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THE GENERALIZED DISTANCE SPECTRA OF
THE M-JOIN OF GRAPHS

G. KALAIVANI - R. RAJKUMAR

In this paper, we obtain the generalized distance spectra of the graphs
constructed by 19 unary and 21 binary graph operations of M-join type
when the constituting graphs satisfy some conditions. Also, we deduce
a result on the generalized distance spectrum of the double graph of a
connected regular graph in the literature. As applications, we construct
infinite families of generalized distance cospectral graphs. Also, we con-
struct infinite families of distance (distance Laplacian, distance signless
Laplacian) integral graphs.

1. Introduction

Throughout this paper, we consider only finite and simple graphs. Let G be a
graph with vertex set V (G). We denote u ∼ v (u ≁ v) if the vertices u and v are
adjacent (non-adjacent) in G. For a vertex v in G, NG(v) denotes the set of all
vertices in G which are adjacent with v. The degree of v in G is the cardinality
of the set NG(v). If each vertex of G has the same degree r, then G is said to
be r-regular. The complement of G, denoted by G is defined as the graph with
vertex set V (G) and two distinct vertices are adjacent in G if and only if they
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are non-adjacent in G. The union of two graphs G1 and G2, denoted by G1 ∪G2
is the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The
union of k copies of G is denoted by kG. For u,v ∈V (G), the distance from u to
v in G, denoted by dG(u,v) is defined as the length of a shortest path from u to
v (if it exists); otherwise it is defined to be ∞. G is said to be connected if there
exists a path between any two distinct vertices of G. The diameter of a connected
graph G, denoted by diam(G) is the maximum distance among the vertices of
G. The complete graph and the cycle graph on n vertices are denoted by Kn

and Cn respectively. Km,n denotes the complete bipartite graph having partition
sizes m and n. In denotes the identity matrix of order n and Jn×m denotes the
all one matrix of order n×m. If λ1,λ2, ...,λk are the distinct eigenvalues of a
matrix A with multiplicities m1,m2, ...,mk, then we write the spectrum of A as
λ
(m1)
1 ,λ

(m2)
2 , ...,λ

(mk)
k . If mi = 1, then we write λi instead of λ

(1)
i .

The following question arise naturally in spectral graph theory: ‘to what
extent one can describe the spectra of a given graph in terms of the spectra
of some other graphs?’ In literature, for answering this question, researchers
used the graph operations as a tool to construct graphs from the given graphs.
The adjacency (Laplacian, signless Laplacian, normalized Laplacian) spectra of
graphs constructed by various graph operations have been extensively studied
in the literature by several researchers. For instance, see [3, 6, 9, 13, 14] and the
references therein.

Let G be a graph with V (G) = {v1,v2, . . . ,vn}. The adjacency matrix of G,
denoted by A(G), is the 0−1 matrix of size n×n whose rows and columns are
indexed by V (G) and for i, j = 1,2, . . . ,n, the (i, j)-th entry of A(G) is 1 if and
only if i ̸= j and vi ∼ v j. The distance matrix of a connected graph G, denoted
by D(G), is defined as the square matrix whose rows and columns are indexed
by V (G) and for i, j = 1,2, . . . ,n, the (i, j)-th entry of D(G) is dG(vi,v j) if i ̸= j;
0 otherwise. The transmission of a vertex v of a connected graph G, denoted
by TrG(v), is defined as the sum of the distances from v to all other vertices of
G. The transmission matrix of G, denoted by Tr(G), is defined as the diago-
nal matrix diag(TrG(v1),TrG(v2), . . . ,TrG(vn)). The distance Laplacian matrix
DL(G) and the distance signless Laplacian matrix DQ(G) of G are defined as
Tr(G)−D(G) and Tr(G)+D(G), respectively [2].

The generalized distance matrix [5] Dα(G) of G is defined by Dα(G) =
αTr(G)+ (1−α)D(G) for 0 ≤ α ≤ 1. Notice that D0(G) = D(G), D 1

2
(G) =

1
2 DQ(G), D1(G) = Tr(G) and Dα(G)−Dβ (G) = (α −β )DL(G) for 0 ≤ α,β ≤
1 with α ̸= β .

The spectrum of A(G) (resp. D(G), DL(G), DQ(G), Dα(G)) is called the
adjacency (resp. distance, distance Laplacian, distance signless Laplacian, gen-
eralized distance) spectrum of G. If the spectrum of A(G) (resp. D(G), DL(G),
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DQ(G), Dα(G)) contains only integers, then G is said to be an adjacency (resp.
distance, distance Laplacian, distance signless Laplacian, generalized distance)
integral graph. Two graphs are said to be adjacency (resp. distance, distance
Laplacian, distance signless Laplacian, generalized distance) cospectral if they
have same adjacency (resp. distance, distance Laplacian, distance signless Lapla-
cian, generalized distance) spectrum. For more results on the distance (distance
Laplacian, distance signless Laplacian and generalized distance) spectrum of
graphs, we refer the reader to [1, 2, 4, 5, 7, 10, 12] and the references therein.

Let G and H be graphs with V (G) = {u1,u2, . . . ,un} and V (H) = {v1,v2, . . . ,
vm} and let M be a 0− 1 matrix of size n×m. The M-join of G and H [8],
denoted by G ∨M H, is the graph obtained by taking one copy of G and H,
and joining the vertices ui and v j if and only if the (i, j)-th entry of M is 1 for
i = 1,2, . . . ,n; j = 1,2, . . . ,m.

The definition of the M-join of two graphs is extended to a sequence of k
graphs as follows [8]: Let Hk = (H1,H2, . . . ,Hk) be a sequence of graphs with
|V (Hi)| = ni for i = 1,2, . . . ,k and let M = (M12,M13, . . . ,M1k,M23,M24, . . . ,
M2k, . . . ,M(k−1)k), where Mi j is a 0−1 matrix of size ni×n j. The M-join of the

graphs in Hk, denoted by
∨

MHk, is the graph
k⋃

i, j=1,
i< j

(
Hi ∨Mi j H j

)
.

