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AN APPROACH TO ZAREMBA’S CONJECTURE
THROUGHOUT FIBONACCI SEQUENCES

K. AYADI - S. KALIA - M. SAADAOUI

According to Zaremba’s conjecture, any integer is estimated to occur
as the denominator of a finite continued fraction whose partial quotients
are restricted by 5. This conjecture is proven true for infinity many in-
tegers, and we illustrate it for more additional ones that are related to
Fibonacci sequences and its generalization.

1. Introduction

Zaremba’s conjecture is an attractive open question in the theory of continued
fractions. It’s stated that for any positive integer q, there exists an integer p with
0 < p < q and gcd(p,q) = 1 such that

p
q
= [0,a1,a2, . . . ,as] with max{a1,a2, . . . ,as} ≤ 5 .

In fact, this bound is conjectured to be replaced by 4 except for q= 6,54,150
([12, A195901]) and replaced by 3 except 23 values, the largest one being
q = 6234 ([2],[9, p.990]). Hensley [6] conjectured that for a large, prime de-
nominator, a bound equal to 2 is sufficient. Ever since, further tightening this
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bound has been an ongoing problem in the number theory community. Although
great progress has been made in measure theory in recent years (see, e.g., [3, 8]
and references therein), the essential problem remains unsolved. Zaremba’s
conjecture is connected with some questions about the theory of numerical in-
tegration. In recent years, there has been significant progress in relation to the
Zaremba conjecture, associated with deep ideas about the growth of groups and
the affine sieve. It has been proved by Niederreiter [9] that Zaremba’s conjec-
ture holds for special q of exponential type, for example, for those being powers
of 2, 3 and 5, and the bound being 3. Yodphotong and Laohakosol [14] proved
for q being powers of 6. By computations in [2], Zaremba’s conjecture holds
with bound 3 for q = 2n with 6 ≤ n ≤ 35. In [1], the first author and Komatsu
have proved Zarembas’s conjecture for infinitely many integers including that
for q2n

for all n≥ 0 where 2≤ q≤ 100. On the other hand, it is well known that
Zaremba’s conjecture holds for the Fibonacci sequence (Fn)n and also for Fi-
bonacci number (Fn(a))n, for a fixed 2≤ a≤ 5 as consequence of the continued
fraction of the ratio of two consecutive of these numbers, then, by the com-
putation of the rational number representing [0,b, . . . ,b︸ ︷︷ ︸

m

,a, . . . ,a︸ ︷︷ ︸
n

] = [0,bm,an],

[0,a, . . . ,a︸ ︷︷ ︸
n

,b, . . . ,b︸ ︷︷ ︸
m

,a, . . . ,a︸ ︷︷ ︸
n

] = [0,an,bm,an], the first author and Komatsu [1]

have proved the following result.

Theorem 1.1. For all 1≤ a≤ 5 and 1≤ b≤ 5, Zaremba conjecture is valid for

1. Fn+1(a)Fm+1(b)+Fn(a)Fm(b) (n≥ 1, m≥ 1)

2. Fn+1(a)2Fm+1(b) +Fn(a)2Fm−1(b) + 2Fn+1(a)Fn(a)Fm(b) (n ≥ 1, m ≥
2) and their 2n-th powers except for a = 5 or b = 5.

In [5], Dromta has given the continued fraction expansion of
Fn

(Fn+1 +1)
explicitly:

Theorem 1.2. For n, l ≥ 1 we have
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1. The continued fraction expansion of
Fn

(Fn+1 +1)
is given by

Fn

(Fn+1 +1)
=



[0,1
n−1

2 ,5,4
n−13

6 ] for n = 12l +1,

[0,1
n−3

2 ,2,3,4
n−9

6 ] for n = 12l +3,

[0,1
n−1

2 ,5,4
n−11

6 ,3] for n = 12l +5,

[0,1
n−3

2 ,2,3,4
n−13

6 ,5] for n = 12l +7,

[0,1
n−1

2 ,5,4
n−9

6 ] for n = 12l +9,

[0,1
n−3

2 ,2,3,4
n−11

6 ,3] for n = 12l +11,

[0,1
n
2−2,2] for n = 4l,

[0,1
n
2−1,3] for n = 4l +2.

