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ON DISCRETE HAHN’S THEOREM

E. ABASSI

We give a discrete analogue of Hahn’s theorem and a discrete ex-
tension for it; we show that an orthogonal polynomial sequence, whose
m — th associated sequence of k —th “’discrete derivative” sequence is or-
thogonal, is necessarily a D_g-classical one, where Dy, is the divided-
difference operator.

1. Introduction, preliminaries and first results

The Hahn’s theorem is a main characterization of D-classical orthogonal poly-
nomials, where D is the derivative operator. In [10], the authors give a new
proof of Hahn’s theorem [3, 4, 7, 11]. Also, they give an extension to Hahn’s
theorem.

In [5], the authors give a g-analogue of Hahn’s theorem and an extension to
it which characterizes the H,-classical orthogonal polynomials, with H, is the
g-derivative operator [6].

In this paper, we present the discrete analogue of Hahn’s theorem and a
discrete extension for it that is by respecting the divided difference operator D,
[1]. Our main results are Theorem 2.4 in section 2 and Theorem 3.2 in section
3. The proofs of these two theorems use new techniques based on duality.
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Let P be the vector space of polynomials with coefficients in C and let P’
be its dual. We denote by (u, f) the action of u € P’ on f € P. In particular,
we denote by (u), := (u,x"), n > 0 the moments of u. For any form u, any
polynomial g and any a,® € C\{0}, (b,c) € C?, let Tyu, hau, and Dgu be the

forms defined by duality
<Tbuaf> = <uvf—bf>a <hauvf> = <Lt,haf>,

(gu, f) = (u,8f), (6, f) = f(c), f€P,
where for all f in P, [9]

(Tf)(x) = f(x = b), (haf)(x) = f(ax).

Let {P,},>0 be a sequence of monic polynomials with degP, =n, n >0
(polynomial sequence: PS) and let {u, },>0 be its dual sequence, u, € P’ defined

by (uy, Pp) = Opm, n,m>0[2,9].

We call associated sequence of {P,},>0, the sequence {Pn(l)}nzo defined by

(2,9]

Prgl)(x) — <u07pn+1(x))c:§n+l(§)> 7 n>0.

Any polynomial P,gl) is monic and deg P,gl) =n.

Let us introduce the divided difference operator in P by [1]
fxto) - fx)

(Do f)(x) = S, @#0, feP.

By duality, we can define D, from P’ to P’ such that [1]

(Dou, f) = —{u,D_of), uc P, f€P, ® € C\{0}.

In particular, this yields
0 , n=0
_ n—1
(Dfa)u)n - - Z (Z) wnflfk<u)k ,n> 1.

k=0
The dual sequence {uw (®)}n>0 of {P,El](.; ®) } >0 where

(D-0Pus1) (x)

(e ) -—
P'(x0) = p——

n>0,

)

is given by [1]
Do) (®)) = —(n+ Ditgs1, n > 0.
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More generally, we can define for k > 1 the sequence {Pn[k] (.;)}u>0 by

(D_oPX ) (x: 0)

n+1

P (v w) =

7”207

and we have

Do () (@) = —(n+ )u, (@), >0, k> 1.

Likewise, the dual sequence {u, },>0 of {13,1},,20 with
Pi(x) =a "(hgot_p)Py(x), n >0, (a,b) € C\{0} xC,

is given by
up = a"(hy—107T_p)uy, n>0. (5)

In the sequel, we shall need the following formulas [1, 8]:

Lemma 1.1. Forany f € P, g€ P and u € P', we have

Do(fu) = (T-0f)(Dou) + (Do f)u, (6)
T, 0Dgf =DgoTpf, TpoDgyu = Dg o Tpu, (7)
DyoD_=D_goDyinPandin P, (8)

The form u is called regular if we can associate with it a sequence {P, },>0
such that [2, 9]

<u,P,Py >=r,Opm, n,m>0; r, #0, n>0.

The sequence {P,},>¢ is then said orthogonal with respect to u. We call it an
orthogonal sequence (OPS for short) whose any polynomial can be supposed
monic (MOPS for short ). Necessarily, u = Aug, A # 0. In this case, we have
u, = r, 'Pug, n > 0. Also, the MOPS {P,},>o fulfils the standard three-term
recurrence relation (TTRR for short) [2, 9]

{ Py(x)=1, Pi(x)=x—PBo,
Bia(x) = (x = Bus1)Por1(x) = Yo 1Pu(x), n >0,

where 5
u,xP Fntl
ﬁn = M y o Y+l = i

I'n n

#0,n>0.
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In the sequel, a regular form u will be supposed normalized that is to say (u)o =
1. Thus, u = uy.

