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2-LOCAL) DERIVATIONS AND AUTOMORPHISMS AND
BIDERIVATIONS OF COMPLEX ω-LIE ALGEBRAS

A TITLE ON MULTIPLE ROWS

H. OUBBA

The present paper is devoted to the description of local (2-local) deriva-
tions and automorphisms and biderivations on some complex ω-Lie alge-
bras. Given a three-dimensional complex ω-Lie algebras g, we prove that
every local (2−local) derivation and automorphisms on g are derivations
and automorphisms respectively if g is not C1. We give the matrix form of
local derivations and automorphisms in the cases C1. Also, we give a de-
scriptions of biderivations of three dimensional complex ω-Lie algebras.

1. Introduction

The history of local mappings begins with the Gleason-Kahane-Zelazko the-
orem in [12] and [14], which is a fundamental contribution to the theory of
Banach algebras. This theorem asserts that every unital linear functional F on a
complex unital Banach algebra A, such that F(a) belongs to the spectrum σ(a)
of a for every a ∈ A, is multiplicative.

Subsequently, in [13], the concept of local derivation is introduced, and it is
proved that each continuous local derivation from a von Neumann algebra into
its dual Banach bimodule is a derivation. Numerous new results regarding the
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description of local derivations and local automorphisms of algebras have been
obtained; see, for example, [1, 2, 13, 18, 19]).

ω-Lie algebras are a natural generalization of Lie algebras. They were in-
troduced by Nurowski in [16], motivated by the study of isoparametric hyper-
surfaces in Riemannian geometry. There have been extensive works on ω-Lie
algebras (see [7–10, 17, 23] and references therein). In the cases of dimensions
1 and 2, there are no nontrivial ω-Lie algebras. The first example of a nontriv-
ial 3-dimensional ω-Lie algebra was given by Nurowski [16], where the author
provided a classification of 3-dimensional ω-Lie algebras over the field of real
numbers under the action of the 3-dimensional orthogonal group.

On the other hand, the notion of biderivations has appeared in different ar-
eas. Maksa used biderivations to study real Hilbert space [15]. Vukman in-
vestigated symmetric biderivations in prime and semiprime rings [21]. The
well-known result that every biderivation on a noncommutative prime ring A
is of the form λ [x,y] for some λ belonging to the extended centroid of A was
discovered independently by Bresar et al [4], Skosyrskii [20], and Farkas and
Letzter [11]. Biderivations were connected with noncommutative Jordan alge-
bras by Skosyrskii and with Poisson algebras by Farkas and Letzter. Besides
their wide applications, biderivations are interesting in their own right and have
been introduced to Lie algebras [22], which have been studied by many authors
recently. In particular, biderivations are closely related to the theory of com-
muting linear maps, which has a long and rich history. For the development of
commuting maps and their applications, we refer to the survey [6]. It is worth
mentioning that Bresar and Zhao considered a general but simple approach for
describing biderivations and commuting linear maps on a Lie algebra L having
their ranges in an L-module [5]. This approach covered most of the results in
[3–6, 15, 18, 21] and inspires us to generalize their method to Hom-Lie algebras.

This paper is organized as follow. In Section 2, we recall some definitions
and results needed for this study. In Section 3, we investigate local and 2local
derivations on three-dimensional ω-Lie algebras. Section 4 is devoted to local
and 2-local automorphisms on three-dimensional ω-Lie algebras. In the last
section, we provide a description of biderivations on three-dimensional ω-Lie
algebras.

2. Preliminaries

Definition 2.1. A vector space over C is called an ω-Lie algebra if there is a
bilinear map [, ] : g×g→ g and a skew-symmetric bilinear form ω : g×g→ C
such that

1. [x,y] =−[y,x],
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2. [[x,y],z]+ [[y,z],x]+ [[z,x],y] = ω(x,y)z+ω(y,z)x+ω(z,x)y,

for all x,y,z ∈ g.

Clearly, an ω-Lie algebra g with ω = 0 is a Lie algebra, which is called a
trivial ω-Lie algebra. Otherwise, g is called a nontrivial ω-Lie algebra

Definition 2.2. Let (g, [, ]) be an ω-Lie algebra. A linear map D : g→ g is called
derivation, if

D([x,y]) = [D(x),y]+ [x,D(y)]

for all x,y ∈ g.