2. The continued fraction expansion of
Fn(2)

(Fn+1(2)+1)
is given by

Fn(2)
(Fn+1(2)+1)

=


[0,2

n−1
2 ,4,2

n−5
2 ,3] for n = 4l +1,

[0,2
n−1

2 ,1,1,1,2
n−5

2 ,3] for n = 4l +3.

(1)

3. The continued fraction expansion of
Fn(4)

(Fn+1(4)+1)
is given by

Fn(4)
(Fn+1(4)+1)

=


[0,4

n−1
2 ,5,1,(1,1,1)

n−3
2 ,2] for n = 4l +1,

[0,4
n−1

2 ,3,2,(1,1,1)
n−3

2 ,2] for n = 4l +3.

(2)

According to this theorem, Zaremba’s conjecture holds for Fn+1+1, Fn+1(2)+
1 and Fn+1(4)+1 for n satisfying the congruence listed in the theorem.

In this paper, Zaremba’s conjecture will be examined in relation to the Fi-
bonacci sequences as complementary results to the previous two theorems. Sec-
tion 2 contains a background on continued fractions of real numbers and Fi-
bonacci sequences. In Section 3, we introduce three lemmas needed to prove
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our results. The fourth and fifth Sections contain, respectively, our main results
and their proofs.

2. Continued fraction, Fibonacci sequence and Properties

A continued fraction expansion is an expression of the shape:

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

which we represent using a flat notation to save space by

[a0,a1, · · · ,an, · · · ],

where (ai)i≥1 are positive integers and a0 ∈ Z. Every continued fraction con-
verges to a real number, and the equality of two such continued fraction implies
the equality of the corresponding partial quotients, except for the ambiguity in
the last digits in the terminating case due to n = (n−1)+1/1.
The nth convergent of the continued fraction [a0,a1, · · · ,an, · · · ] is given by

pn

qn
= [a0,a1, · · · ,an],

where the numerators pn and denominators qn are given in terms of the coeffi-
cients according to the matrix identity(

a0 1
1 0

)(
a1 1
1 0

)
...

(
an 1
1 0

)
=

(
pn pn−1
qn qn−1

)
and both pn and qn are obtained recursively via the same linear three-term re-
currence relation, that is{

pn = an pn−1 + pn−2 for n≥ 1
qn = anqn−1 +qn−2 for n≥ 1

(3)

with the initial values

p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.

The following proposition collect basic properties needed throughout.

Proposition 2.1. For n≥ 1, we have
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1.
α pn + pn−1

αqn +qn−1
= [a0,a1, · · · ,an,α], where α ∈ R∗.

2. qn pn−1− pnqn−1 = (−1)n.

3. [an,an−1, . . . ,a1] =
qn

qn−1
.

The reader is directed to [10] or [13] for detailed information, proofs and
further results on continued fractions of a real number.
From the equality (1) of this we deduce that, if pn/qn = [a0,a1,a2, . . . ,an] and
rm/sm = [b0,b1, . . . ,bm], then

[a0,a1, . . . ,an,b0,b1, . . . ,bm] =
pn−1sm + pnrm

qn−1sm +qnrm
. (4)

We need also to recall some properties of continued fraction which are de-
tailed in [11]. For β ∈Q∗ and a,b ∈ N∗ we have

[a,−b,−β ] = [a−1,1,b−1,β ]. (5)

[. . . ,a,0,b, . . .] = [. . . ,a+b, . . .]. (6)

Our work is based on the Fibonacci number sequences, which are described
by:

Fn =


0 if n = 0
1 if n = 1
Fn+1 = Fn +Fn−1 for all n≥ 1.

(7)

The sequence’s initial few values are 0,1,1,2,3,5,8,13,21,34,55,89,144, . . .
([12, A000045]).
The Fibonacci polynomials are a polynomial sequence that can be considered a
generalization of the Fibonacci numbers. These polynomials are defined by the
recurrence relation:

Fn(a) =


0 if n = 0
1 if n = 1
Fn+1(a) = aFn(a)+Fn−1(a) for all n≥ 1.

