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ON DISCRETE HAHN’S THEOREM

E. ABASSI

We give a discrete analogue of Hahn’s theorem and a discrete ex-
tension for it; we show that an orthogonal polynomial sequence, whose
m− th associated sequence of k− th ”discrete derivative” sequence is or-
thogonal, is necessarily a D−ω -classical one, where Dω is the divided-
difference operator.

1. Introduction, preliminaries and first results

The Hahn’s theorem is a main characterization of D-classical orthogonal poly-
nomials, where D is the derivative operator. In [10], the authors give a new
proof of Hahn’s theorem [3, 4, 7, 11]. Also, they give an extension to Hahn’s
theorem.

In [5], the authors give a q-analogue of Hahn’s theorem and an extension to
it which characterizes the Hq-classical orthogonal polynomials, with Hq is the
q-derivative operator [6].

In this paper, we present the discrete analogue of Hahn’s theorem and a
discrete extension for it that is by respecting the divided difference operator Dω

[1]. Our main results are Theorem 2.4 in section 2 and Theorem 3.2 in section
3. The proofs of these two theorems use new techniques based on duality.
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Let P be the vector space of polynomials with coefficients in C and let P ′

be its dual. We denote by ⟨u, f ⟩ the action of u ∈ P ′ on f ∈ P . In particular,
we denote by (u)n := ⟨u,xn⟩, n ≥ 0 the moments of u. For any form u, any
polynomial g and any a,ω ∈ C\{0}, (b,c) ∈ C2, let τbu, hau, and Dωu be the
forms defined by duality

⟨τbu, f ⟩= ⟨u,τ−b f ⟩, ⟨hau, f ⟩= ⟨u,ha f ⟩,

⟨gu, f ⟩= ⟨u,g f ⟩, ⟨δc, f ⟩= f (c), f ∈ P,

where for all f in P, [9]

(τb f )(x) = f (x−b), (ha f )(x) = f (ax).

Let {Pn}n≥0 be a sequence of monic polynomials with degPn = n, n ≥ 0
(polynomial sequence: PS) and let {un}n≥0 be its dual sequence, un ∈P ′ defined
by ⟨un,Pm⟩ := δn,m, n,m ≥ 0 [2, 9].

We call associated sequence of {Pn}n≥0, the sequence {P(1)
n }n≥0 defined by

[2, 9]

P(1)
n (x) :=

〈
u0,

Pn+1(x)−Pn+1(ξ )

x−ξ

〉
, n ≥ 0.

Any polynomial P(1)
n is monic and degP(1)

n = n.
Let us introduce the divided difference operator in P by [1]

(Dω f )(x) =
f (x+ω)− f (x)

ω
, ω ̸= 0, f ∈ P. (1)

By duality, we can define Dω from P ′ to P ′ such that [1]

⟨Dωu, f ⟩=−⟨u,D−ω f ⟩, u ∈ P ′, f ∈ P, ω ∈ C\{0}. (2)

In particular, this yields

(D−ωu)n =


0 , n = 0

−
n−1

∑
k=0

(
n
k

)
ω

n−1−k(u)k , n ≥ 1.
(3)

The dual sequence {u[1]n (ω)}n≥0 of {P[1]
n (.;ω)}n≥0 where

P[1]
n (x;ω) :=

(D−ωPn+1)(x)
n+1

, n ≥ 0,

is given by [1]
Dω(u

[1]
n (ω)) =−(n+1)un+1, n ≥ 0. (4)
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More generally, we can define for k ≥ 1 the sequence {P[k]
n (.;ω)}n≥0 by

P[k]
n (x;ω) =

(D−ωP[k−1]
n+1 )(x;ω)

n+1
, n ≥ 0,

and we have

Dω(u
[k]
n )(ω) =−(n+1)u[k−1]

n+1 (ω), n ≥ 0, k ≥ 1.

Likewise, the dual sequence {ũn}n≥0 of {P̃n}n≥0 with

P̃n(x) = a−n(ha ◦ τ−b)Pn(x), n ≥ 0,(a,b) ∈ C\{0}×C,

is given by
ũn = an(ha−1 ◦ τ−b)un, n ≥ 0. (5)

In the sequel, we shall need the following formulas [1, 8]:

Lemma 1.1. For any f ∈ P, g ∈ P and u ∈ P ′, we have

Dω( f u) = (τ−ω f )(Dωu)+(Dω f )u, (6)

τb ◦Dω f = Dω ◦ τb f , τb ◦Dωu = Dω ◦ τbu, (7)

Dω ◦D−ω = D−ω ◦Dω in P and in P ′, (8)

The form u is called regular if we can associate with it a sequence {Pn}n≥0
such that [2, 9]

< u,PnPm >= rnδn,m, n,m ≥ 0; rn ̸= 0, n ≥ 0.