We write gl(g) for the general linear Lie algebra on g. Then the set Der(g)
of all derivations of g forms a Lie subalgebra of gl(g), which is called the deriva-
tion algebra of g.

Definition 2.3. Let (g, [, ]) be an ω-Lie algebra. A derivation D : g→ g of g is
called ω-derivation, if

ω(D(x).y)+ω(x,D(y)) = 0

for all x,y ∈ A.

We write Derω(g) for the set consisting of all ω-derivations of g. Clearly,Derω(g)⊆
Der(g).

Let us initiate the categorization of 3-dimensional nontrivial ω-Lie algebras
over C.

Theorem 2.4. (Chen-Liu-Zhang [7]). Let g be a 3-dimensional nontrivial ω-
Lie algebra over C, then it must be isomorphic to one of the following algebras:

(1) L1: [e1,e3] = 0, [e2,e3] = e3, [e1,e2] = e2 and ω(e2,e3) = ω(e1,e3) = 0,
ω(e1,e2) = 1.

(2) L2: [e1,e2] = 0, [e1,e3] = e2, [e2,e3] = e3 and ω(e1,e2) = 0, ω(e1,e3) =
1, ω(e2,e3) = 0.

(3) Aα : [e1,e2] = e1, [e1,e3] = e1 + e2, [e2,e3] = e3 +αe1 and ω(e1,e2) =
ω(e1,e3) = 0, ω(e2,e3) =−1, where α ∈ C.

(4) B: [e1,e2] = e2, [e1,e3] = e2+e3, [e2,e3] = e1 and ω(e1,e2)=ω(e1,e3)=
0, ω(e2,e3) = 2.

(5) Cα : [e1,e2] = e2, [e1,e3] = αe3, [e2,e3] = e1 and ω(e1,e2) = ω(e1,e3) =
0, ω(e2,e3) = 1+α , where 0,−1,α ∈ C.

The exploration of local derivation of ω-Lie algebras g relies heavily on a
key theorem established by Chen Y. and al., as documented in their work [8].
This theorem serves as our principal instrument for delving into the intricacies
of the derivations in question.
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Theorem 2.5. [8]

1. Der(L1) =


0 0 a

0 0 −a
0 0 b

 a,b ∈ C

.

2. Der(L2) =


a 0 0

0 0 0
0 0 −a

 a ∈ C

.

3. Der(Aα) =


0 0 0

a 0
a
2 a 0

 a ∈ C

.

4. Der(B) =


0 0 0

0 0 0
0 a 0

 a ∈ C

.

5. Der(Cα (α ̸= 1,0,−1)) =


0 0 0

0 a 0
0 0 a

 a ∈ C

 .

6. Der(C1) =


0 0 0

0 a c
0 b −a

 a,b,c ∈ C

 .

Definition 2.6. Let (g, [, ]) be an ω-Lie algebra. A linear isomorphism φ : g→ g
is called an automorphism of g, if

φ([x,y]) = [φ(x),φ(y)]

for all x,y ∈ g.

We write Aut(g) for set of all automorphisms of g.

The examination of local automorphisms of ω-Lie algebras g heavily de-
pends on a pivotal theorem established by Chen Y. et al., as detailed in their
publication [8]. This theorem serves as our primary tool for delving into the
complexities of the relevant automorphisms.

Theorem 2.7. [8]

1. Aut(L1) =


1 0 a

0 1 −a
0 0 b

 0 ̸= b,a ∈ C

.
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2. Aut(L2) =


a 0 0

0 1 0
0 0 1

a

 0 ̸= a ∈ C

.

3. Aut(Aα) =


 1 0 0

a 1 0
a2+a

2 a 1

 a ∈ C

.

4. Aut(B) =


1 0 0

0 a 0
0 b a

 a2 = 1, b ∈ C

.

5. Aut(Cα (α ̸= 1,0,−1)) =


1 0 0

0 a 0
0 0 1

a

 0 ̸= a ∈ C

 .