The rest of this paper is arranged as follows: In Section 2, we determine the
spectra with corresponding eigenvectors of two families block matrices of spe-
cific form. In Section 3, we determine the generalized distance spectra with their
corresponding eigenvectors of the graphs constructed by various unary graph
operations of M-join type defined in [8] when the constituting graphs are reg-
ular, by using the results of Section 2. In Section 4, we define several binary
graph operations using the unary graph operations considered in Section 3 and
determine the generalized distance spectra of the graphs constructed by these
binary graph operations when the constituting graphs are regular, by using the
results of Section 2. In addition, we construct an infinite family of distance (dis-
tance Laplacian, distance signless Laplacian) integral graphs using the results
of Sections 3 and 4. Also, we construct infinite pairs of generalized distance
cospectral graphs by using the results of Sections 3 and 4. A part of this paper
is a part of the dissertation [11].

2. Spectra of two families of block matrices

Let A be a real symmetric matrix of order n having equal row sums r. Then
A has n real eigenvalues, let them be (r =)λ1,λ2, . . . ,λn with corresponding
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orthogonal eigenvectors (Jn×1 =)X1,X2, . . . ,Xn. Now, we consider the matrix

M =

[
a1Jn +a2A+a3In b1Jn +b2A+b3In

b1Jn +b2A+b3In a1Jn +a2A+a3In

]
(1)

where ai,b j ∈ R for i, j = 1,2,3. Let R be the diagonal matrix of order 2n,
whose i-th diagonal entry is the i-th row sum of the matrix M, i.e.,

R = [(a1 +b1)n+(a2 +b2)r+a3 +b3]I2n.

For 0 ≤ α ≤ 1, we define the matrix Mα by

Mα = αR+(1−α)M. (2)

Theorem 2.1. The eigenvalues of Mα are given by

(i) α[(a1 + b1)n+ (a2 + b2)r − (a2 + b2)λi] + (a2 + b2)λi + a3 + b3 for i =
2,3, . . . ,n,

(ii) α[(a1 +b1)n+(a2 +b2)r− (a2 −b2)λi +2b3]+ (a2 −b2)λi +a3 −b3 for
i = 2,3, . . . ,n,

(iii) (a1 +b1)n+(a2 +b2)r+a3 +b3,

(iv) 2α(b1n+b2r+b3)+(a1 −b1)n+(a2 −b2)r+a3 −b3.

Proof. Since for i = 2,3, . . . ,n, Xi is orthogonal to Jn×1,
[
Xi

T Xi
T
]T and[

Xi
T −Xi

T
]T are eigenvectors of Mα corresponding to the eigenvalues α[(a1+

b1)n+(a2+b2)r−(a2+b2)λi]+(a2+b2)λi+a3+b3 and α[(a1+b1)n+(a2+
b2)r− (a2 −b2)λi +2b3]+ (a2 −b2)λi +a3 −b3, respectively.

Till now, we have obtained 2n − 2 eigenvalues of Mα with correspond-
ing eigenvectors. All these eigenvectors are orthogonal to

[
J1×n 01×n

]T and[
01×n J1×n

]T . This implies that the remaining two eigenvectors of Mα are of

the form
[
α1J1×n α2J1×n

]T for some (α1,α2) ̸= (0,0). Let ν be an eigenvalue
of Mα with corresponding one such eigenvector. Then we have,

Mα

[
α1Jn×1
α2Jn×1

]
= ν

[
α1Jn×1
α2Jn×1

]
. (3)

It is equivalent to the system

[P−νI2]

[
α1
α2

]
=

[
0
0

]
, (4)

where
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P =

[
α(b1n+b2r+b3)+a1n+a2r+a3 (1−α)(b1n+b2r+b3)

(1−α)(b1n+b2r+b3) α(b1n+b2r+b3)+a1n+a2r+a3

]
.

From equation (4), we have

P
[

α1
α2

]
= ν

[
α1
α2

]
. (5)

From equation (3) and (5), we have that if ν is an eigenvalue of P with
corresponding eigenvector

[
α1 α2

]T , then ν is an eigenvalue of Mα with cor-

responding eigenvector
[
α1J1×n α2J1×n

]T . The eigenvalues of P are (a1 +
b1)n+(a2 +b2)r+a3 +b3 and 2α(b1n+b2r+b3)+(a1 −b1)n+(a2 −b2)r+
a3 − b3 with corresponding eigenvectors

[
1 1

]T and
[
1 −1

]T , respectively.
Hence the remaining two eigenvalues of the matrix Mα are (a1 + b1)n+(a2 +
b2)r+a3 +b3 and 2α(b1n+b2r+b3)+(a1 −b1)n+(a2 −b2)r+a3 −b3 with
corresponding eigenvectors

[
J1×n J1×n

]T and
[
J1×n −J1×n

]T , respectively.

For i = 1,2, let Ai be a real symmetric matrix of order ni having equal row
sums ri. Then Ai has ni real eigenvalues; let them be (ri =)λi1,λi2, . . . ,λini with
corresponding orthogonal eigenvectors (Jni×1 =)Xi1,Xi2, . . . ,Xini for i = 1,2.
Now, we consider the matrix M′ given as follows.

M′ =

a1Jn1 +a2A1 +a3In1 b1Jn1 +b2A1 +b3In1 Jn1×n2

b1Jn1 +b2A1 +b3In1 a1Jn1 +a2A1 +a3In1 Jn1×n2

Jn2×n1 Jn2×n1 2(Jn2 − In2)−A2

 , (6)

where ai,bi ∈R for i = 1,2,3. Let R′ denote the diagonal matrix of order 2n1 +
n2 whose j-th diagonal entry is the j-th row sum of the matrix M′, i.e.,

R′ =

[
[(a1 +b1)n1 +n2 +(a2 +b2)r1 +a3 +b3]I2n1 02n1×n2

0n2×2n1 (2n1 +2n2 − r2 −2)In2

]
.

