CLIFFORD LINE MANIFOLDS

NASSAR H. ABDEL-ALL

This article presents a new distribution of Clifford Klein manifolds. Special kinds of the distribution, under some assumption, are studies. The geometrical properties of the K-manifolds in the considered distribution are given. The relations between Gauss, mean, scalar normal and Lipschitz-Killing curvatures are obtained. The methods adapted here as in [1], [2] and [5].

1. Geometric preliminaries.

In this section, we will review the notations used in our previous paper [5]. Consider a Klein 5-dimensional Pseudo-Euclidean space H_5^3 of index three. The most convenient model of the space H_5^3 for the present work is the spherical one (Pseudo sphere of imaginary radius) which might be defined as follows

$$H_5^3 = \{ (p^{ij}) \in \mathbb{R}^6 : \sum_{\alpha < \beta} (p^{\alpha\beta}) - \sum_{\alpha} (p^{\circ\alpha})^2 = -1, \, p^{ij} = -p^{ji}, \, p^{\circ\alpha} > 0 \}$$

The space \mathbb{R}^6 denotes the Euclidean space (\mathbb{R}^6 , $< >_3$) with the Pseudo-Riemannian metric

$$\langle p, p \rangle_{3} = \sum_{\alpha > \beta} (p^{\alpha \beta})^{2} - \sum_{\alpha} (p^{\circ \alpha})^{2}$$

Entrato in Redazione il 16 novembre 2000.

Here and in the sequel, the Latin and Greek indices run over the rangers $\{0, 1, 2, 3\}$ and $\{1, 2, 3\}$ respectively, except the indices μ, ν taking on the values 1, 2.

Since the metric \langle , \rangle_3 is not positive definite, the set of all vectors in H_5^3 can be decomposed into space-like, time-like and isotropic like vectors according to \langle , \rangle_3 is positive, negative and zero respectively. The above metric when restricted to H_5^3 yields a Riemannian metric with constant sectional curvature $k_0 = -1$.

Using the Klein-bijective mapping (K-mapping) between the lines of a hyperbolic space H_3^1 (Minkowski space with the Pseudometric $<, >_1$ and the K-points of H_5^3 . The K-image of the set of all lines in H_3^1 is a quadratic hypersurface (Grassmann manifold) immersed in H_5^3 . The Grassmann manifold is denoted by $G_{1,4}^2$ (the absolutum of the space H_5^3) and is given by

(1)
$$\sum_{\alpha,\beta,\gamma} p^{0\alpha} p^{\beta\gamma} = 0, \ (\beta < \gamma, \alpha \neq \beta)$$

where p^{ij} are the Plûcker coordinates of a point $p \in G_{1,4}^2$ (homogeneous coordinates in a 5-dimensional projective space) [1].

Attach to each K-point of $G_{1,4}^2$ a K-frame field $\{A_{ij}\}$ (orthonormalized frame) where $\{A_{ij}\}$ is the K-image (the Grassmann product of the two points A_i, A_j) of the edge (A_i, A_j) of the orthonormalized frame $\{A_i\}$ (polar tetrahedron with respect to the absolutum $\sum_{\alpha} (x^{\alpha})^2 - (x^0)^2 = 0, x^0 > 0$) of the space H^1 in which x^i are the homogeneous coordinates of a 3 dimensional projective

 H_3^1 , in which x^i are the homogeneous coordinates of a 3-dimensional projective space. Thus, the infinitesimal displacements of the frames are given as:

(2)
$$dA_i = \omega_i^J A_j$$
 and $dA_{ij} = \omega_i^h A_{hj} + \omega_j^h A_{ih}$

with the conditions of normalization

$$A_{i} \equiv (\delta_{i}^{j}), < A_{0}, A_{\alpha} >_{1} = -\delta_{0}^{\alpha}, < A_{\alpha}, A_{\beta} >_{1} = \delta_{\alpha}^{\beta},$$
$$< A_{0\alpha}, A_{i\alpha} >_{3} = -\delta_{0}^{i}, < A_{\alpha\beta}, A_{\gamma\gamma} >_{3} = \delta_{\gamma\gamma}^{\alpha\beta}$$

Here the vectors A_0 , $A_{0\alpha}$ are time-like and A_{α} , $A_{\beta\gamma}$ are space-like vectors. The structure equations are given by:

(3)
$$D\omega_0^{\alpha} = \omega_0^{\beta} \Lambda \omega_{\beta}^{\alpha} , \ D\omega_{\alpha}^{\beta} = \omega_{\alpha}^{\gamma} \Lambda \omega_{\gamma}^{\beta} + \omega_0^{\alpha} \Lambda \omega_0^{\beta}$$

with the stationary conditions:

$$\omega^{\beta}_{\alpha} + \omega^{\alpha}_{\beta} = 0 , \ \omega^{i}_{i} = 0 , \ \omega^{\alpha}_{0} = \omega^{0}_{\alpha}$$

where ω_i^j are the Pfaff's forms.