6. Aut(C1) =


1 0 0

0 a c
0 d b

 ab− cd = 1, a,b,c,d ∈ C

 .

3. Local and 2-local derivations of 3−dimensional ω-Lie algebras

3.1. Local derivations

In this section, we study local derivation of 3-dimensional ω-Lie algebras. De-
tailed proofs are provided for the cases of L1 and L2, with the proofs for the
remaining cases omitted due to the similarity of arguments.

Definition 3.1. Let (g, [, ]) be an ω-Lie algebra. A linear map ∆ : g→ g is called
local derivation, if for any x ∈ g there exist a derivation Dx ∈ Der(g) such that
∆(x) = Dx(x).

Let LDer(g) represent the set of all local derivations defined on g. It is
easy to see that Der(g) ⊆ LDer(g). Initially, our focus is on the investigation
of derivations within L1, where L1 is equipped with a basis {e1,e2,e3} and is
defined according to Theorem 1.

Proposition 3.2. Every local derivation of the algebra L1 is a derivation.

Proof. Let ∆ be an arbitrary local derivation of L1. By definition for all x ∈ L1
there exists a derivation Dx on L1 such that ∆(x) = Dx(x) By Theorem 2.5, the
derivation Dx has the following matrix form:

Ax =

0 0 ax

0 0 −ax

0 0 bx


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Let A be the matrix of ∆ then by choosing subsequently x = e1,e2,e3, and using
∆(x) = Dx(x), i.e. AX = AxX , where X is the vector corresponding to x, it is
easy to see that

A =

0 0 ae3

0 0 −ae3

0 0 be3


Hence, by Theorem 2.5, ∆ is a derivation. This ends the proof.

Proposition 3.3. Every local derivation of the algebra L2 is a derivation.

Proof. Let ∆ be an arbitrary local derivation of L2. By definition for all x ∈ L2
there exists a derivation Dx on L1 such that ∆(x) = Dx(x) By Theorem 2.5, the
derivation Dx has the following matrix form:

Ax =

ax 0 0
0 0 0
0 0 −ax


Let A be the matrix of ∆ then by choosing subsequently x = e1,e2,e3, and using
∆(x) = Dx(x), i.e. AX = AxX , where X is the vector corresponding to x, it is
easy to see that

A =

ae1 0 0
0 0 0
0 0 −ae3


Since, ∆ is linear we have

ae1+e3e1 −ae1+e3e3 = ∆(e1 + e3) = ∆(e1)+∆(e3) = ae1e1 −ae3e3

Comparing coefficients at the basis element we obtain ae1 = ae3 .
Hence, by Theorem 2.5, ∆ is a derivation on L2.

Analogous reasoning can be extended to the remaining 3-dimensional ω-Lie
algebras. Consequently, we consolidate the outcome in the following theorem.

Theorem 3.4. 1. LDer(L1) = Der(L1).

2. LDer(L2) = Der(L2).

3. LDer(Aα) = Der(Aα), α ∈ C.

4. LDer(B) = Der(B).

5. LDer(Cα) = Der(Cα), α ∈ C\{1,0,−1}.
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6. Der(C1)⊆ LDer(C1)


0 0 0

0 a c
0 b d

 , a,b,c,d ∈ C


We summarize a characterization on local derivations of 3-dimensional ω-

Lie algebras as following Table

g LDer(g) LDer(g) = Der(g)

L1

0 0 a
0 0 −a
0 0 b

 a,b ∈ C True

L2

a 0 0
0 0 0
0 0 −a

 a ∈ C True

Aα α ∈ C

0 0 0
a 0 0
a
2 a 0

 a ∈ C True

B

0 0 0
0 0 0
0 a 0

 a ∈ C True

Cα (α ∈ C−{1,0,−1})

0 0 0
0 a 0
0 0 −a

 a ∈ C True

C1

0 0 0
0 a c
0 b d

 a,b,c,d ∈ C False

Table 1: Local derivations of 3−dimensional ω-Lie algebras g.

