes :

(4.43) L(1)n (ξ ) =
4 (−1)n−1

(2n − 1)

y

1− y2
[ y P2n(y)− P2n+1(y) ],

(y =
�
1− t2, t =

�
1+ ξ

2
).

Also, by following the same way for L(2)n (ξ ), we have

L(2)n (ξ ) = 2 t2 P
(− 1

2
, 2)

n−1 (2t2 − 1).

Using the formula (see [6])

Cλ
2n (x ) = (λ)n(

1

2
)n P

(λ− 1
2 , − 1

2 )
n (2 x 2 − 1),

when λ = 5
2
and n is replaced by n − 1, we get

C
5
2

2n−2(x ) = (
5

2
)n−1(

1

2
)n−1 P

(2, − 1
2 )

n−1 (2 x 2 − 1),

hence,

P
(− 1

2 , 2)

n−1 (2 x 2 − 1) =
3 (−1)n−1

(2n + 1) (2n − 1)
C

5
2

2n−2 (x ).

Finally, we have

L(2)n (ξ ) =
6 t2 (−1)n−1

(2n + 1) (2n − 1)
C

5
2

2n−2 (x ).

Using the following relation (see [7])

Dm Cλ
n (x ) = 2m (λ)m Cλ+m

n−m (x ); ( Dm =
dm

dxm
, m = 1, 2, . . . , n ),

the value of L(2)n (ξ ) takes the form

L(2)n (ξ ) =
2 (−1)n−1 (1− y2)

(4 n2 − 1)
d2dy2 P2n(y).

From the two Legendre differential equations (see [6])

(1 − y ��) P ��
2n(y) − 2 y P �

2n(y) + 2n (2n + 1) P2n(y) = 0.
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P �
2n(y) =

2n + 1

1 − y2
[ y P2n(y) − P2n+1(y) ],

we get

(1−y2) P ��
2n(y) =

2 y (2n + 1)

1− y2
[ y P2n(y) − P2n+1(y) ] − 2 n (2n+1) P2n(y),

then, L(2)n (ξ ) takes the form

(4.44) L(2)n (ξ ) =
4 (−1)n−1

2n − 1

� y2 P2n(y) − y P2n+1(y)

1− y2
− n P2n(y)

�
.

Hence, we obtain the values of L(1)n (ξ ), L(2)n (ξ ) in the Legendre polynomial
form. If we write

Ln(ξ ) = L(1)n (ξ ) − L(2)n (ξ ),

then substituting from equations (4.43) and (4.44) in the equation of Ln(ξ ), we
can easily, show that

(4.45) Ln(ξ ) =
4 n (−1)n−1

2n − 1
P2n(y),

and hence, substitute from equation (4.45) in equation (4.41), we get

(4.46) Bn(t) =
(2n + 1) An

π2
√
1− t2

�
1 +

(−1)n−1
√

π n!

�(n + 1
2
)

P2n(
�
1− t2)

�
.

Introduce equations (4.30) and (4.46) in (4.14), then the theorem can be proved.

5. Conclusions.

The following interested cases can be discussed :

(1) The potential function kernel reduces to one formula of the Weber - Sonin
integral forms :

k(u, v) = 2 π

� ∞

0

Jn(tu) Jn(tv) dt .

(2) The spectral relations for the integral operator Kφ contain the elliptic
kernel

k(x , y) =
1

π (x + y)
E(
2

√
x y

x + y
),



FREDHOLM-VOLTERRA INTEGRAL EQUATION. . . 73

included as a special case of our work. Kovalenko [10], developed the Fredholm
integral equation of the �rst kind for the mechanics mixed problems of continu-
ous media and obtained the eigenfunctions of the problem when the kernel is in
the form of elliptic function.

(3) The integral equation with logarithmic kernel is contained as a special case
of the potential kernel, also, the Carleman kernel is contained too.

(4) The eigenfunctions for the contact problem of zero harmonic symmetric
kernel of the potential function are included as special case m = 0. Also, the
eigenfunctions of the contact problem of the �rst and higher order (m ≥ 1)
harmonic are included as special cases (see equations (4.5) and (4.13)).

(5) The value of the kernel (4.13) can be represented in the Legendre polyno-
mial as follows

km (u, v) = π (u v)m
∞�

n=0

�2(n + m + 1
2
) Pm

n (u) Pm
n (v)

�2(n + m + 1) . (m + 2n + 1
2
)−1

.

(6) Krein�s method is considered one of the best methods for solving the
Fredholm integral equation of the �rst kind for the contact problems in the
theory of elasticity depending on the known function avoiding the singular point
through the work.
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