In the following, we shall identify the α -parametric families of straight lines in H_3^1 and their K-images under the K-mapping, that is, a ruled surface, a line congruence and a line complex immersed in H_3^1 is an α -dimensional K-manifold immersed in $G_{1,4}^2 \subset H_5^3$ respectively [2]. Consider a general Kpoint $p \in G_{1,4}^2$, say without loss of generality $p \equiv A_{03}$, and making use of the formulas (2) we find that the principal forms on $G_{1,4}^2$ are $\omega_0^{\mu}, \omega_3^{\mu}$. Thus, the immersion

$$\omega_3^1 = b_\alpha \ \theta^\alpha$$
, $(\theta^\alpha) \equiv (\omega_0^2, \omega_0^1, \omega_3^2)$

define a K-manifold of dimension three, denote it by M_3 , immersed in the Kabsolutum $G_{1,4}^2$. The invariants b_{α} are real valued functions defined on an open neighborhood of p.

We may specialize the frames such that the K-inverse of M_3 is a line complex in the canonical form [7]. Thus, we have

$$\omega_3^1 = b_1 \theta^1$$

Exterior differentiation according to (3) and using Cartan's lemma yields

(4)
$$\omega_3^1 = b_1 \theta^1, \, \theta_\alpha = a_{\alpha\beta} \, \theta^\beta$$

where $(\theta_{\alpha}) \equiv (db_1, -\omega_0^3 - b_1\omega_1^2, b_1\omega_0^3 - \omega_1^2)$ with the condition $\Delta_{\omega} = 1 + \varepsilon b_1^2 \neq 0$, $(\varepsilon = \pm 1)$. The matrix $(a_{\alpha\beta})$ is a non singular symmetric matrix of the invariants $a_{\alpha\beta}$ defined in the 2*nd* order contact elements of $p \in M_3$.

From (2) and (4) we have the formulas

(5)
$$dp = \psi^{\alpha} E_{\alpha} , \ d^2p \equiv II^{\nu} N_{\nu} \ (\bmod p, dp)$$

where

$$(E_{\alpha}) \equiv (A_{13}, (A_{23} + b_1 A_{01}) \sqrt{\hat{\Delta}_{-1}}, A_{02}),$$

$$(\psi^{\alpha}) \equiv (\theta^2, \theta^1 \sqrt{\Delta_{-1}}, \theta^3),$$

$$(N_{\nu}) \equiv (A_{12}, A_{01}) \text{ and } \hat{\Delta}_{\varepsilon} = 1/\Delta_{\varepsilon}$$

The tangent K-space $T_p(M_3)$ consists of the K-points p, E_α and the normal bundle $T_p^l(M_3)$ consists of the K-points N_ν . The verification of the formulas (5) is routine and is left to the reader. Here, and in later formulas we will agree on the following. The forms ψ^{α} , $\tilde{\psi}^{\alpha}$, $\tilde{\phi}^{\mu}$, ϕ^{μ} , $\hat{\phi}^{\mu}$ and $\bar{\phi}^{\mu}$ are the dual coframes to the local orthonormal tangent frame fields E_α , \tilde{E}_α , \tilde{e}_μ , \hat{e}_μ and \bar{e}_μ on the Ksubmanifolds M_3 , M_3^c , M_2^c , M_2 , \hat{M}_2 and \bar{M}_2 of $G_{1,4}^2$ respectively. The forms II^{ν} are the 2nd fundamental forms in the normal directions N_{ν} respectively.