(8)

Clearly Fn(1) = Fn. The first few Fibonacci polynomials are:
F0(a) = 0, F1(a) = 1, F2(a) = a, F3(a) = a2 + 1, F4(a) = a3 + 2a, F5(a) =
a4 +3a2 +1, F6(a) = a5 +4a3 +3a ...
The sequence (Ln)n of Lucas numbers is defined in accordance with the same
principle as Fibonacci numbers: Ln = Ln−1 +Ln−2. Here, however, the starting
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values are L0 = 2 and L2 = 1. There are countless connections between the
Fibonacci and Lucas numbers, Fibonacci and Lucas polynomials. The last ones
are denoted by (Ln(a))n, ([12, A114525]).

We derive some properties and recurrence relations of Fibonacci polynomi-
als, see [7]. Let a≥ 1 be an integer, then for all integers m,n≥ 1

Fn+1(a)Fn−1(a)−F2
n (a) = (−1)n (Cassini’s identity) (9)

Fn+1(a)+Fn−1(a) = Ln(a) (10)

F2n(a) = F2
n+1(a)−F2

n−1(a) = (2Fn+1(a)−Fn(a))Fn(a) (11)

F2n−1(a) = F2
n (a)+F2

n−1(a). (12)

3. Primarily Lemmas

The following lemmas are keys to our main results:

Lemma 3.1. Let for a positive integer n, pn/qn = [0,a1,a2, . . . ,an] = [0,
−→
Xn]. Let

y be a nonzero integer. Then

1. [0,
−→
Xn,y,

−→
Xn] =

ypnqn + p2
n +qn pn−1

yq2
n +qn(pn +qn−1)

.

2. [0,
−→
Xn,y,−

−→
Xn] =

ypnqn− p2
n +qn pn−1

yq2
n +qn(qn−1− pn)

.

3. [0,
−→
Xn,y,

←−
Xn] =

yqn pn + pnqn−1 +qn pn−1

yq2
n +2qnqn−1

.

Proof. By the identity (1) and (3) of the Proposition 2.1:

1.

[0,
−→
Xn,y,

−→
Xn] = [0,

−→
Xn,y+ pn/qn]

=
pn(y+ pn/qn)+ pn−1

qn(y+ pn/qn)+qn−1

=
ypnqn + p2

n +qn pn−1

yq2
n +qn(pn +qn−1)

.
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2.

[0,
−→
Xn,y,−

−→
Xn] = [0,

−→
Xn,y− pn/qn]

=
pn(y− pn/qn)+ pn−1

qn(y− pn/qn)+qn−1

=
ypnqn− p2

n +qn pn−1

yq2
n−qn pn +qnqn−1

.

3.

[0,
−→
Xn,y,

←−
Xn] = [0,

−→
Xn,y+qn−1/qn]

=
pn(y+qn−1/qn)+ pn−1

qn(y+qn−1/qn)+qn−1

=
yqn pn + pnqn−1 +qn pn−1

yq2
n +2qnqn−1

.

Lemma 3.2. Let n, a, b, c, d, x and y be positive integers, then

1

1+
1

1+
1

1+ . . .︸︷︷︸
n−4 1’s

1

1+
1

ax+cy
bx+dy

=
(aFn +bFn−1)x+(cFn +dFn−1)y
(aFn+1 +bFn)x+(cFn+1 +dFn)y

.