Let @ monic and ¥ be two polynomials, deg® =7 >0,deg ¥ =p > 1. We
suppose that the pair (P,¥) is admissible, ie, when p =t — 1, writing ¥(x) =
apx’ +...,thena, #n+1, nc€ N.

Definition 1.2. [1, 8] A form u is called D,-semiclassical when it is regular and
satisfies the equation
Dg(Pu)+¥u =0, 9)

where the pair (®,¥) is admissible. The corresponding MOPS {P,},>0 is
called D_-semiclassical.

Remark 1.3. if u is Dy-semiclassical, the class of u, denoted s is defined by
[1, 8]
§ :=min (max(deg(cb) —2,deg(W¥) — 1)) >0,

where the minimum is taken over all pairs (®,¥) satisfying (9). When s =0
that is to say the Dg-classical case, this one is well described in [1].

2. Discrete Hahn’s theorem

First some lemmas.

Lemma 2.1. [1] For any g € P and u € P’, we have

n n B
Dh((se) = ¥ ()0 we) (0 ) n >0 (10)
v=0
Lemma 2.2. Let u be a Dgy- semiclassical form satisfying
Dg(®Piu) +Viu=0, (11)
and
Dg(Pou) +Vou =0, (12)

where ®1,¥1,P,, Vs are polynomials, ®, P, monic, deg¥; > 1,deg¥, > 1.
Denoting s1 = max(deg®; —2,deg¥; — 1), 5, = max(deg®, — 2,deg¥, — 1).
Let us denote by ® the highest common factor of ®| and ®,. Then, there exists
a polynomial ¥, deg¥ > 1 such that

Dy(Pu)+Yu =0, (13)
with

max(deg® —2,deg¥ — 1) =51 —deg®; +deg® = 5, —deg P, + deg®. (14)
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Proof. Let ® be the highest common factor of ®; and ®;. Then, there exist two
coprime polynomials ®; and &, such that

@ = b and P) = &P,. (15)

Taking into account (6), equations (11), (12) become
(7_0®1)Do (1) + { W) + D(Doby) =0, (16)
(T_0®2) Do (Pu) + { ¥ + ®Dyd, } u = 0. (17)

The operation (7_¢,®2)x (16) —(7_u®d;) x (17) gives

From regularity of u, we get

Thus, there exists a polynomial ¥ such that
¥, —i—CI)D(,JqV)l = ‘P(’L'_qul),
Y, + ®D,P; = lP(T,w(bz).

Then, formulas (11), (12) become
(T—0®i){Do(Pu) +Yu} =0,ic {1,2}.
li

(19)

i

Writing &;(x) = [ [(x — cix)%*, i € {1,2}, which yields
=

@m+ww—zﬁ1”k ZB 3L

But the polynomlals &, and &, have no common zero, which allows (13). From
(15) and (19), it is easy to prove (14). O

Lemma 2.3. Let {P,},>0 be a D_- semiclassical sequence, orthogonal with
respect to ugy. Suppose that ug fulfils the two equations

{ Dg(Prug) +¥rup =0

20
Dw(qDQMQ) +Wouy = 0. ( )

and there exist an integer m > 0 and four polynomials E, F, G, H such that

{ D (x) = E(x)Pypt1(x) + F(x)Py(x) (21)
D, (x) = G(x)Ppy1(x) + H(x)Py(x).

Let A the determinant of the system (21)

B FW
A“*me H)|

Then if one of the following conditions is fulfilled, the form ug is Dy-classique:

(22)
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a) di=1,2 such that deg¥; < deg®; — 1 and degA = 2.
b) Ji=1,2 such that deg¥; < degd; and degA = 1.
c) Jdi =1,2 such that deg¥; < deg®; + 1 and degA = 0.

Proof. From (21), we have

EW) @)
A(x)Pm<x>—\G(x) o

This implies that any common factor of ®; and ®; is a factor of A; in particular,
the highest common factor of ®; and ®,, say P, is a factor of A. But from
Lemma 3., thers exists a polynomial ¥ such that Dy, (Pugy) +WPug = 0, where ¥
is given by W; + ®D,d; = ‘P('L'_a,ci),-), d; = OP;.