2. General Clifford distribution.

In general, the system

(6)
$$\theta_2 = -\omega_0^3 - b_1 \omega_1^2, \ \theta_3 = b_1 \omega_0^3 - \omega_1^2$$

is non-singular ($\Delta_1 \neq 0$). If the system (6) is singular ($\Delta_1 = 0$), we have a K-manifold M_3 such that its K-inverse is a Clifford line complex [8]. Here the K-manifold M_3 is called a K-Clifford manifold, we denote it by M_3^c , immersed in $G_{1,4}^2$. Henceforth, the K-manifolds M_3^c is characterized by the system of equations

(7)
$$\omega_3^1 = i\theta^1, \, \omega_0^3 + i\omega_1^2 = -a_{22}(\theta^2 - i\theta^3), \, (i = \sqrt{-1})$$

Thus the formulas (5) take the form

(8)
$$dp = \tilde{\psi}^{\alpha} \tilde{E}_{\alpha}, d^2 p \equiv \tilde{I} I^{\nu} N_{\nu} \pmod{p, dp}$$

where

(9)
$$\begin{cases} (\tilde{\psi}^{\alpha}) \equiv (\theta^{2}, \sqrt{2}\theta^{1}, \theta^{3}), \\ (\tilde{E}_{\alpha}) = (E_{1}, (A_{23} + iA_{01})/\sqrt{2}, E_{3}), \\ \tilde{I}I^{1} \equiv (2\tilde{\psi}^{1}\tilde{\psi}^{3} - i(\tilde{\psi}^{2})^{2}), \\ \tilde{I}I^{2} \equiv a_{22}((\tilde{\psi}^{1})^{2} + (\tilde{\psi}^{3})^{2} + 2\tilde{\psi}^{1}\tilde{\psi}^{3}) \end{cases}$$

From (9), one can prove that the Gauss curvature and the normal mean curvature vector are given by

(10)
$$G = -1 + i$$
 and $H = (2a_{22}N_2 - iN_1)/3$

The αth mean curvatures G^{μ}_{α} in the normal direction N_{μ} satisfy

$$G_3^1 G_1^1 + G_2^1 = 0, \ G_3^2 = G_2^2 = 0, \ G_1^2 = (2a_{22})/3$$

Then, it follows easily from (9) that we have

Theorem 1. The lines of curvatures on the manifold M_3^c in the normal direction N_1 consist of the families of curves

(11)
$$\tilde{\psi}^1 \pm \tilde{\psi}^3 = 0, \, \tilde{\psi}^2 = 0, \, and \, \tilde{\psi}^1 = \tilde{\psi}^3 = 0$$

corresponding to the principal curvature $\pm l$ and -i.

From (3) and (7) its easy to see that

$$D(\tilde{\psi}^1 - i\tilde{\psi}^3) \equiv 0 \pmod{\tilde{\psi}^1 - i\tilde{\psi}^3}$$

on the manifold M_3^c . Thus, with the Pfaffian equation $\tilde{\psi}^1 - i\tilde{\psi}^3 = 0$ there is associated a field of planes, that is, a function that assigns to each point $p \in M_3^c$ a plane of the tangent K-space $T_p(M_3^c)$. Thus, the Pfaffian system

(12)
$$\sqrt{2} \omega_3^1 - i\tilde{\psi}^2 = 0, \ \omega_0^3 + i\omega_1^2 = 0, \ \tilde{\psi}^1 - i\tilde{\psi}^3 = 0$$

is completely integrable and through each point of M_3^c there passes one and only one integral (holonomic) submanifold of dimension two. Hence, the system (12) determines a distribution (stratification) of one parametric family of 2-dimensional K-surfaces. The inverse K-representation of the family of Ksurfaces is a family of Clifford line congruences [8]. Therefore, we introduce the definition.

Definition 1. A K-surface of the family (12) is called a Clifford K-surface immersed in M_3^c and we denote it by M_2^c .

Thus, we have proved the following:

Theorem 2. The K-manifold (7) admits an arbitrary distribution of oneparametric family of K-surfaces (12).

The infinitesimal displacements on M_2^c are given by

(13)
$$dp = \tilde{\phi}^{\mu} \tilde{e} \text{ and } d^2p \equiv II N_1 \pmod{p, dp}$$

where

(14)
$$\begin{cases} (\tilde{\phi}^{\mu}) \equiv \sqrt{2} \ (\theta^2, \theta^1), \\ (\tilde{e}_{\mu}) \equiv ((\tilde{E}_1 - i\tilde{E}_3)/\sqrt{2}, \tilde{E}_2), \\ II \equiv -i((\tilde{\phi}^1)^2 + (\tilde{\phi}^2)^2). \end{cases}$$

From (13) and (14), one can see that the K-surface M_2^c consist of umbilical points. The Gauss and mean curvatures are given by $\tilde{G} = -2$ and $\tilde{H} = -i$ respectively ($\tilde{G} = \tilde{H}^2 - 1$). Thus, we have proved the following [9].

Theorem 3. The K-surface $M_2^c \subset M_3^c$ is a Pseudo K-sphere.