For 0 ≤ α ≤ 1, we define the matrix M′
α by

M′
α = αR′+(1−α)M′. (7)

Theorem 2.2. The spectrum of the matrix M′
α is given by

(i) α[(a1 + b1)n1 + n2 +(a2 + b2)r1 − (a2 + b2)λ1 j]+ (a2 + b2)λ1 j + a3 + b3
for j = 2,3, . . . ,n1,
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(ii) α[(a1 + b1)n1 + n2 +(a2 + b2)r1 − (a2 − b2)λ1 j + 2b3] + (a2 − b2)λ1 j +
a3 −b3 for j = 2,3, . . . ,n1,

(iii) α(2n1 +2n2 − r2 +λ2k)−λ2k −2 for k = 2,3, . . . ,n2,

(iv) α[n2 +2(b1n1 +b2r1 +b3)]+(a1 −b1)n1 +(a2 −b2)r1 +a3 −b3,

(v) 1
2 [σ1+σ2+χ±

√
(σ1 −σ2 +χ)2 −8(1−α)2n1n2], where σ1 =α(b1n1+

n2 + b2r1 + b3)+ a1n1 + a2r1 + a3, σ2 = 2αn1 + 2(n2 − 1)− r2 and χ =
(1−α)(b1n1 +b2r1 +b3).

Proof. We have that X1 j is orthogonal to Jn1×1 for j = 2,3, . . . ,n1 and X2k is or-
thogonal to Jn2×1 for k = 2,3, . . . ,n2. This implies that

[
X1 j

T X1 j
T 01×n2

]T ,[
X1 j

T −X1 j
T 01×n2

]T and
[
01×2n1 X2k

T
]T are eigenvectors of M′

α corre-
sponding to the eigenvalues α[(a1 +b1)n1 +n2 +(a2 +b2)r1 − (a2 +b2)λ1 j]+
[(a2+b2)λ1 j+a3+b3], α[(a1+b1)n1+n2+(a2+b2)r1−(a2−b2)λ1 j+2b3]+
(a2 −b2)λ1 j +a3 −b3 and α(2n1 +2n2 − r2 +λ2k)− (λ2k +2), respectively.

All these eigenvectors are orthogonal to the vectors
[
J1×n1 01×(n1+n2)

]T ,[
01×n1 J1×n1 01×n2

]T and
[
01×2n1 J1×n2

]T . This implies that the remaining

three eigenvectors of M′
α are of the form

[
α1J1×n1 α2J1×n1 α3J1×n2

]T for
some (α1,α2,α3) ̸= (0,0,0). Let ν be an eigenvalue of M′

α with corresponding
one such eigenvector. Then we have,

M′
α

α1Jn1×1
α2Jn1×1
α3Jn2×1

= ν

α1Jn1×1
α2Jn1×1
α3Jn2×1

 . (8)

It is equivalent to the system

[P−νI3]
[
α1 α2 α3

]T
=
[
0 0 0

]T
, (9)

where

P =

 σ1 χ (1−α)n2
χ σ1 (1−α)n2

(1−α)n1 (1−α)n1 σ2

 ,

σ1 = α(b1n1 + n2 + b2r1 + b3)+ a1n1 + a2r1 + a3, σ2 = 2αn1 + 2(n2 − 1)− r2
and χ = (1−α)(b1n1 +b2r1 +b3).

From equation (9), we have

P
[
α1 α2 α3

]T
= ν

[
α1 α2 α3

]T
. (10)

From equation (8) and (10), we have that if ν is an eigenvalue of P with
corresponding eigenvector

[
α1 α2 α3

]T , then ν is an eigenvalue of M′
α with

corresponding eigenvector
[
α1J1×n1 α2J1×n1 α3J1×n2

]T .
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The characteristic equation of P is

(x−σ1 +χ)[x2 − (σ1 +σ2 +χ)x+σ2(σ1 +χ)−2(1−α)2n1n2] = 0.

So, σ1 − χ is an eigenvalue of P and it can be seen that
[
1 −1 0

]T is its
corresponding eigenvector. Thus σ1 − χ = α[n2 +2(b1n1 +b2r1 +b3)]+(a1 −
b1)n1 +(a2 −b2)r1 +a3 −b3 is an eigenvalue of M′

α with corresponding eigen-
vector

[
J1×n1 −J1×n1 01×n2

]T and the remaining two eigenvalues of M′
α are

the roots of the equation

x2 − (σ1 +σ2 +χ)x+σ2(σ1 +χ)−2(1−α)2n1n2 = 0,

which are given by 1
2 [σ1 +σ2 + χ ±

√
(σ1 −σ2 +χ)2 −8(1−α)2n1n2]. This

completes the proof.

3. Generalized distance spectra of graphs constructed by some unary
graph operations

In [8] several unary graph operations were defined as a M-join of two copies of
a graph for a suitable 0−1 matrix M. Some of them are given in Table 1, where
G is a graph on n vertices.

S. No. Description Name of the unary graph operation
1. G∨In G Mirror graph of G
2. G∨Jn−In G VC-neighbourhood graph of G
3. G∨A(G) G double graph of G or N-neighbourhood graph of G
4. G∨A(G)+In G N-neighbourhood graph of G
5. G∨A(G) G NC-neighbourhood graph of G
6. G∨A(G)+In

G NC-neighbourhood graph of G
7. G∨In G Mirror complement graph of G
8. G∨Jn G Join-neighbourhood-complement graph of G
9. G∨Jn−In G VC-neighbourhood-complement graph of G
10. G∨A(G) G N-neighbourhood complement graph of G
11. G∨A(G)+In G N-neighbourhood-complement graph of G
12. G∨A(G) G NC-neighbourhood complement graph of G
13. G∨A(G)+In

G NC-neighbourhood-complement graph of G
14. Kn ∨A(G) Kn Duplicate graph of G
15. Kn∨A(G)+In Kn DN-graph of G
16. Kn ∨A(G) Kn Complemented duplicate graph of G
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17. Kn∨A(G)+In
Kn Closed duplicate graph of G

18. Kn ∨A(G) Kn Fully complete duplicate graph of G
19. Kn ∨A(G)+In Kn Fully complete DN-graph of G
20. Kn ∨A(G) Kn Fully complete complemented duplicate graph of G
21. Kn ∨A(G)+In

Kn Fully complete closed duplicate graph of G
Table 1: Some unary graph operations

In the following result, we obtain the generalized distance spectra of the
graphs mentioned in Table 1 except those in S.Nos. 14th and 16th. Notice that
the generalized distance spectrum of double graph of a connected regular graph
G with diam(G) ≤ 2 was determined in [5]. We show that this result can also
be obtained from the following result.