The sequence {Pn}n≥0 is then said orthogonal with respect to u. We call it an
orthogonal sequence (OPS for short) whose any polynomial can be supposed
monic (MOPS for short ). Necessarily, u = λu0, λ ̸= 0. In this case, we have
un = r−1

n Pnu0, n ≥ 0. Also, the MOPS {Pn}n≥0 fulfils the standard three-term
recurrence relation (TTRR for short) [2, 9]{

P0(x) = 1, P1(x) = x−β0 ,

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,

where

βn =
⟨u,xP2

n ⟩
rn

, γn+1 =
rn+1

rn
̸= 0, n ≥ 0.
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In the sequel, a regular form u will be supposed normalized that is to say (u)0 =
1. Thus, u = u0.

Let Φ monic and Ψ be two polynomials, deg Φ = t ≥ 0, deg Ψ = p ≥ 1. We
suppose that the pair (Φ,Ψ) is admissible, ie, when p = t − 1, writing Ψ(x) =
apxp + ..., then ap ̸= n+1, n ∈ N.

Definition 1.2. [1, 8] A form u is called Dω -semiclassical when it is regular and
satisfies the equation

Dω(Φu)+Ψu = 0, (9)

where the pair (Φ,Ψ) is admissible. The corresponding MOPS {Pn}n≥0 is
called D−ω -semiclassical.

Remark 1.3. if u is Dω -semiclassical, the class of u, denoted s is defined by
[1, 8]

s := min
(

max(deg(Φ)−2,deg(Ψ)−1)
)
≥ 0,

where the minimum is taken over all pairs (Φ,Ψ) satisfying (9). When s = 0
that is to say the Dω -classical case, this one is well described in [1].

2. Discrete Hahn’s theorem

First some lemmas.

Lemma 2.1. [1] For any g ∈ P and u ∈ P ′, we have

Dn
ω((τnωg)u) =

n

∑
ν=0

(
n
ν

)
(Dν

−ωg)(Dn−ν
ω u), n ≥ 0. (10)

Lemma 2.2. Let u be a Dω - semiclassical form satisfying

Dω(Φ1u)+Ψ1u = 0, (11)

and
Dω(Φ2u)+Ψ2u = 0, (12)

where Φ1,Ψ1,Φ2,Ψ2 are polynomials, Φ1,Φ2 monic, degΨ1 ≥ 1,degΨ2 ≥ 1.
Denoting s1 = max(degΦ1 −2,degΨ1 −1),s2 = max(degΦ2 −2,degΨ2 −1).
Let us denote by Φ the highest common factor of Φ1 and Φ2. Then, there exists
a polynomial Ψ, degΨ ≥ 1 such that

Dω(Φu)+Ψu = 0, (13)

with

max(degΦ−2,degΨ−1) = s1−degΦ1+degΦ = s2−degΦ2+degΦ. (14)



ON DISCRETE HAHN’S THEOREM 169

Proof. Let Φ be the highest common factor of Φ1 and Φ2. Then, there exist two
coprime polynomials Φ̌1 and Φ̌2 such that

Φ1 = ΦΦ̌1 andΦ2 = ΦΦ̌2. (15)

Taking into account (6), equations (11), (12) become

(τ−ωΦ̌1)Dω(Φu)+
{

Ψ1 +Φ(DωΦ̌1)
}

u = 0, (16)

(τ−ωΦ̌2)Dω(Φu)+
{

Ψ2 +ΦDωΦ̌2
}

u = 0. (17)

The operation (τ−ωΦ̌2)× (16) −(τ−ωΦ̌1)× (17) gives
{(τ−ωΦ̌2)(Ψ1 +Φ(DωΦ̌1))− (τ−ωΦ̌1)(Ψ2 +Φ(DωΦ̌2))}u = 0.
From regularity of u, we get

(τ−ωΦ̌2)(Ψ1 +ΦDωΦ̌1) = (τ−ωΦ̌1)(Ψ2 +ΦDωΦ̌2). (18)

Thus, there exists a polynomial Ψ such that{
Ψ1 +ΦDωΦ̌1 = Ψ(τ−ωΦ̌1),

Ψ2 +ΦDωΦ̌2 = Ψ(τ−ωΦ̌2).
(19)

Then, formulas (11), (12) become
(τ−ωΦ̌i){Dω(Φu)+Ψu}= 0, i ∈ {1,2}.