Proof. The continued fraction expansion

1

1+
1

1+
1

1+ . . .︸︷︷︸
n−4 1’s

1

1+
1
a
b

with n 1’s in total and where a and b are constants, can be evaluated from the
bottom up. By absorbing a few of the ones into the fraction at the bottom, we
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get

1

1+
1

1+
1

1+ . . .︸︷︷︸
n−4 1’s

1

1+
1
a
b

=
1

1+
1

1+
1

1+ . . .︸︷︷︸
n−5 1’s

1

1+
1

a+b
a

=
1

1+
1

1+
1

1+ . . .︸︷︷︸
n−6 1’s

1

1+
1

2a+b
a+b

We can see that a Fibonacci-like sequence fn is forming, with f0 = b, f1 = a and
the fraction at the bottom is a ratio between consecutive terms of this sequence.
This Fibonacci-like sequence can be reduced to a linear combination of Fn and
Fn+1, since any two beginning values can be expressed and the Fibonacci recur-
rence will be satisfied by a linear combination. Since F0 = 0 and F1 = 1, the
coefficient of Fn+1 must be b. Then, since F1 = 1 and F2 = 1 and the coefficient
of Fn+1 is b, the coefficient of Fn must be a− b. Therefore, our Fibonacci-like
sequence is bFn+1 +(a−b)Fn and the original expression is equal to

1

1+
1

1+
1

1+ . . .︸︷︷︸
n−4 1’s

1

1+
1

aF1+bF0
aF0+bF−1

=
aFn +bFn−1

aFn+1 +bFn
.

since there are n 1’s. Similarly, the continued fraction expansion

1

1+
1

1+
1

1+ . . .︸︷︷︸
n−4 1’s

1

1+
1

ax+cy
bx+dy
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where a, b, c, and d were constants, is equal to

(aFn +bFn−1)x+(cFn +dFn−1)y
(aFn+1 +bFn)x+(cFn+1 +dFn)y

since each variable’s form its own Fibonacci-like sequence of coefficients.

Lemma 3.3. Let n be an odd integer. Let m, a and b be positive integers. Then

1

Ln +
1

Ln +
1

Ln + . . .︸︷︷︸
m−4 Ln’s

1

Ln +
1
a
b

=
aFnm +bFnm−n

aFnm+n +bFnm
.

Proof. For the continued fraction expansion

1

Ln +
1

Ln +
1

Ln + . . .︸︷︷︸
m−4 Ln’s

1

Ln +
1
a
b

where n is odd, rather than ending up with a Fibonacci-like sequence, we end
up with a sequence with a similar recursion, fi+2 = Ln fi+1 + fi. We can solve
this recursion through generating functions. If we say f (x) = ∑

∞
i=0 fixi and look

for fi when f0 = 0 and f1 = 1, then

f (x) = Lnx f (x)+ x2 f (x)+ x =⇒ (1−Lnx− x2) f (x) = x

=⇒ f (x) =
x

1−Lnx− x2 .

Solving the quadratic on the bottom, we get

Ln±
√

L2
n +4

−2
=−Ln±

√
(2Fn+1−Fn)2 +4

2

=−
Ln±

√
4F2

n+1−4Fn+1Fn +F2
n +4

2

=−
Ln±

√
4(F2

n+1−Fn+1Fn−F2
n )+5F2

n +4

2

=−
Ln±

√
4(Fn+1Fn−1−F2

n )+5F2
n +4

2
.
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By Cassini’s identity (9) and the fact that n is odd, we get

−
Ln±

√
−4+5F2

n +4
2

=
±Fn
√

5−Ln

2
.

As we will see later in the proof for the powers of the golden ratio, this is −φ n

and 1
φ n . So, we get the original generating function is equal to

x
(x+φ n)( 1

φ n − x)
=

1
φn

1
φn−x
− φ n

φ n+x

Fn
√

5
=

1
1−φ nx −

1
1+ x

φn

Fn
√

5
=

∑
∞
i=0(φ

nx)i−∑
∞
i=0(− x

φ n )i

Fn
√

5

=
∞

∑
i=0

φ ni− (− 1
φ n )i

Fn
√

5
xi.