Theorem 3.1. Let G be an r-regular graph on n vertices with assumptions as
in the 3rd column of Table 2. In the 2nd and 5th columns of the same table, we
give the graph constructed by each of the unary graph operation on G, and the
generalized distance spectrum of the constructed graph, respectively.

Proof. Let the eigenvalues of A(G) be (r =)λ1,λ2, . . . ,λn with orthogonal eigen-
vectors (Jn×1 =)X1,X2, . . . ,Xn respectively. By taking M = A(G) and substitut-
ing the values ai,b j for i, j = 1,2,3 as given in Table 2 in (1) and (2), we get the
distance matrix and the generalized distance matrix, respectively of the graph
constructed by corresponding unary graph operation mentioned in that table.
By substituting these values in Theorem 2.1, we obtain the generalized distance
spectrum of the corresponding graph as mentioned in Table 2.

S. No. Graph
Additional
assumptions

(a1,a2,a3),
(b1,b2,b3)

Generalized distance
spectrum

1. G∨In G
G is con-
nected with
diam(G)≤ 2

(2,−1,−2),
(3,−1,−2)

α(5n−2r+2λi)−2λi−4
for i= 2,3, . . . ,n; [α(5n−
2r−4)](n−1), 5n−2r−4,
2α(3n− r−2)−n

2. G∨Jn−In G
n ≥ 3, G =
Kn

(2,0,−2),
(1,0,2)

[α(3n + 4) − 4](n−1),
(3nα)(n−1), 3n,
2α(n+2)+n−4
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3. G∨Jn−In G
n ≥ 2, G ̸=
Kn

(2,−1,−2),
(1,0,1)

α(3n− r + λi + 2)− λi −
3, α(3n− r+λi)−λi − 1
for i = 2,3, . . . ,n, 3n−r−
1; 2α(n+1)+n− r−3

4. G∨A(G) G
n ≥ 2, G is
connected,
diam(G)≤ 2

(2,−1,−2),
(2,−1,0)

α(4n−2r+2λi)−2λi−2
for i = 2,3, . . . ,n;
[2α(2n − r) − 2](n),
4n−2r−2 (See, [5])

5. G∨A(G)+In G
G is con-
nected with
diam(G)≤ 2

(2,−1,−2),
(2,−1,−1)

α(4n−2r+2λi)−2λi−3
for i= 2,3, . . . ,n; [α(4n−
2r − 2) − 1](n−1), 4n −
2r−3, 2α(2n− r−1)−1

6. G∨A(G) G
n ≥ 3, G =
Kn

(2,0,−2),
(1,0,2)

[3αn](n−1), [α(3n + 4)−
4](n−1), 3n, 2α(n + 2) +
n−4

7. G∨A(G) G

G ̸= Kn;
for any
two u ∼ v,
NG(u)\NG(v)
̸= ∅; for any
two u ≁ v,
NG(u) ∩
NG(v) ̸=∅

(2,−1,−2),
(1,1,2)

α(3n+2λi +4)−2λi −4
for i = 2,3, . . . ,n;
[3αn](n−1), 3n,
2α(n+ r+2)+n−2r−4

8. G∨A(G)+In
G − (2,−1,−2),

(1,1,0)

α(3n+ 2λi)− 2λi − 2 for
i = 2,3, . . . ,n; [3αn −
2](n−1), 3n − 2, 2α(n +
r)+n−2r−2

9. G∨Jn−In G
n ≥ 3, G =
Kn

(2,0,−2),
(1,0,2)

[3αn](n−1), [α(3n + 4)−
4](n−1), 3n, 2α(n + 2) +
n−4

10. G∨Jn−In G
n ≥ 2, G ̸=
Kn

(1,1,−1),
(1,0,1)

α(2n+ r − λi + 2)+ λi −
2, α(2n + r − λi) + λi

for i = 2,3, . . . ,n; 2n+ r,
2α(n+1)+ r−2

11. G∨A(G)+In G − (1,1,−1),
(2,−1,−1)

α(3n− 2λi − 2)+ 2λi for
i = 2,3, . . . ,n; [3αn −
2](n−1), 3n − 2, 2α(2n −
r−1)−n+2r
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12. Kn ∨A(G) Kn G ̸= Kn
(1,0,−1),
(2,−1,0)

α(3n − r + λi) − λi − 1,
α(3n−r−λi)+λi−1 for
i = 2,3, . . . ,n; 3n− r− 1,
2α(2n− r)−n+ r−1

13. Kn∨A(G)+In Kn

G is con-
nected with
diam(G)≤ 2

(2,0,−2),
(3,−2,−2)

α(5n− 2r + 2λi)− 2λi −
4, α(5n−2r−2λi −4)+
2λi for i = 2,3, . . . ,n;
5n−2r−4, 2α(3n−2r−
2)−n+2r

14. Kn ∨A(G)+In Kn − (1,0,−1),
(2,−1,−1)

α(3n − r − λi) − λi − 2,
α(3n−r−λi−2)+λi for
i = 2,3, . . . ,n; 3n− r− 2,
2α(2n− r−1)−n+ r

15. Kn ∨A(G) Kn G ̸= Kn
(1,0,−1),
(1,1,1)

α(2n+ r + λi + 2)− λi −
2, α(2n + r − λi) + λi

for i = 2,3, . . . ,n; 2n+ r,
2α(n+ r+1)− r−2

16. Kn ∨A(G)+In
Kn − (1,0,−1),

(1,1,0)

α(2n + r − λi) + λi − 1,
α(2n+r+λi)−λi−1 for
i = 2,3, . . . ,n; 2n+ r− 1,
2α(n+ r)− r−1

17. G∨In G

for any
two u ∼ v,
NG(u) ∩
NG(v) ̸=∅

(1,1,−1),
(2,1,−1)

α(3n+2r−2λi)+2λi−2
for i= 2,3, . . . ,n; [α(3n+
2r−2)](n−1), 3n+2r−2,
2α(2n+ r−1)−n

18. G∨Jn G − (1,1,−1),
(1,0,0)

[α(2n+r−λi)+λi−1](2)

for i= 2,3, . . . ,n; 2n+r−
1, 2αn+ r−1

19. G∨A(G) G
n ≥ 3, G =
Kn

(2,0,−2),
(1,0,2)