We have max (deg® + deg®d; — 1, deg'¥;) = deg¥ + deg®;, with deg®; =
deg ® + deg d;, max (deg®; — 1, deg¥;) = deg W + deg ®; — deg .

In the case a), we have deg®; — 1 = deg'¥ + deg ®; — deg ®. Therefore, deg¥ =
degd —1 > 1, since ug is regular, thus deg® > 2. But deg® < 2. Consequently,
deg® =2 and degW¥ = 1. Then, the form u is Dg-classical.

In the case b), we have deg®; = deg¥ + deg®; — degP. Therefore, deg¥ =
deg® > 1, but deg® < 1, thus, deg® = 1 and deg¥ = 1. Then, the form u is
Dg,-classical.

In the case ¢), we have deg®; + 1 = deg¥ + deg®; — deg®. This implies
deg¥ = deg® + 1, with degd = 0. Thus degd = 0 and degW = 1. Then,
the form ug is Dg,-classical. ]

Theorem 2.4. Let {P,},>0 be an orthogonal sequence; there exists an integer

k > 1 such that {P,Ek] }n>0 is also orthogonal. Then {P,},>0 is a D_g-classical
sequence.

Proof. For the sake of simplicity, let us denote Q,(x) := P,Ek] (x) and {vy, }»>0 the
_
dual sequence of {Q, }n>0 (v =un" ).

On account of assumptions, we can write the following recurrence relations

P()(X) = 17 Pl(x) :x_BOa
{ Pn+2(-x) = (x_ﬁn-&-l)PM—l(x) - Yn-&-an(x)’ n= 07 (23)

Qo(x) =1, O1(x) =x— o,
{ Oni2(x) = (x = Gut1) Ont1(x) — Pus1Qn(x), n> 0. (24)
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Equivalently, we also have [9]

= (< ug, P> >)"'Poug, n>0, (25)

(X_Cn)vnzvn—l+pn+lvn+1; nZO; V-1 =0. (26)
By applying Dy, k times to two sides of (26) and with (5), we get

lec‘o_lvn = Dﬁ,v,hl +pn+1Dﬁ,vn+1 (x— &, +ka)DX wVns 1> 0.

[K]

But, since v, = u;,, we easily see that

k
DK v, = (1) H(n—l—u)unH“ n>0. (27)
u=1

Therefore
(—D)kkDk 1y, =

n
H(n—i_'u){n—i—kun_“rk + ﬁpnﬂuwwk —(x=G +kw)un+k}-

Taking account of (25) et (23), we obtain
Dy ' = Ny @uiicr 110, n >0, (28)
where ¢4 441 1s monic and

Ny Gnirr1(x) = Ly (n:flrlanYnJrkH n+k>Pn+k+1 (x)—

_(ﬁx+ﬁn+k Cn—l-k(l)) Prik(x )}

k _
Lk = (—Dk! H(n—l—/.t) (< o, Py >) 1
u=1

From (28) and (27), we get

k -1
N,]wa(¢n+k+1uo) :D = H n+,LL << uo,P,lz+k >> Pn+ku0.
u=l1

Hence
Do (@i 1ti0) + AL Pyiitto = 0, n >0, (29)
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with

k -1
= () ) (<o, P >) (N
u=1

Without going into details, we can read
Otk 1 (%) = APosi1 (X) — (Byx + Gy Pag(x), n > 0. (30)
In particular, forn =0and n =1

Ora1 (x) = AI(;P/{+1(X) — (ng—i—Cg)Pk(x), n>0. (31)

Ort2(x) = AfPria(x) — (Bix+CH) Py (x), n > 0. (32)
Taking into account (23), (32) becomes
P2 (x) = {(AT = BY)x — (AT Brst +CP) }Peyr (x) = AT 1 Pe(x), n > 0. (33)

Let us introduce the determinant A of (31), (33) (see (22)). Since degA < 2,
the form ug is Dy, -classical by virtue of Lemma 4. ]

3. An extension of discrete Hahn’s theorem

First a lemma.