Remembering that n is odd, we get that fi =
φ ni−(− 1

φ
)ni

Fn
√

5
= Fni

Fn
. We see, then that

Fni and therefore Fn(i+1) satisfy the original recurrence, so as we did with the
first pattern, we can express any series as a linear combination of these two.
So,1

1

Ln +
1

Ln +
1

Ln + . . .︸︷︷︸
m−4 Ln’s

1

Ln +
1
a
b

=
1

Ln +
1

Ln +
1

Ln + . . .︸︷︷︸
m−4 Ln’s

1

Ln +
1

a
Fn

Fn∗1+
b

Fn
Fn∗0

a
Fn

Fn∗0+
b

Fn
Fn∗−1

=
1

a
Fn

Fnm+n+
b

Fn
Fnm

a
Fn

Fnm+
b

Fn
Fnm−n

=
aFnm +bFnm−n

aFnm+n +bFnm
.

As with the previous pattern, we could apply this to a fraction with two variables
in the same way.

4. Main Results

We begin by results on sum, square, product and cube of Fibonacci sequences
as complementary result to Theorem 1.1.

Theorem 4.1. Zaremba’s conjecture holds for

1F−n = (−1)n+1Fn
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1. Fn+1(a)Fn+1(b)−Fn(a)Fn(b), 1≤ a,b≤ 5 and n≥ 1.

2. yFn+1(a)2 +2Fn(a)Fn+1(a), 1≤ y≤ 5, 1≤ a≤ 5 and n≥ 1.

3. yF2
n+1(a), 1≤ y≤ 6, 1≤ a≤ 5 and n≥ 1.

Corollary 4.2. Zaremba’s conjecture holds for:

(
[n/2]

∑
j=0

(
n− j

j

)
bn−2 j)Fn+1± (

[(n−1)/2]

∑
j=0

(
n− j−1

j

)
bn−2 j−1)Fn,

for all n≥ 1 and for 1≤ b≤ 5.

Corollary 4.3. Zaremba’s conjecture holds for

i) 2Fn+2Fn+1,

ii) Fn+1Fn+4,

iii) 2Fn+1Fn+3,

iv) Fn+1(Fn+3 +Ln+2),

for all n≥ 1.

Proposition 4.4. Let b and c be two integers such that 1≤ b≤ 5 and 1≤ c≤ 5
and a = bc+1. Then

aFn+1 +bFn

satisfies Zaremba’s conjecture for all n≥ 1.

Theorem 4.5. For n≥ 3, Zaremba’s conjecture holds for:

1. F3
3n+2

2. F3
3n+4

The following two theorems are complementary to Dromta’s result: Theo-
rem 1.2.

Theorem 4.6. Zaremba’s conjecture holds for
Fn+1 +1, Fn+1(2)+1 and Fn+1(4)+1 for all n≥ 1.

Theorem 4.7. Zaremba’s conjecture holds for

1. (Fn+1(a)+1)2 +(Fn(a)+1)2 for a = 1, a = 2 and a = 4 and n≥ 1.
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2. F2n+1(a)+2Fn+1(a)+Fn(a)+1 for

(a) a = 1 and n ∈ {12l +1,12l +3,12l +5,12l +7,12l +9,12l +11},
(b) a = 2,4 and n ∈ {4l +1,4l +3}.

3. y(Fn+1(a)+ 1)2 + 2(Fn(a)+ 1)(Fn+1(a)+ 1) with 1 ≤ y ≤ 5, for a = 1,
a = 2 and a = 4 and n≥ 1.

4. y(Fn+1(a)+1)2 +(Fn+1(a)+1)(2Fn(a)+1) with 1≤ y≤ 5, for

(a) a = 1 and n ∈ {12l +1,12l +3,12l +5,12l +7,12l +9,12l +11},
(b) a = 2,4 and n ∈ {4l +1,4l +3}.

5. (Fn+1(a)+1)(yFn+1(a)+ y+1) with 1≤ y≤ 5, for

(a) a = 1 and n ∈ {12l +1,12l +3,12l +5,12l +7,12l +9,12l +11},
(b) a = 2,4 and n ∈ {4l +1,4l +3}.

5. Proofs of the main results

We denote for n≥ 1 and for a given positive integer a

Fn(a)
Fn+1(a)

= [0,a1,a2, · · · ,an] = [0,an] = [0,Xn],

and

− Fn(a)
Fn+1(a)

= [0,(−a)n] = [0,−Xn].