[3αn](n−1), [α(3n + 4)−
4](n−1), 3n, 2α(n + 2) +
n−4
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20. G∨A(G) G

G ̸= Kn;
for any
two u ∼ v,
NG(u) ∩
NG(v) ̸= ∅
; for any
two u ≁ v,
NG(u)\NG(v)
̸=∅

(1,1,−1),
(2,−1,1)

[3αn](n−1), [α(3n−2λi +
2) + 2λi − 2] for i =
2,3, . . . ,n; 3n, 2α(2n −
r+1)−n+2r−2

21. G∨A(G) G

n≥ 2; for any
two u ∼ v,
NG(u) ∩
NG(v) ̸=∅

(1,1,−1),
(1,1,1)

2α(n + r − λi) + 2λi for
i= 2,3, . . . ,n; [2α(n+r+
1)−2](n), 2(n+ r)

22. G∨A(G)+In
G

for any
two u ∼ v,
NG(u) ∩
NG(v) ̸=∅

(1,1,−1),
(1,1,0)

α(2n+2r−2λi)+2λi−1
for i= 2,3, . . . ,n; [2α(n+
r)−1](n), 2n+2r−1

23. Kn∨A(G)+In
Kn

for any
two u ∼ v,
NG(u) ∩
NG(v) ̸=∅

(2,0,−2),
(1,2,0)

α(3n+ 2r − 2λi) + 2λi −
2, α(3n + 2r + 2λi) −
2λi − 2 for i = 2,3, . . . ,n;
3n+2r−2, 2α(n+2r)+
n−2r−2

Table 2: Generalized distance spectra of graphs constructed by the
unary graph operations given in Table 1

In the following result, we construct infinite pairs of generalized distance
cospectral graphs by using Theorem 3.1.

Corollary 3.2. Let G1 and G2 be two r regular adjacency cospectral graphs
on n vertices with same assumptions from the 3rd column of Table 2. Then
the graphs constructed from G1 and G2 by the corresponding graph operation
mentioned in the same table are generalized distance cospectral graphs. In
particular, they are distance (distance Laplacian, distance signless Laplacian)
cospectral graphs.

As a consequence of Theorem 3.1, in the following result, we show that in-
finite families of distance (distance Laplacian, distance signless Laplacian) in-
tegral graphs can be constructed by using the unary graph operations in Table 2
and regular adjacency integral graphs with some additional assumptions.
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Corollary 3.3. Let G be an r-regular graph on n vertices with assumptions as
in the 3rd column of Table 2. Then the graph constructed from G by the cor-
responding graph operation mentioned in the same table is distance (distance
Laplacian, distance signless Laplacian) integral if and only if G is adjacency
integral.

Proof. Let G′ be the graph constructed from G by the corresponding unary
graph operation mentioned in Table 2. By substituting α = 0 in the generalized
distance spectra of G′ given in the same table, it can be seen that the eigenvalues
of D(G′) are integers if and only if the eigenvalues of A(G) are integers.

Since G′ is t-transmission regular, it follows that the distance Laplacian and
the distance signless Laplacian matrices of G′ are tI−D(G′) and tI+D(G′) re-
spectively. Hence G′ is distance Laplacian (distance signless Laplacian) integral
if and only if G′ is distance integral. So the proof follows.

4. Generalized distance spectra of graphs constructed by some binary
graph operations

Let G1 and G2 be graphs on n1 and n2 vertices respectively. Let H ∈ {G1,G1,
Kn1 ,Kn1} and let H1 and H2 denote two copies of H. Take H3 = (H1,H2,G2).
In Table 3, we define some binary graph operations, which can be viewed as a
M-join of graphs in H3, where M= (M12,M13,M23) with M13 = M23 = Jn1×n2 .
The choice of H and M12 for the corresponding graph operation is mentioned in
the same table.

S. No. Name of the graphs H M12

1. Mirror graph of G1 join G2 G1 In1

2. VC-neighbourhood graph of G1 join G2 G1 Jn1 − In1

3. N-neighbourhood graph of G1 join G2 G1 A(G1)

4. N-neighbourhood graph of G1 join G2 G1 A(G1)+ In1

5. NC-neighbourhood graph of G1 join G2 G1 Jn1 −A(G1)− In1

6. NC-neighbourhood graph of G1 join G2 G1 Jn1 −A(G1)

7. Mirror-complement graph of G1 join G2 G1 In1

8.
Join-neighbourhood-complement graph of
G1 join G2

G1 Jn1

9.
VC-neighbourhood-complement graph of
G1 join G2

G1 Jn1 − In1

10.
N-neighbourhood-complement graph of G1
join G2

G1 A(G1)
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11.
N-neighbourhood-complement graph of G1
join G2

G1 A(G1)+ In1

12.
NC-neighbourhood-complement graph of
G1 join G2

G1 Jn1 −A(G1)− In1

13.
NC-neighbourhood-complement graph of
G1 join G2

G1 Jn1 −A(G1)

14. Duplicate graph of G1 join G2 Kn1 A(G1)

15. DN graph of G1 join G2 Kn1 A(G1)+ In1

16.
Complemented duplicate graph of G1 join
G2

Kn1 Jn1 −A(G1)− In1

17. Closed duplicate graph of G1 join G2 Kn1 Jn1 −A(G1)

18.
Fully complete duplicate graph of G1 join
G2

Kn1 A(G1)

19. Fully complete DN graph of G1 join G2 Kn1 A(G1)+ In1

20.
Fully complete complemented duplicate
graph of G1 join G2

Kn1 Jn1 −A(G1)− In1

21.
Fully complete closed duplicate graph of G1
join G2

Kn1 Jn1 −A(G1)

Table 3: Some binary graph operations defined as M-join of
graphs

Theorem 4.1. For i = 1,2 let Gi be an ri-regular graph on ni vertices and let
the eigenvalues of A(Gi) be (ri =)λi1,λi2, . . . ,λini . Then the graph constructed
from G1 and G2 by each of the graph operation mentioned in the 2nd column
of Table 4 has the n2 − 1 generalized distance eigenvalues α(2n1 + 2n2 − r2 +
λ2k)−λ2k +2 for k = 2,3, . . . ,n2 and the remaining eigenvalues are given in the
4th column of the same table.