Writing Φ̌i(x) =
li

∏
k=1

(x− ci,k)
αi,k , i ∈ {1,2}, which yields

Dω(Φu)+Ψu =
l1

∑
k=1

β1,kδ
(α1,k)
c1,k =

l2

∑
k=1

β2,kδ
(α2,k)
c2,k .

But the polynomials Φ̌1 and Φ̌2 have no common zero, which allows (13). From
(15) and (19), it is easy to prove (14).

Lemma 2.3. Let {Pn}n≥0 be a D−ω - semiclassical sequence, orthogonal with
respect to u0. Suppose that u0 fulfils the two equations{

Dω(Φ1u0)+Ψ1u0 = 0
Dω(Φ2u0)+Ψ2u0 = 0.

(20)

and there exist an integer m ≥ 0 and four polynomials E, F, G, H such that{
Φ1(x) = E(x)Pm+1(x)+F(x)Pm(x)
Φ2(x) = G(x)Pm+1(x)+H(x)Pm(x).

(21)

Let ∆ the determinant of the system (21)

∆(x) =
∣∣∣∣E(x) F(x)
G(x) H(x)

∣∣∣∣ . (22)

Then if one of the following conditions is fulfilled, the form u0 is Dω -classique:
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a) ∃i = 1,2 such that degΨi ≤ degΦi −1 and deg∆ = 2.

b) ∃i = 1,2 such that degΨi ≤ degΦi and deg∆ = 1.

c) ∃i = 1,2 such that degΨi ≤ degΦi +1 and deg∆ = 0.

Proof. From (21), we have

∆(x)Pm+1(x) =
∣∣∣∣Φ1(x) F(x)
Ψ1(x) H(x)

∣∣∣∣ ,
∆(x)Pm(x) =

∣∣∣∣E(x) Φ2(x)
G(x) Ψ2(x)

∣∣∣∣ .
This implies that any common factor of Φ1 and Φ2 is a factor of ∆; in particular,
the highest common factor of Φ1 and Φ2, say Φ, is a factor of ∆. But from
Lemma 3., thers exists a polynomial Ψ such that Dω(Φu0)+Ψu0 = 0, where Ψ

is given by Ψi +ΦDωΦ̌i = Ψ(τ−ωΦ̌i), Φi = ΦΦ̌i.
We have max (degΦ + degΦ̌i − 1, degΨi) = degΨ + degΦ̌i, with degΦi =
degΦ+degΦ̌i, max (degΦi −1, degΨi) = degΨ+degΦi −degΦ.
In the case a), we have degΦi−1= degΨ+degΦi−degΦ. Therefore, degΨ=
degΦ−1 ≥ 1, since u0 is regular, thus degΦ ≥ 2. But degΦ ≤ 2. Consequently,
degΦ = 2 and degΨ = 1. Then, the form u0 is Dω -classical.
In the case b), we have degΦi = degΨ+ degΦi − degΦ. Therefore, degΨ =
degΦ ≥ 1, but degΦ ≤ 1, thus, degΦ = 1 and degΨ = 1. Then, the form u0 is
Dω -classical.
In the case c), we have degΦi + 1 = degΨ + degΦi − degΦ. This implies
degΨ = degΦ+ 1, with degΦ = 0. Thus degΦ = 0 and degΨ = 1. Then,
the form u0 is Dω -classical.

Theorem 2.4. Let {Pn}n≥0 be an orthogonal sequence; there exists an integer
k ≥ 1 such that {P[k]

n }n≥0 is also orthogonal. Then {Pn}n≥0 is a D−ω -classical
sequence.

Proof. For the sake of simplicity, let us denote Qn(x) := P[k]
n (x) and {vn}n≥0 the

dual sequence of {Qn}n≥0 (vn = u[k]n ).
On account of assumptions, we can write the following recurrence relations{

P0(x) = 1, P1(x) = x−β0,
Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,

(23)

{
Q0(x) = 1, Q1(x) = x−ζ0,
Qn+2(x) = (x−ζn+1)Qn+1(x)−ρn+1Qn(x), n ≥ 0.

(24)
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Equivalently, we also have [9]

un = (< u0,P2
n >)−1Pnu0, n ≥ 0, (25)

(x−ζn)vn = vn−1 +ρn+1vn+1, n ≥ 0, v−1 = 0. (26)

By applying Dω k times to two sides of (26) and with (5), we get

kDk−1
ω vn = Dk

ωvn−1 +ρn+1Dk
ωvn+1 − (x−ζn + kω)Dk

ωvn, n ≥ 0.