Proof. Theorem 4.1
(1). We apply the identity (4) to [0,an,(−b)n] we obtain

[0,an,(−b)n] =
Fn(a)Fn+1(b)−Fn−1(a)Fn(b)
Fn+1(a)Fn+1(b)−Fn(a)Fn(b)

. (13)

We note that, for rendering negative partial quotients positive, we shall use (5),
which gives that

[0,an,(−b)n] = [0,an−1,a−1,1,b−1,1,bn−1].

For a = 1, the property (6) gives:

[0,1n,(−b)n] = [0,1n−1,0,1,b−1,1,bn−1]

= [0,1n−2,2,b−1,1,bn−1].
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For b = 1:

[0,an,(−1)n] = [0,an−1,a−1,1,0,1,bn−1]

= [0,an−2,a−1,2,1n−1].

(2). We apply the identity (1) of Lemma 3.1 for pn = Fn(a) and qn =
Fn+1(a).

(3). We apply the identity (2) of Lemma 3.1 for pn = Fn(a) and qn =
Fn+1(a).

Note that according to (5) we have

[0,
−→
Xn,y,−

−→
Xn] = [0,an,y,−a,(−a)n−1] = [0,an,y−1,1,a−1,an−1].

This why we added in the hypothesis y = 6.
For a = 1, from (6) we get

[0,an,y−1,1,a−1,an−1] = [0,an,y−1,1,0,1,1n−2] = [0,1n,y−1,2,1n−2].

Proof. Corollary 4.2

It is well known that Fn(b) =
[(n−1)/2]

∑
j=0

(
n− j−1

j

)
bn−2 j−1, then the result

is obtained directly from (1) of the Theorems 1.1 and 4.1 by taking a = 1.

Proof. Corollary 4.3
This result is deduced from the identity (2) of the Theorem 4.1.

i) It suffice to take a = 1 and y = 2. Then

2F2
n+1 +2FnFn+1 = 2Fn+1(Fn+1 +Fn)

= 2Fn+1Fn+2.

ii) It suffice to take a = 1 and y = 3. Then,

3F2
n+1 +2FnFn+1 = 2Fn+2Fn+1 +F2

n+1

= Fn+1(2Fn+2 +Fn+1) = Fn+1Fn+4.

iii) It suffice to take a = 1 and y = 4. Then,

4F2
n+1 +2FnFn+1 = Fn+1Fn+4 +F2

n+1 = Fn+1(Fn+4 +Fn+1)

= 2Fn+1Fn+3.
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iv) It suffice to take a = 1 and y = 5. Then, by the property (10):

5F2
n+1 +2FnFn+1 = 2Fn+1Fn+3 +F2

n+1 = Fn+1(2Fn+3 +Fn+1)

= Fn+1(Fn+3 +Ln+2).

Proof. Proposition 4.4
A direct application of lemma 3.2 with x = 1 and y = 0.

Proof. Theorem 4.5
Recall the following property of continued fractions:

[a0,a1, · · · ,an] = [a0,a1, · · · ,an−1 +
1
an

]. (14)

(1) We will convert the continued fraction expansion

[0,4,4,4,
n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,

n−3 4’s︷︸︸︷. . . ,2,2,1,1,
3n−5 1’s︷︸︸︷. . . ,1]

to the corresponding rational number. Clearly, this expansion is equal to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,
n−3 4’s︷︸︸︷. . . ,2,2,

F3n−1

F3n−2

]
.

Then, by a simple calculation using (14), the last expansion is equivalent to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,
n−3 4’s︷︸︸︷. . . ,

5F3n−1 +2F3n−2

2F3n−1 +F3n−2

]
,

which equal to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,
n−3 4’s︷︸︸︷. . . ,4+

F3n−1−2F3n+1

F3n+1

]
or also [

0,4,4,4,
n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,

n−2 4’s︷︸︸︷. . . ,
−F3n+1

F3n+2

]
. (15)

By applying the Lemma 3.3 with n = 3, so that L3 = 4, the expansion (15)
becomes [

0,4,4,4,
n−3 4’s︷︸︸︷. . . ,1,1,1,

F3n+1F3n+3−F3n+2F3n

F3n+1F3n−F3n+2F3n−3

]



AN APPROACH TO ZAREMBA’S CONJECTURE 107

which, by Lemma 3.2, is equal to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,
3F3n+1F3n+3−3F3n+2F3n +2F3n+1F3n−2F3n+2F3n−3

2F3n+1F3n+3−2F3n+2F3n +F3n+1F3n−F3n+2F3n−3

]
.