Proof. Let (Jni×1 =)Xi1,Xi2, . . . ,Xini be orthogonal eigenvectors corresponding
to the eigenvalues (ri =)λi1,λi2, . . . ,λini of A(Gi). Taking A1 = A(G1), A2 =
A(G2) and substituting the values ai,b j for i, j = 1,2,3 as given in Table 4, in
(6) and (7), we get the distance matrix and the generalized distance matrix re-
spectively of the graph constructed by corresponding graph operation mentioned
in the same table. By substituting these values in Theorem 2.2, we obtain the
generalized distance spectrum of the corresponding graph which includes the
n2 −1 eigenvalues α(2n1 +2n2 − r2 +λ2k)−λ2k +2 for k = 2,3, . . . ,n2 and the
remaining eigenvalues are given in Table 4.



126 G. KALAIVANI - R. RAJKUMAR

S. No. Graphs
(a1,a2,a3),
(b1,b2,b3)

Remaining generalized distance
eigenvalues

1.
Mirror graph of G1
join G2

(2,−1,−2),
(2,0,−1)

α(4n1+n2−r1+λ1 j)−λ1 j −3,
α(4n1 + n2 − r1 + λ1 j − 2) −
λ1 j − 1 for j = 2,3, . . . ,n1;
α(n2 + 4n1 − 2) − r1 − 1,
1
2{(α +2)(2n1 +n2)− r1 − r2 −
5 ± [((α + 2)(2n1 + n2)− r1 −
r2 − 5)2 − 4(αn2 + 4n1 − r1 −
3)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

2.
VC-neighbourhood
graph of G1 join G2

(2,−1,−2),
(1,0,1)

α(3n1 + n2 − r1 + λ1 j)− λ1 j −
1, α(3n1 + n2 − r1 + λ1 j + 2)−
λ1 j − 3 for j = 2,3, . . . ,n1;
α(n2 + 2n1 + 2) + n1 − r1 − 3,
1
2{α(2n1 + n2) + 3n1 + 2n2 −
r1 − r2 − 3 ± [(α(2n1 + n2) +
3n1 + 2n2 − r1 − r2 − 3)2 −
4(αn2 + 3n1 − r1 − 1)(2αn1 +

2n2−r2−2)−8(1−α)2n1n2]
1
2 }

3.
N-neighbourhood
graph of G1 join G2

(2,−1,−2),
(2,−1,0)

α(4n1 + n2 − 2r1 + 2λ1 j) −
2λ1 j − 2 for j = 2,3, . . . ,n1;
[α(4n1 + n2 − 2r1) − 2](n1−1),
α(n2 + 4n1 − 2r1) − 2,
1
2{(α + 2)(2n1 + n2) − 2r1 −
r2 − 4 ± [((α + 2)(2n1 + n2)−
2r1 − r2 − 4)2 − 4(αn2 + 4n1 −
2r1 −2)(2αn1 +2n2 − r2 −2)−
8(1−α)2n1n2]

1
2 }

4.
N-neighbourhood
graph of G1 join G2

(2,−1,−2),
(2,−1,−1)

α(4n1 + n2 − 2r1 + 2λ1 j) −
2λ1 j − 3 for j = 2,3, . . . ,n1;
[α(4n1+n2−2r1−2)−1](n1−1),
α(n2 + 4n1 − 2r1 − 2) − 1,
1
2{(α + 2)(2n1 + n2) − 2r1 −
r2 − 5 ± [((α + 2)(2n1 + n2)−
2r1 − r2 − 5)2 − 4(αn2 + 4n1 −
2r1 −3)(2αn1 +2n2 − r2 −2)−
8(1−α)2n1n2]

1
2 }
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5.
NC-neighbourhood
graph of G1 join G2

(2,−1,−2),
(1,1,1)

α(3n1 + n2 + 2λ1 j + 2) −
2λ1 j − 3 for j = 2,3, . . . ,n1;
[α(3n1 + n2)− 1](n1−1), α(n2 +
2n1 + 2r1 + 2) + n1 − 2r1 − 3,
1
2{α(2n1 + n2) + 3n1 + 2n2 −
r2 − 3 ± [(α(2n1 + n2) + 3n1 +
2n2 − r2 − 3)2 − 4(αn2 + 3n1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

6.
NC-neighbourhood
graph of G1 join G2

(2,−1,−2),
(1,1,0)

α(3n1 + n2 + 2λ1 j) − 2λ1 j − 2
for j = 2,3, . . . ,n1;
[α(3n1 + n2) − 2](n1−1),
α(n2+2n1+2r1)+n1−2r1−2,
1
2{α(2n1 + n2) + 3n1 + 2n2 −
r2 − 4 ± [(α(2n1 + n2) + 3n1 +
2n2 − r2 − 4)2 − 4(αn2 + 3n1 −
2)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

7.
Mirror-complement
graph of G1 join G2

(1,1,−1),
(2,0,−1)

α(3n1 + n2 + r1 − λ1 j) + λ1 j −
2, α(3n1 + n2 + r1 − λ1 j − 2)+
λ1 j for j = 2,3, . . . ,n1; α(n2 +
4n1 − 2)− n1 + r1,

1
2{α(2n1 +

n2) + 3n1 + 2n2 + r1 − r2 − 4 ±
[(α(2n1+n2)+3n1+2n2+r1−
r2 − 4)2 − 4(αn2 + 3n1 + r1 −
2)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

8.