Definition 2. The distribution (12) is called a Clifford distribution.

3. General normal distribution.

It is well-known that K-manifold $M_3 \subset G_{1,4}^3 \subset H_5^3$ admits a normal distribution (brevity *N*-distribution) of one-parametric family of K-surfaces M_2 of type normal [6] (normal line congruences in H_3^1). The rays of the K-inverse of M_2 cut orthogonally holonomic surface described by the proper point $A_0 + tA_3 \in (A_0, A_3)$. The differential equation of this surface is given by

(15)
$$\omega_0^3 + D(\operatorname{arctanh} t) = 0$$

In [10], it has been proved that the Gauss and mean curvatures of the surface (15) are given by

(16)
$$K = \xi (l - t^2) \Delta_1$$
 and $H = \xi (2t \Delta_1 + c_1 (l + t^2))$

respectively, where $\xi = 1/(1 + c_1 t - b_1^2 t^2)$. Thus, using (15) and (4), the *N*-distribution is given by the involutive equation

(17)
$$\theta^3 = c_{\nu}\theta^{\nu}, (c_{\nu}) \equiv (c_1, b_1)$$

with the system (4), where c_1 is an invariant given as a differentiable function of the invariants b_1 , $a_{\alpha\beta}$. It is convenient to rewrite the system of equations which characterizes the *N*-distribution as the following

(18)
$$\begin{cases} \omega_3^1 = b_1 \theta^1, \ \theta_\alpha = b_{\alpha\nu} \theta^\nu, \ \theta^3 = c_\nu \theta^\nu, \\ dc_1 = B \theta^1 + (b_{11} + c_1 b_{31}) \theta^2 - 2b_1 \ \omega_1^2 + \Delta \omega_0^3 \end{cases}$$

where $b_{\alpha\nu} = a_{\alpha\nu} + c_{\nu}a_{\alpha3}$, $\Delta = \Delta_{-1} - c_1^2$ and *B* is an invariant of the second order.

The immersion (18) characterizes the K-surface M_2 of the N-distribution. Making use of (18) and (2) we get

(19)
$$dp = \phi^{\nu} e_{\nu} \text{ and } d^2 p \equiv \overline{II}^{\alpha} \overline{N}_{\alpha} \pmod{p, dp}$$

where

$$\begin{aligned} (\phi^{\mu}) &\equiv (\theta^2 \sqrt{\Delta_{-1}}, \theta^1 \sqrt{\Delta}) , \ (e_{\mu}) &\equiv (\sqrt{\hat{\Delta}_{-1}} (E_1 + E_3), \sqrt{\hat{\Delta}} (\sqrt{\Delta_{-1}} E_2 + c_1 E_3)), \\ \overline{N}_3 &\equiv A_{02}, \overline{N}_{\mu} = N_{\mu} , \ \hat{\Delta} = l/\Delta. \end{aligned}$$

The quadratic differential forms $\overline{II}^{\alpha} \equiv c^{\alpha}_{\mu\nu}\phi^{\mu}\phi^{\nu}$ are the 2*nd* fundamental forms of the K-surface M_2 , where the quantities $c^{\alpha}_{\mu\nu}$ are the components of quadratic

symmetric covariant tensors associated with the forms \overline{II}^{α} . The components $c^{\alpha}_{\mu\nu}$ are given from the relations

(20)
$$c_{11}^1 = -\Delta \hat{\Delta}_{-1} c_{21}^1 = 2b_1 \hat{\Delta}_{-1}, \ c_{12}^1 = c_1 \sqrt{\hat{\Delta}} \hat{\Delta}_{-1},$$

 $c_{11}^2 = \hat{\Delta}_{-1} (b_{22}^1 + b_1 b_{32}), \ c_{22}^2 = \sqrt{\hat{\Delta}} \Delta_{-1} c_{12}^3 = \hat{\Delta} (b_{11} + c_1 b_{31}),$
 $c_{12}^2 = \sqrt{\hat{\Delta}} \Delta_{-1} c_{11}^3 = \sqrt{\hat{\Delta}} \hat{\Delta}_{-1} (b_{21} + b_1 b_{31}) \text{ and } c_{22}^3 = B \hat{\Delta}.$