3.2. 2-Local derivations

In this section, we establish the proof that any 2-local derivation of 3-dimensional
ω-Lie algebras is indeed a derivation. Detailed proofs are provided for the cases
of L1 and L2, with the proofs for the remaining cases omitted due to the similar-
ity of arguments.

Definition 3.5. Let (g, [, ]) be an ω-Lie algebra. A (not necessary linear) map
∆ : g→ g is called 2-local derivation, if for any x,y ∈ g there exist a derivation
Dx,y ∈ Der(g) such that ∆(x) = Dx,y(x) and ∆(y) = Dx,y(y).

Theorem 3.6. Every 2-local derivation of the ω-Lie algebras L1, L2, Aα , B and
Cα (α ̸= 1,0,−1) is a derivation.
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Proof. We shall establish the theorem for L1; the remaining cases can be demon-
strated analogously.
Let ∆ be n arbitrary 2-local derivation of L1. Then by definition, for every ele-
ment x) ∈ L1 there exist element ax,e3 ,bx,e3 ∈ C such that

Ax,e3 =

0 0 ax,e3

0 0 bx,e3

0 0 −ax,e3


∆(x)=Ax,e3 x̄, where x̄=(x1,x2,x3)

t is the vector corresponding to x, and ∆(e3)=
Ax,e3 ē1 = (ax,e3 ,bx,e3 ,−ax,e3)t .
Since ∆(e3) = Dx,e3(e3) = Dy,e3(e3), we have

∆(e3) = (ax,e3 ,bx,e3 ,−ax,e3)t = (ay,e3 ,by,e3 ,−ay,e3)t

for each pair x,y elements of L1. Hence, ax,e3 = ay,e3 and bx,e3 = by,e3 . Therefore
∆(x) = Ay,e3 x̄ for any x ∈ L1 and the matrix of ∆ does not depend on x. Thus, by
Theorem 2.5, ∆ is a derivation.

4. Local and 2-local automorphisms of 3−dimensional ω-Lie algebras

4.1. Local automorphisms

In this section, we establish the proof that every local automorphism of 3-
dimensional ω-Lie algebras is indeed an automorphism. We provide detailed
proofs specifically for the cases of L1 and L2, opting to omit the proofs for the
remaining cases due to the similarity of arguments.

Definition 4.1. Let (g, [, ]) be an ω-Lie algebra. A linear isomorphism φ : g→ g
is called an local automorphism of g, if for any x ∈ g there exists an automor-
phism φx such that φ(x) = φx(x). for all x ∈ g.

We write LAut(g) for set of all automorphisms of g.

Proposition 4.2. Every local automorphism of the ω-Lie algebra L1 is an au-
tomorphism.

Proof. Let φ be an arbitrary automorphism of L1. By definition for all x ∈ L1
there exists an automorphism φx on L1 such that φ(x) = φx(x).
Using theorem 2.7 and applying the similar arguments used above we can as-
sume the local automorphism φ on L1 has the following form1 0 ae3

0 1 −ae3

0 0 be3


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which implies that φ is an automorphism from theorem 2.7.

Proposition 4.3. Every local automorphism of the ω-Lie algebra L2 is an au-
tomorphism.

Proof. Let φ be an arbitrary automorphism of L2. By definition for all x ∈ L2
there exists an automorphism φx on L2 such that φ(x) = φx(x).
Using theorem 2.7 and applying the similar arguments used above we can as-
sume the local automorphism φ on L2 has the following form

A =

ae1 0 0
0 1 0
0 0 1

ae3


Using the fact φ is linear we get ae1 = ae3 , which implies that φ is an automor-
phism on L2.

By applying a similar line of reasoning, we can generalize our findings to
the remaining 3-dimensional ω-Lie algebras. As a result, we encapsulate the
results in the following theorem.

Theorem 4.4. 1. LAut(L1) = Der(L1).