Join-
neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(1,0,0)

α(2n1 + n2 + r1 − λ1 j) + λ1 j −
1, α(2n1 + n2 + r1 − λ1 j) +
λ1 j − 1 for j = 2,3, . . . ,n1;
α(n2+2n1)+r1−1, 1

2{α(2n1+
n2) + 2n1 + 2n2 + r1 − r2 − 3 ±
[(α(2n1+n2)+2n1+2n2+r1−
r2 − 3)2 − 4(αn2 + 2n1 + r1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }



128 G. KALAIVANI - R. RAJKUMAR

9.
VC-neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(1,0,1)

α(2n1 + n2 + r1 − λ1 j) + λ1 j,
α(2n1 + n2 + r1 − λ1 j + 2) +
λ1 j − 2 for j = 2,3, . . . ,n1;
α(n2 + 2n1 + 2) + r1 − 2,
1
2{α(2n1 + n2) + 2n1 + 2n2 +
r1 − r2 − 2 ± [(α(2n1 + n2) +
2n1 + 2n2 + r1 − r2 − 2)2 −
4(αn2+2n1+ r1)(2αn1+2n2−
r2 −2)−8(1−α)2n1n2]

1
2 }

10.
N-neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(2,−1,0)

α(3n1 + n2 − 2λ1 j) + 2λ1 j − 1
for j = 2,3, . . . ,n1;
[α(3n1 + n2) − 1](n1−1),
α(n2+4n1−2r1)−n1+2r1−1,
1
2{α(2n1 + n2) + 3n1 + 2n2 −
r2 − 3 ± [(α(2n1 + n2) + 3n1 +
2n2 − r2 − 3)2 − 4(αn2 + 3n1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

11.
N-neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(2,−1,−1)

α(3n1 + n2 − 2λ1 j − 2) + 2λ1 j

for j = 2,3, . . . ,n1;
[α(3n1 + n2) − 2](n1−1),
α(n2+4n1−2r1−2)−n1+2r1,
1
2{α(2n1 + n2) + 3n1 + 2n2 −
r2 − 4 ± [(α(2n1 + n2) + 3n1 +
2n2 − r2 − 4)2 − 4(αn2 + 3n1 −
2)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

12.
NC-neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(1,1,1)

α(2n1 +n2 +2r1 −2λ1 j)+2λ1 j

for j = 2,3, . . . ,n1; [α(2n1 +
n2 + 2r1 + 2)− 2](n1−1), α(n2 +
2n1 + 2r1 + 2)− 2, 1

2{α(2n1 +
n2) + 2n1 + 2n2 + 2r1 − r2 −
2± [(α(2n1 +n2)+2n1 +2n2 +
2r1 − r2 − 2)2 − 4(αn2 + 2n1 +
2r1)(2αn1 + 2n2 − r2 − 2) −
8(1−α)2n1n2]

1
2 }
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13.
NC-neighbourhood-
complement graph
of G1 join G2

(1,1,−1),
(1,1,0)

α(2n1 + n2 + 2r1 − 2λ1 j) +
2λ1 j − 1 for j = 2,3, . . . ,n1;
[α(2n1 + n2 + 2r1) − 1](n1−1),
α(n2 + 2n1 + 2r1) − 1,
1
2{α(2n1 + n2) + 2n1 + 2n2 +
2r1 − r2 − 3 ± [(α(2n1 + n2) +
2n1 + 2n2 + 2r1 − r2 − 3)2 −
4(αn2 + 2n1 + 2r1 − 1)(2αn1 +

2n2−r2−2)−8(1−α)2n1n2]
1
2 }

14.
Duplicate graph of
G1 join G2

(2,0,0),
(2,−1,0)

α(4n1 + n2 − r1 + λ1 j) − λ1 j,
α(4n1 + n2 − r1 −λ1 j)+λ1 j for
j = 2,3, . . . ,n1; α(n2 + 4n1 −
2r1)−r1,

1
2{(α +2)(2n1+n2)−

r1 − r2 − 2 ± [((α + 2)(2n1 +
n2) − r1 − r2 − 2)2 − 4(αn2 +
4n1−r1)(2αn1+2n2−r2−2)−
8(1−α)2n1n2]

1
2 }

15.
DN graph of G1 join
G2

(2,0,0),
(2,−1,−1)

α(4n1 + n2 − r1 + λ1 j)− λ1 j −
1, α(4n1 + n2 − r1 − λ1 j − 2)+
λ1 j + 1 for j = 2,3, . . . ,n1;
α(n2 + 4n1 − 2r1 − 2) + r1 + 1,
1
2{(α +2)(2n1 +n2)− r1 − r2 −
3 ± [((α + 2)(2n1 + n2)− r1 −
r2 − 3)2 − 4(αn2 + 4n1 − r1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

16.
Complemented du-
plicate graph of G1
join G2

(2,0,0),
(1,1,1)

α(3n1 + n2 + r1 − λ1 j) + λ1 j +
1, α(3n1 + n2 + r1 + λ1 j + 2)−
λ1 j − 1 for j = 2,3, . . . ,n1;
α(n2 + 2n1 + 2r1 + 2) + n1 −
r1 − 1, 1

2{α(2n1 + n2) + 3n1 +
2n2 + r1 − r2 − 1 ± [(α(2n1 +
n2)+3n1+2n2+ r1− r2−1)2−
4(αn2 + 3n1 + r1 + 1)(2αn1 +

2n2−r2−2)−8(1−α)2n1n2]
1
2 }
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17.
Closed duplicate
graph of G1 join G2

(2,0,0),
(1,1,0)

α(3n1 + n2 + r1 − λ1 j) + λ1 j,
α(3n1 + n2 + r1 + λ1 j) − λ1 j

for j = 2,3, . . . ,n1; α(n2 +
2n1 +2r1)+n1 − r1,

1
2{α(2n1 +

n2) + 3n1 + 2n2 + r1 − r2 − 2 ±
[(α(2n1 + n2) + 3n1 + 2n2 +
r1 − r2 − 2)2 − 4(αn2 + 3n1 +
r1)(2αn1+2n2−r2−2)−8(1−
α)2n1n2]

1
2 }

18.
Fully complete du-
plicate graph of G1
join G2

(1,0,−1),
(2,−1,0)

α(3n1+n2−r1+λ1 j)−λ1 j −1,
α(3n1 +n2 − r1 −λ1 j)+λ1 j −1
for j = 2,3, . . . ,n1; α(n2+4n1−
2r1)− n1 + r1 − 1, 1

2{α(2n1 +
n2) + 3n1 + 2n2 − r1 − r2 − 3 ±
[(α(2n1+n2)+3n1+2n2−r1−
r2 − 3)2 − 4(αn2 + 3n1 − r1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