The Lipschitz-Killing curvatures $\overline{G}_{3}^{\alpha}$ corresponding to the normal directions \overline{N}_{α} are given by $\overline{G}_{3}^{\alpha} = Det(C^{\alpha})$, where $C^{\alpha} \equiv (c_{\mu\nu}^{\alpha})$ are the symmetric matrices attached to the forms \overline{II}^{α} . The Gauss curvature on M_{2} is given by the formula [11]

$$G_{M_2} = -1 + \sum_{\alpha} \overline{G}_3^{\alpha}$$

Explicitly, we have

(21)
$$G_{M_2} = -1 + \hat{\Delta} \Delta_{-1} \{ 4b_1^2 + c_1^2 + (b_{21} + b_1 B_{31})^2 + (b_{11} + c_1 b_{31})^2 - B(b_{21} + b_1 b_{31} - (b_{11} + c_1 b_{31}) (b_{22} + b_1 b_{32}) \}$$

The normal mean curvature vector \vec{H}_{M_2} [3] is given by

$$\vec{H}_{M_2} = (\operatorname{tr}(C^{\alpha})/2)\overline{N}_{\alpha},$$

or equivalently

(22)
$$\vec{H}_{M_2} = -b_1 c_1^2 \hat{\Delta}_{-1} \hat{\Delta} \overline{N}_1 + (\hat{\Delta}_{-1} (\hat{\Delta}_{-1} (b_{22} + b_1 b_{32})/2 + \hat{\Delta} (b_{11} + c_1 b_{31})/2) \overline{N}_2 + ((\hat{\Delta}_{-1} (b_{21} + b_1 b_{31})/2) + \hat{\Delta} B/2) \overline{N}_3$$

The scalar normal curvature of M_2 is given by

$$K_{M_2} = \sum_{\alpha,\beta} n(C^{\alpha}C^{\beta} - C^{\beta}C^{\alpha}), \text{ where } n(C^{\alpha}) = \sum_{\mu,\nu} (c^{\alpha}_{\mu\nu})^2$$

Thus, by virtu of (20), we have

(23)
$$K_{M_2} = 4\hat{\Delta}\hat{\Delta}_{-1}\{(\zeta_1Y_2 - \zeta_2Y_1)^2 + (2b_1\zeta_1Y_3 - c_1Y_1)^2 + (2b_1\zeta_2Y_3 - c_1Y_2)^2\}$$

where $Y_1 = -B\Delta + \sqrt{\hat{\Delta}\Delta_1} c_{12}^2$, $Y_2 = \hat{\Delta}\Delta_{-1}c_{11}^2 - \Delta^2 c_{22}^2$, $Y_3 = \Delta + \hat{\Delta}$, $\zeta_1 = b_{11} + c_1 b_{31}$ and $\zeta_2 = b_{21} + b_1 b_{31}$.

The asymptotic K-manifold at the K-point $p \in M_2 \subset M_3 \subset G_{1,4}^2$ is given by

det
$$(d^2 p, p, N_2, \overline{N}_3, A_{13}, A_{23}) = 0$$
 or equivalently $\overline{II}^1 = 0$

This equation characterizes the family of developables on the inverse K-image. Thus, we have proved the following:

Theorem 4. The asymptotic K-manifold on M_2 is in one-to-one correspondence with the developables of its inverse K-image.

4. Clifford *N*-distribution.

Here, consider the *N*-distribution (18) for which the holonomic surface (15) is a Clifford surface (ruled surface with zero Gauss and constant mean curvatures) [11]. In this distribution, the K-surface M_2 is a Clifford surface and the K-manifold M_3 is a Clifford manifold. Thus, the distribution is called *N*-distribution of Clifford K-surfaces (brevity *CN*-distribution). Using (16) and (18) one can be easily verified that the *CN*-distribution is decomposed into two subclasses, denoted by S_{μ} , characterized by the following:

(S₁)
$$\begin{cases} \omega_3^1 - i\theta^1 = 0, \ \theta^3 - 2\theta^1 - i\theta^2 = 0\\ \omega_0^3 + i\omega_1^2 + 2a_{22}(\theta^2 - i\theta^1) = 0 \end{cases}$$

(S₂)
$$\begin{cases} \omega_3^1 - i\theta^1 = 0, \ \theta^3 - c^1\theta^1 - i\theta^2 = 0, \\ dc_1 = (4 - c_1^2) \ \omega_0^3 + B\theta^1 \end{cases}$$

respectively.