But, since vn = u[k]n , we easily see that

Dk
ωvn = (−1)k

k

∏
µ=1

(n+µ)un+k, n ≥ 0. (27)

Therefore
(−1)kkDk−1

ω vn =

k

∏
µ=1

(n+µ)

{
n

n+ k
un−1+k +

n+ k+1
n+1

ρn+1un+1+k − (x−ζn + kω)un+k

}
.

Taking account of (25) et (23), we obtain

Dk−1
ω vn = Nk

nφn+k+1u0, n ≥ 0, (28)

where φn+k+1 is monic and

Nk
nφn+k+1(x) = Lk

n

{(
n+k+1

n+1 ρn+1γ
−1
n+k+1 −

n
n+k

)
Pn+k+1(x)−

−
(

k
n+k x+βn+k −ζn + kω

)
Pn+k(x)

}
,

Lk
n = (−1)kk−1

k

∏
µ=1

(n+µ)
(
< u0,P2

n+k >
)−1

.

From (28) and (27), we get

Nk
nDω(φn+k+1u0) = Dk

ω(vn) = (−1)k
k

∏
µ=1

(n+µ)
(
< u0,P2

n+k >
)−1

Pn+ku0.

Hence
Dω(φn+k+1u0)+λ

k
n Pn+ku0 = 0, n ≥ 0, (29)
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with

λ
k
n = (−1)k−1

k

∏
µ=1

(n+µ)
(
< u0,P2

n+k >
)−1

(Nk
n)

−1.

Without going into details, we can read

φn+k+1(x) = Ak
nPn+k+1(x)− (Bk

nx+Ck
n)Pn+k(x), n ≥ 0. (30)

In particular, for n = 0 and n = 1

φk+1(x) = Ak
0Pk+1(x)− (Bk

0x+Ck
0)Pk(x), n ≥ 0. (31)

φk+2(x) = Ak
1Pk+2(x)− (Bk

1x+Ck
1)Pk+1(x), n ≥ 0. (32)

Taking into account (23), (32) becomes

φk+2(x) = {(Ak
1 −Bk

1)x− (Ak
1βk+1 +Ck

1)}Pk+1(x)−Ak
1γk+1Pk(x), n ≥ 0. (33)

Let us introduce the determinant ∆ of (31), (33) (see (22)). Since deg∆ ≤ 2,
the form u0 is Dω -classical by virtue of Lemma 4.

3. An extension of discrete Hahn’s theorem

First a lemma.

Lemma 3.1. [10] Let {Qn}n≥0 be any sequence with its dual sequence {vn}n≥0.
Then, for any integer m ≥ 1, the dual sequence {v(m)

n }n≥0 of the associated
sequence {Q(m)

n }n≥0 fulfils

v(m)
n vm−1 = xvn+m, n ≥ 0. (34)

When {Q(m)
n }n≥0 is orthogonal, the sequence {vn}n≥0 fulfils

S(m)
n vn+m = Q(m)

n vm −Q(m+1)
n−1 vm−1, n ≥ 0, (35)

where
S(m)

n =< v(m)
0 ,(Q(m)

n )2 >, n ≥ 0, m ≥ 1. (36)

Now, our aim is to determine all orthogonal sequence {Pn}n≥0 for which
there exist two integer k, m ≥ 1 such that, putting P[k]

n = Qn, n ≥ 0, the associ-
ated sequence {Q(m)

n }n≥0 is also orthogonal. When m = 0, it is discrete Hahn’s
problem. When m ≥ 1, the answer is giving by the following theorem.
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Theorem 3.2. Let {Pn}n≥0 be an orthogonal sequence; for any integer k ≥ 1
fixed, let us put P[k]

n := Qn. Suppose that there exists an integer m ≥ 1 such
that the associated sequence {Q(m)

n }n≥0 is orthogonal. Then, {Pn}n≥0 is a D−ω -
classical sequence.

Proof. For simplifying, we put Q(m)
n = Rn et Q(m+1)

n = Sn. By applying Dω k
times both sides of (35) where n → n+1 and taking into account (10), we have

k

∑
ν=1

(
k
ν

)(
Dν
−ω ◦ τ−kωRn+1

)(
Dk−ν

ω vm

)

−
k

∑
ν=1

(
k
ν

)(
Dν
−ω ◦ τ−kωSn

)(
Dk−ν

ω vm−1

)

= S(m)
n+1Dk

ωvn+1+m −

(
τ−kωRn+1

)(
Dk

ωvm

)
+

(
τ−kωSn

)(
Dk

ωvm−1

)
.