2. LAut(L2) = Der(L2).

3. LAut(Aα) = Der(Aα), α ∈ C.

4. LAut(B) = Der(B).

5. LAut(Cα) = Der(Cα), α ∈ C−{1,0,−1}.

6. Aut(C1)⊆ LAut(C1) =


1 0 0

0 a c
0 d b

 , a,b,c,d ∈ C


We may summarize a characterization of local automorphisms for 3-dimensional

ω-Lie algebras in the following table:
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g LDer(g) LDer(g) = Der(g)

L1

1 0 a
0 1 −a
0 0 b

 0 ̸= ba ∈ C True

L2

a 0 0
0 1 0
0 0 1

a

 0 ̸= a ∈ C True

Aα α ∈ C

 1 0 0
a 1 0

a2+a
2 a 1

 a ∈ C True

B

1 0 0
0 a 0
0 b a

 a2 = 1, b ∈ C True

Cα (α ∈ C−{1,0,−1})

1 0 0
0 a 0
0 0 1

a

 0 ̸= a ∈ C True

C1

1 0 0
0 a c
0 d b

 , a,b,c,d ∈ C False

Table 2: Local automorphisms of 3−dimensional ω-Lie algebras g.

4.2. 2-Local automorphisms

In this section, we establish the proof that any 2-local automorphisms of 3-
dimensional ω-Lie algebras is indeed an automorphism. Detailed proofs are
provided for the cases of L1 and L2, with the proofs for the remaining cases
omitted due to the similarity of arguments.

Definition 4.5. Let (g, [, ]) be an ω-Lie algebra. A (not necessary linear) map
φ : g→ g is called 2-local derivation, if for any x,y ∈ g there exist a derivation
φx,y ∈ Aut(g) such that φ(x) = φx,y(x) and φ(y) = φx,y(y).

Theorem 4.6. Every 2-local automorphism of the ω-Lie algebras L1, L2, Aα , B
and Cα (α ̸= 1,0,−1) is an automorphism.

Proof. We shall establish the theorem for L1; the remaining cases can be demon-
strated analogously.
Let ∆ be n arbitrary 2-local automorphism of L1. Then by definition, for every
element x) ∈ L1 there exist element ax,e3 ,bx,e3 ∈ C such that

Ax,e3 =

1 0 ax,e3

0 1 bx,e3

0 0 −ax,e3


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φ(x)=Ax,e3 x̄, where x̄=(x1,x2,x3)
t is the vector corresponding to x, and φ(e3)=

Ax,e3 ē1 = (ax,e3 ,bx,e3 ,−ax,e3)t .
Since φ(e3) = φx,e3(e3) = φy,e3(e3), we have

φ(e3) = (ax,e3 ,bx,e3 ,−ax,e3)t = (ay,e3 ,by,e3 ,−ay,e3)t

for each pair x,y elements of L1. Hence, ax,e3 = ay,e3 and bx,e3 = by,e3 . Therefore
φ(x) = Ay,e3 x̄ for any x ∈ L1 and the matrix of φ does not depend on x. Thus, by
Theorem 2.7, φ is an automorphism.

5. Biderivations of ω-Lie algebras

In this section, we provide characterizations of biderivations for 3-dimensional
ω-Lie algebras. We furnish detailed proofs for the cases of L1 and L2, while
omitting the proofs for the remaining cases due to the similarity of arguments.

We commence by revisiting the definition of a biderivation in the context of
an arbitrary Lie algebra.

Definition 5.1. Let (g, [, ]) be an arbitrary algebra. A bilinear map δ : g×g→ g
is called a biderivation on g if

δ ([x,y],z) = [x,δ (y,z)]+ [δ (x,z),y],

δ (x, [y,z]) = [y,δ (x,z)]+ [δ (x,y),z],

for all x,y,z ∈ g. Denote by BDer(g) the set of all biderivations on g which is
clearly a vector space.

Let BDer(g) represent the collection of all biderivations defined on g. It is
evident that this set forms a vector space.

A biderivation δ ∈ BDer(g) is termed symmetric if δ (x,y) = δ (y,x) holds
for all x,y ∈ g; conversely, it is designated as skew-symmetric if δ (x,y) =
−δ (y,x) for all x,y ∈ g. We denote the subspaces of all symmetric bideriva-
tions and all skew-symmetric biderivations on g as BDer+(g) and BDer−(g),
respectively.