Lemma 3.1. [10] Let { Oy }»>0 be any sequence with its dual sequence {vy }n>0.
Then, for any integer m > 1, the dual sequence {vﬁm)}nzo of the associated

sequence {QS,’")}HZO fulfils
vgm)vm,l = XVyim, 1> 0. (34)

When {ng)}nzo is orthogonal, the sequence {v,}n>0 fulfils

S;gm)vn+m = QSlm)Vm - Q;(;iﬁlrl)vmfla n> 07 (35)
where
S =< vy (@) >, n >0, m> 1. (36)

Now, our aim is to determine all orthogonal sequence {P,},>o for which
there exist two integer k, m > 1 such that, putting P,Ek] = 0y, n > 0, the associ-

ated sequence { Q,({")}nzo is also orthogonal. When m = 0, it is discrete Hahn’s
problem. When m > 1, the answer is giving by the following theorem.
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Theorem 3.2. Let {P,},>0 be an orthogonal sequence; for any integer k > 1
fixed, let us put P,Ek] = Q,. Suppose that there exists an integer m > 1 such

that the associated sequence {ng)},,zo is orthogonal. Then, {P,},>0 is a D_ -
classical sequence.

Proof. For simplifying, we put Qﬁ,m) =R, et QE,mH) = S,. By applying Dy, k
times both sides of (35) where n — n+ 1 and taking into account (10), we have

k k .
Z <V> DY ot roRut1 || D "V
v=1
Kok
_ Z <v> D‘jwof_ka,, D]Z)_vvm,1
v=1
= (nl>1Dl(i)Vn+l+m - <T—ka)Rn+1> (D]Eovm> + <T—ka)Sn> <D§)le> .

With (27), we obtain

ko (k
) (v> DY 0T aRni1 | | Dy Vi
v=1
ko k
- Z <V> Dzwoffkwsn Dﬁ;vvm—l
v=1

=Ant1+mtito, n >0, (37)
where '
An+l+m+k - (_l)k (< M07Pn21_1+k >> X

{L;gm) (k)P 1 mk— (m;_!k) | V;,ik (’LkanH)ka + (m)y (’Lkmsn) Pm1+k} ,n >0,
(38)
L (k) = ﬁ(nJr 1 +m+u)w < W R, > n>0,  (39)
L= <u0, Bl imik >
Forn=01in (37)
kDX, = Ay 1 sxtto. (40)

By virtue of (40), the equality (37) becomes

k

k _
£ ) oren) )
v=2
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ko (k
— Z < > Dﬁwor_ka,, Dl(j)_vvm,1
v=1 v
= {An+1+m+k - <Dw 0T kwRnt1 )Am+1+k}u0~ (41)

Taking n =1 in (41), we get

k(k—1)D~ 2y, — kDX 1y, | = {Am+2+k - (Dw o r_ka2> Am+1+k}uo. (42)

Applying the operator Dy, to (40) and taking into account (25) and (27), we get
D (P1uo) + At Puiiito =0, (43)

where
Nior =Api14ks

k
M= (D% (m+p) (< uo, Poyy >) "Ny
u=0

Now, after applying D, both sides of (42), we have

k(k — I)Dl((u_lvm — kDﬁ,vm,l =Dy ({Am+2+k — (Dw o T_ka2>Am+1+k}u0) .

Putting No¢» = Apioik — (D_a, o ’L'ka2>Am+]+k and on account of (40) and (27),

we get
D (9auo) + {lsz—Hk —(k— 1)N2_1Am+1+k}u0 =0, (44)

where
(m—14k)!

Ay = (—1)’%7(’"_ i

(<uo, Po iy >)" "Ny
Finally, with (23), we can express ¢;, ¢ as

01(x) = E(xX) B (x) + F () P 114(x), 92(x) = G0) Py () + H () P11 (), (45)

where
E(x) = (—1)*(< uo, P2_ >) "N

(m+4)! Ynﬂk(ﬂkw&)(x) },

{ (-x - ﬁerk)LE)m) (k) -

m!

Fx)= (=D (<uo,Pa_y 4 >)"'Ny '
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(i)

G(x) = (=) (< uo, Py >) "N, '
{(x_ Pt <(x‘ B DL (K) — (D0 T_soRa) ()14 <k>> i LK)

k)L, ((Dw 0 T_wR2) (¥)(T_koR1) (x) = (T_taR) ><X>> }

m!
H(x) = (= 1)*(< uo, P2y >) "Ny ' x

{ W ((Tkal)(X) - (D_workaz)(x)> — Vntk <(x_ﬁm+k+l )LE"”(k)

~(D_go rka2><x>Lé’"><k>> }

Since deg A < 2 with A given by (22), the form u is Dg-classical. O
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