By using the Fibonacci recurrence (7), this expansion lead to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,
3F3n+1F3n+3−2F3n+2F3n+3 +5F3n+2F3n +2F3n+1F3n

2F3n+1F3n+3−F3n+2F3n+3 +2F3n+2F3n +F3n+1F3n

]
which equal to[

0,4,4,4,
n−3 4’s︷︸︸︷. . . ,

F3n−1F3n+3−F3n+1F3n +2F3n+4F3n

F3n−1F3n+3 +F3n+4F3n

]
.

Hence, by Lemma 3.3, we get that the last expansion is equal to the rational
number

F3n−1F3n+3F3n−F3n+1F2
3n +2F3n+4F2

3n +F3n−1F3n+3F3n−3 +F3n+4F3nF3n−3

F3n−1F2
3n+3−F3n+1F3nF3n+3 +2F3n+4F3nF3n+3 +F3n−1F3n+3F3n +F3n+4F2

3n
.

Some computations, using only the Fibonacci recurrence (7), simplify this ra-
tional number to

F3
3n+1

F3
3n+2

.

Then

F3
3n+1

F3
3n+2

= [0,4,4,4,
n−3 4’s︷︸︸︷. . . ,1,1,1,4,4,

n−3 4’s︷︸︸︷. . . ,2,2,1,1,
3n−5 1’s︷︸︸︷. . . ,1],

yielding the desired result.
(2) We will now convert the continued fraction expansion

[0,4,4,4,
n−3 4’s︷︸︸︷. . . ,3,2,3,4,4,

n−3 4’s︷︸︸︷. . . ,2,2,1,1,
3n−3 1’s︷︸︸︷. . . ,1]

to the corresponding rational number. According to the proof of (1) this expan-
sion is equal to[

0,4,4,4,
n−3 4’s︷︸︸︷. . . ,3,2,3,

F2
3n+3−F3n+4F3n

F3n+3F3n−F3n+4F3n−3

]
. (16)

Applying the equality (14), the continued fraction (16) is equal to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,
24F2

3n+3 +4F3n+4F3n +7F3n+3F3n−7F3n+4F3n+3

7F2
3n+3 +F3n+4F3n +2F3n+3F3n−2F3n+4F3n+3

]
.
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By using the Fibonacci recurrence (7), this expansion lead to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,
17F2

3n+3 +4F3n+4F3n +7F3n+3F3n−7F3n+2F3n+3

5F2
3n+3 +F3n+4F3n +2F3n+3F3n−2F3n+2F3n+3

]
.

The last expansion is equivalent to[
0,4,4,4,

n−3 4’s︷︸︸︷. . . ,
17F2

3n+3 +4F3n+4F3n−7F3n+1F3n+3

5F2
3n+3 +F3n+4F3n−2F3n+1F3n+3

]
which equal to[

0,4,4,4,
n−3 4’s︷︸︸︷. . . ,

3F3n+5F3n+3 +8F3n+4F3n+2

F3n+5F3n+3 +2F3n+4F3n+2

]
. (17)

Hence, by Lemma 3.3, we get that (17) is equal to the rational number

3F3n+5F3n+3F3n +8F3n+4F3n+2F3n +F3n+5F3n+3F3n−3 +2F3n+4F3n+2F3n−3

3F3n+5F2
3n+3 +8F3n+4F3n+2F3n+3 +F3n+5F3n+3F3n +2F3n+4F3n+2F3n

After some computations, using always the Fibonacci recurrence (7), simplify
this rational number to

F3n+5F2
3n+3−F2

3n+3F3n+2

F2
3n+4F3n+6−F2

3n+4F3n+3

which equal to

F3
3n+3

F3
3n+4

.