19.
Fully complete DN
graph of G1 join G2

(1,0,−1),
(2,−1,−1)

α(3n1+n2−r1+λ1 j)−λ1 j −2,
α(3n1 +n2 − r1 −λ1 j −2)+λ1 j

for j = 2,3, . . . ,n1; α(n2+4n1−
2r1 − 2)− n1 + r1,

1
2{α(2n1 +

n2) + 3n1 + 2n2 − r1 − r2 − 4 ±
[(α(2n1+n2)+3n1+2n2−r1−
r2 − 4)2 − 4(αn2 + 3n1 − r1 −
2)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

20.
Fully complete com-
plemented duplicate
graph of G1 join G2

(1,0,−1),
(1,1,1)

α(2n1 + n2 + r1 − λ1 j) + λ1 j,
α(2n1 + n2 + r1 + λ1 j + 2) −
λ1 j − 2 for j = 2,3, . . . ,n1;
α(n2 + 2n1 + 2r1 + 2) − r1 −
2, 1

2{α(2n1 + n2)+ 2n1 + 2n2 +
r1 − r2 − 2 ± [(α(2n1 + n2) +
2n1 + 2n2 + r1 − r2 − 2)2 −
4(αn2+2n1+ r1)(2αn1+2n2−
r2 −2)−8(1−α)2n1n2]

1
2 }
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21.
Fully complete
closed duplicate
graph of G1 join G2

(1,0,−1),
(1,1,0)

α(2n1+n2+r1−λ1 j)+λ1 j −1,
α(2n1 + n2 + r1 + λ1 j)− λ1 j −
1 for j = 2,3, . . . ,n1; α(n2 +
2n1 + 2r1)− r1 − 1, 1

2{α(2n1 +
n2) + 2n1 + 2n2 + r1 − r2 − 3 ±
[(α(2n1+n2)+2n1+2n2+r1−
r2 − 3)2 − 4(αn2 + 2n1 + r1 −
1)(2αn1 +2n2 − r2 −2)−8(1−
α)2n1n2]

1
2 }

Table 4: Remaining generalized distance eigenvalues of graphs
constructed by the graph operations defined in Table 3

In the following result, we construct infinite pairs of generalized distance cospec-
tral graphs by using Theorem 4.1.

Corollary 4.2. For i = 1,2, let Gi and Hi be two ri-regular cospectral graphs on
ni vertices. The graphs constructed by using the pairs of graphs (G1,G2) and
(H1,H2) by the same graph operation mentioned in Table 4 are generalized dis-
tance cospectral. In particular, they are distance (distance Laplacian, distance
signless Laplacian) cospectral.

As a consequence of Theorem 4.1, in the following result we show that
the binary graph operations in Table 4 with some additional assumptions can
be used to construct infinite families of distance (distance Laplacian, distance
signless Laplacian) integral graphs.

Corollary 4.3. For i = 1,2 let Gi be an ri-regular graph on ni vertices. The
graphs constructed from G1 and G2 by the graph operations mentioned in Ta-
ble 4 are distance (distance Laplacian, distance signless Laplacian) integral if
and only if G1 and G2 are adjacency integral and [(a1 + b1)n1 + 2n2 +(a2 +
b2)r1 − r2 + a3 + b3 − 2]2 − 4[(a1 + b1)n1 + (a2 + b2)r1 + a3 + b3](2n2 − r2 −
2)−8n1n2 is a perfect square for the corresponding values of a1,a2,a3,b1,b2,b3
mentioned in the same table.

Proof. Let G1 and G2 be two graphs. Let G′ be the graph constructed from
G1 and G2 by a binary graph operation mentioned in Table 4. Since D(G′)
and Tr(G′) have common eigenvectors, it follows that G′ is distance Laplacian
(distance signless Laplacian) integral if and only if G′ is distance integral.
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S. No.s of graph
operations in
Table 4

n1 n2 r1 r2 G1 G2

1 2t 10t 2t −1 0 K2t K10t

2,3 2t 24t 2t −1 24t −2 K2t 12tK2

4 2t 24t 2t −2 24t −3 tK2 8tK3

5,9,10 3t 2t 3t −1 2t −1 K3t K2t

6,7,11 2t 9t 0 0 K2t K9t

8,13 2t 24t 0 24t −1 K2t K24t

12,20 2t 24t 0 24t −2 K2t 12tK2

14 2t 30t 0 30t −2 K2t 15tK2

15 3t 2t 3t −1 2t −2 K3t tK2

16 2t 2t 2t −1 2t −2 K2t tK2

17 3t 2t 0 2t −2 K3t tK2

18 2t 9t 1 0 tK2 K9t

19 6t 2t 6t −2 2t −2 3tK2 tK2

21 6t 2t 1 2t −2 3tK2 tK2

Table 5: Existence of infinite family of distance integral graphs constructed
from the graph operations in Table 4

Now, we take Gi to be an ri-regular graph on ni vertices for i = 1,2 and
construct the graph G′ as mentioned above. Then, by substituting α = 0 in the
generalized distance spectrum of G′ given in Theorem 4.1, it can be seen that
the eigenvalues of D(G′) are integers if and only if G1 and G2 are adjacency
integral and the roots of the equation

x2 − [(a1 + b1)n1 + 2n2 +(a2 + b2)r1 − r2 + a3 + b3 − 2]x+ [(a1 + b1)n1 +
(a2 +b2)r1 +a3 +b3](2n2 − r2 −2)−2n1n2 = 0
are integers for the corresponding values of a1,a2,a3,b1,b2,b3 mentioned in
Table 4. The roots of the above equation are integers if and only if

[(a1+b1)n1+2n2+(a2+b2)r1− r2+a3+b3−2]2−4[(a1+b1)n1+(a2+
b2)r1 +a3 +b3](2n2 − r2 −2)−8n1n2
is a perfect square. The existence of positive integers n1,n2,r1,r2 for which the
above number is a perfect square and the existence of a ri-regular adjacency
integral graph Gi on ni vertices for i = 1,2 are given in Table 5, where t is any
positive integer. This shows the existence of an infinite family of distance (dis-
tance Laplacian, distance signless Laplacian) integral graphs constructed from
the graph operations in Table 4.
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