For any δ ∈ BDer(g), we define two bilinear maps by

δ
+(x,y) =

1
2
(δ (x,y)+δ (y,x)), δ

−(x,y) =
1
2
(δ (x,y)−δ (y,x))
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It is easy to see δ+ ∈ BDer+(g) and δ− ∈ BDer−(g). Since δ = δ++ δ− it
follows that

BDer(g) = BDer+(g)⊕BDer−(g)

To characterize BDer(g), we only need to characterize BDer+(g) and BDer−(g).

Now, let δ be a biderivation on ω-Lie algebra g and x,y ∈ g, such that x =
∑

3
i=1 xiei and y = ∑

3
i=1 yiei. Then, by the bilinearity of δ , we obtain,

δ (x,y) =
3

∑
i=1

3

∑
j=1

xiy jδ (ei,e j) =
3

∑
i=1

3

∑
j=1

xiy jδei(e j). (1)

Theorem 5.2. Let (g, [, ]) be a three dimensional ω-Lie algebra over C. Then,
δ is a skew-symmetric biderivation of g if and only if δ (x,y) = 0, for all x,y ∈ g.

Proof. We shall establish the theorem for L1; the remaining cases can be demon-
strated analogously. Let δ be an arbitrary skew-symmetric biderivation on L1.
By Theorem 2.5, the matrix Dei of δei , for i = 1,2,3 is of the form

Dei =

0 0 aei

0 0 −aei

0 0 bei


Since δ is skew-symmetric, then, δ (e3,e3) = 0. Therefore,

De3 =

0 0 0
0 0 0
0 0 0


In other hand, δ (ei,e3) =−δ (e3,ei) for i = 1,2. Then,

Dei =

0 0 0
0 0 0
0 0 0

 , i = 1,2,3.

Hence, δ = 0, which ends the proof.

Theorem 5.3. Every symmetric biderivation of three dimensional ω-Lie alge-
bras L2, Aα , B and Cα (α ̸= 1,0,−1) is the zero map.

Proof. The proof of the theorem will be presented for L2; similar demonstra-
tions can be carried out for the remaining cases.
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Let δ be a symmetric derivation on L2 Similarly to above the matrix the matrix
Dei of δei , for i = 1,2,3 is of the form

Dei =

aei 0 0
0 0 0
0 0 aei


The equality δ (ei,e2) = δ (e2,ei) for i = 1,3 we deduce

De2 =

0 0 0
0 0 0
0 0 0


From the identities δ (e1,e3) = δ (e3,e1) we obtain

De1 = De3 =

0 0 0
0 0 0
0 0 0


Then, δ = 0.

Theorem 5.4. δ is a symmetric biderivation on L1 if and only if there exist
a,b ∈ C such that

Dei =

0 0 a
0 0 −a
0 0 b

 i = 1,2,3.

Proof. Given δ be an arbitrary symmetric biderivation on L1. By Theorem 2.5,
the matrix Dei of δei , for i = 1,2,3 is of the form

Dei =

0 0 aei

0 0 −aei

0 0 bei


Since, δ is symmetric then the equalities δ (e1,e3) = δ (e3,e1) implies that

ae1 = ae3 and be1 = be3 . (2)

From the equalities δ (e2,e3) = δ (e3,e) we get that

ae2 = ae3 and be2 = be3 . (3)

Which ends the proof by setting a = aei and b = bei for i = 1,2,3.
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Theorem 5.5. δ is a symmetric biderivation on C1 if and only if there exist
a,b,c,d ∈ C such that

De1 =

0 0 0
0 0 0
0 0 0

 De2 =

0 0 0
0 −d a
0 b d

De3 =

0 0 0
0 a c
0 d −a

 .

Proof. For an arbitrary symmetric biderivation δ on C1. By Theorem 2.5, the
matrix Dei of δei , for i = 1,2,3 is of the form

Dei =

0 0 0
0 aei cei

0 bei −aei


Using the equalty δ (e1,ei) for i = 2,3 we deduce

Dei =

0 0 0
0 0 0
0 0 0


From the identities δ (e2,e3) = δ (e3,e2) we deduce

ce2 = ae3 and −ae2 = be3

Set a = ae3 = ce2 and d =−ae2 = be3 , which ends the proof.
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