With (27), we obtain
k

∑
ν=1

(
k
ν

)(
Dν
−ω ◦ τ−kωRn+1

)(
Dk−ν

ω vm

)

−
k

∑
ν=1

(
k
ν

)(
Dν
−ω ◦ τ−kωSn

)(
Dk−ν

ω vm−1

)
= An+1+m+ku0, n ≥ 0, (37)

where
An+1+m+k = (−1)k

(
< u0,P2

m−1+k >
)−1

×{
L(m)

n (k)Pn+1+m+k−
(m+ k)!

m!
γ
−1
m+k

(
τ−kω Rn+1

)
Pm+k+(m)k

(
τ−kω Sn

)
Pm−1+k

}
,n≥ 0,

(38)

L(m)
n (k) =

k

∏
µ=1

(n+1+m+µ)
< u0,P2

m−1+k >

< u0,P2
n+1+m+k >

< v(m)
0 ,R2

n+1 >, n ≥ 0, (39)

For n = 0 in (37)
kDk−1

ω vm = Am+1+ku0. (40)

By virtue of (40), the equality (37) becomes

k

∑
ν=2

(
k
ν

)(
Dν
−ω ◦ τ−kω Rn+1

)(
Dk−ν

ω vm

)
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−
k

∑
ν=1

(
k
ν

)(
Dν
−ω ◦ τ−kω Sn

)(
Dk−ν

ω vm−1

)

=

{
An+1+m+k −

(
D−ω ◦ τ−kω Rn+1

)
Am+1+k

}
u0. (41)

Taking n = 1 in (41), we get

k(k−1)Dk−2
ω vm − kDk−1

ω vm−1 =

{
Am+2+k −

(
D−ω ◦ τ−kω R2

)
Am+1+k

}
u0. (42)

Applying the operator Dω to (40) and taking into account (25) and (27), we get

Dω(φ1u0)+λ1Pm+ku0 = 0, (43)

where
N1φ1 = Am+1+k,

λ1 = (−1)k+1k
k

∏
µ=0

(m+µ)(< u0,P2
m+k >)−1N−1

1 .

Now, after applying Dω both sides of (42), we have

k(k−1)Dk−1
ω vm − kDk

ω vm−1 = Dω

({
Am+2+k −

(
D−ω ◦ τ−kω R2

)
Am+1+k

}
u0

)
.

Putting N2φ2 = Am+2+k −

(
D−ω ◦ τ−kω R2

)
Am+1+k and on account of (40) and (27),

we get

Dω(φ2u0)+

{
λ2Pm−1+k − (k−1)N−1

2 Am+1+k

}
u0 = 0, (44)

where

λ2 = (−1)kk
(m−1+ k)!
(m−1)!

(< u0,P2
m−1+k >)−1N−1

2 .

Finally, with (23), we can express φ1, φ2 as

φ1(x) =E(x)Pm+k(x)+F(x)Pm−1+k(x), φ2(x) =G(x)Pm+k(x)+H(x)Pm−1+k(x), (45)

where
E(x) = (−1)k(< u0,P2

m−1+k >)−1N−1
1 ×{

(x−βm+k)L
(m)
0 (k)− (m+ k)!

m!
γ
−1
m+k(τ−kω R1)(x)

}
,

F(x) = (−1)k(< u0,P2
m−1+k >)−1N−1

1 ×
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(m−1+ k)!
(m−1)!

− γm+kL(m)
0 (k)

}
,

G(x) = (−1)k(< u0,P2
m−1+k >)−1N−1

2 ×{
(x−βm+k)

(
(x−βm+k+1)L

(m)
1 (k)− (D−ω ◦ τ−kω R2)(x)L

(m)
0 (k)

)
− γm+k+1L(m)

1 (k)

− (m+ k)!
m!

γ
−1
m+k

(
(D−ω ◦ τ−kω R2)(x)(τ−kω R1)(x)− (τ−kω R1)(x)

)}
,

H(x) = (−1)k(< u0,P2
m−1+k >)−1N−1

2 ×{
(m−1+ k)!
(m−1)!

(
(τ−kω S1)(x)−(D−ω ◦τ−kω R2)(x)

)
−γm+k

(
(x−βm+k+1)L

(m)
1 (k)

−(D−ω ◦ τ−kω R2)(x)L
(m)
0 (k)

)}
.

Since deg∆ ≤ 2 with ∆ given by (22), the form u is Dω -classical.
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Faculté des Sciences de Tunis, Tunisia. LR13ES06
e-mail: emna.abassi@fst.utm.tn