Then we get

F3
3n+3

F3
3n+4

= [0,4,4,4,
n−3 4’s︷︸︸︷. . . ,3,2,3,4,4,

n−3 4’s︷︸︸︷. . . ,2,2,1,1,
3n−3 1’s︷︸︸︷. . . ,1],

achieving the desired result.

Proof. Theorem 4.6
Our proof is based on the property (3) of Proposition 2.1. We use the iden-

tities in the Theorem 1.2.
We have for n = 12l +1,

Fn

(Fn+1 +1)
= [0,1

n−1
2 ,5,4

n−13
6 ]. Then

(Fn+1 +1)
(Fn +1)

= [4
n−13

6 ,5,1
n−1

2 ] = [42(l−1),5,16l].
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Hence

(F12l+2 +1)
(F12l+1 +1)

−4 =
F12l+2−4F12l+1−3

(F12l+1 +1)

= [0,42l−3,5,16l].

This gives that Fn+1 +1 satisfies Zaremba’s conjecture for n = 12l.
With the same method we prove

F12l+4−4F12l+3−3
(F12l+3 +1)

= [0,42l−2,3,2,16l],

F12l+6−3F12l+5−2
(F12l+5 +1)

= [0,42l−1,5,16l+2],

F12l+8−5F12l+7−4
(F12l+7 +1)

= [0,42l−1,3,2,16l+2],

F12l+10−4F12l+9−3
(F12l+9 +1)

= [0,42l−1,5,16l+4],

F12l+12−3F12l+11−2
(F12l+11 +1)

= [0,42l,3,2,16l+4].

Hence Zaremba’s conjecture holds for
Fn+1 +1 if n ∈ {12l,12l +2,12l +4,12l +6,12l +8,12l +10}.

Further we have

F4l+2(2)−3F4l+1(2)−2
(F4l+1(2)+1)

= [0,22l−2,4,22l],

F4l+4(2)−3F4l+3(2)−2
(F4l+3(2)+1)

= [0,22l−1,1,1,1,22l+1],

F4l+2(4)−2F4l+1(4)−1
(F4l+1(4)+1)

= [0,(1,1,1)2l−1,1,5,42l],

F4l+4(4)−2F4l+3(4)−1
(F4l+3(4)+1)

= [0,(1,1,1)2l,2,3,42l+1].

Hence Zaremba’s conjecture holds for
Fn+1(2)+ 1 and Fn+1(4)+ 1 if n ∈ {4l,4l + 2}. So we obtain the desired

result.

Proof. Theorem 4.7
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1. According to identity (4), if pn/qn = [0,a1,a2, . . . ,an] then

[0,a1,a2, . . . ,an,an, . . . ,a2,a1] =
pnqn + pn−1qn−1

q2
n +q2

n−1
.

The result follows by taking
pn

qn
=

. . .

Fn+1(a)+1
. We obtain that Zaremba’s

conjecture holds for (Fn+1(a)+1)2 +(Fn(a)+1)2.

2. According to identity (4), if pn/qn = [0,a1,a2, . . . ,an] then

[0,a1,a2, . . . ,an,a1,a2, . . . ,an] =
pnqn + pn−1 pn

q2
n +qn−1 pn

.

The result follows by taking
pn

qn
=

Fn(a)
Fn+1(a)+1

. We obtain that Zaremba’s

conjecture holds for (Fn+1(a)+1)2 +(Fn(a)+1)Fn(a), which is equal to
F2n+1(a)+2Fn+1(a)+Fn(a)+1.

3. We apply identity (3) of Lemma 3.1 with
pn

qn
=

. . .

Fn+1(a)+1
.

4. We apply identity (1) of Lemma 3.1 with
pn

qn
=

Fn(a)
Fn+1(a)+1

.

5. We apply identity (2) of Lemma 3.1 with
pn

qn
=

Fn(a)
Fn+1(a)+1

.
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