For a K-surface of S_1 , we denote it by \hat{M}_2 , we have (24) $dp = \hat{\psi}^{\mu} \hat{e}_{\mu}$ and $d^2 p \equiv (\hat{\psi}^1 - \hat{\psi}^2)^2 N \pmod{p}$, dp)

where

$$\begin{aligned} (\hat{\psi}^{\mu}) &\equiv \sqrt{2}(\theta^2, \theta^1), \\ (\hat{e}_{\mu}) &\equiv (A_{13} + iA_{02}, A_{01} - iA_{23} - 2iA_{02})/\sqrt{2} \end{aligned}$$

and $N \equiv iA_{12} + 2a_{22}(iA_{23} - A_{13})$ is a time like normal vector. From (24), it follows that the 2nd osculating space $T_p^2(\hat{M}_2)$ has dimension three. Thus, the inverse K-image is a linear parabolic line congruence in H_3^1 [4]. Thus, we have proved.

Lemma 1. The tangent K-plane $T_p(\hat{M}_2)$ to the K-surface \hat{M}_2 contain a fixed isotropic vector $\vec{Q} = \sqrt{2}(\hat{e}_1 + \hat{e}_2)$.

Consequently, we have:

Corollary 1. The inverse K-image of \vec{Q} is the directrix of the inverse K-image of the K-surface \hat{M}_2 .

From the foregoing results, we have the geometrical characterization of the K-surface \hat{M}_2 as the following.

Theorem 5. The K-surface \hat{M}_2 consists of all K-points which are polar conjugate to the isotropic vector \vec{Q} with respect to the K-absolutum $G_{1,4}^2 \subset H_5^3$.

From (24) one can prove the following [10], [11].

Lemma 2. The principal direction on \hat{M}_2 corresponding to the principal curvatures 0, 2*i* are $\hat{\phi}^1 \pm \hat{\phi}^2 = 0$ respectively.

Lemma 3. The asymptotic K-manifold at $p \in \hat{M}_2$ is degenerate into one family of principal directions given by $\hat{\phi}^1 - \hat{\phi}^2 = 0$.

From (7) and (S_1), one can see that the system (S_1) is involutive on the K-manifold given by (7). Hence this characterizes a distribution on M_3^c . Thus, we have

Lemma 4. The K-surface \hat{M}_2 given as an immersion in the Clifford manifold M_3^c .

The proof is omitted.

The distribution (S_2) is defined on a Clifford K-manifold, denote it by \tilde{M}_3^c , belonging to a subclass of the class (7) under the condition $a_{22} = 0$. It is easy to see that the 2*nd* osculating space $T_p^2(M_3^c)$ has the dimension four. Consequently the inverse K-image is a linear Clifford line complex in H_3^1 [4], [10]. Thus, we have proved the following:

Theorem 6. The K-manifold \tilde{M}_3^c is a Wiengarten-manifold immersed in $G_{1,4}^2$.

The distribution (S_2) consists of K-surfaces, without loss of generality we take one of them, say $\overline{M}_2 \subset \tilde{M}_3^c$. The fundamental equations on the K-surface \overline{M}_2 are given as

(25)
$$dp = \overline{\phi}^{\mu} \overline{e}_{\mu} \text{ and } d^2 p \equiv \hat{I} I^{\mu} \hat{N}_{\mu} \pmod{p, dp}$$

where $(\overline{\phi}^{\mu}) \equiv (\sqrt{2}\theta^2, \sqrt{2-c_1^2}\theta^1),$

$$(\overline{e}_{\mu}) \equiv ((A_{13} + iA_{02})/\sqrt{2}, (A_{23} + iA_{01} + c_1A_{02})\overline{\Delta})$$

and $(\hat{N}_{\mu}) \equiv (\overline{N}_1, \overline{N}_3)$ The forms $\hat{I}I^{\mu}$ are given by

(26)
$$\begin{cases} \hat{I}I^1 \equiv i((\overline{\phi}^1) - 2\overline{\Delta}(\overline{\phi}^2)^2 - ic_1\sqrt{2\overline{\Delta}\phi}^1\overline{\phi}^2) \\ \hat{I}I^2 \equiv B\overline{\Delta}(\overline{\phi}^2)^2, \end{cases}$$

where $\overline{\Delta} = 1/(2 - c_1^2)$.

From (25) and (26), it follows that the Lipschitz-Killing curvatures in the normal directions \hat{N}_{μ} are $\hat{G}_{3}^{1} = (4 - c_{1}^{2})\overline{\Delta}/2$ and $\hat{G}_{3}^{2} = 0$, respectively. As a similar way to [1], one can prove the following:

Lemma 5. The lines of curvatures on the normal sections \hat{N}_{μ} are the family of curves

$$ic\sqrt{2}\left((\overline{\phi}^{1})^{2} - (\overline{\phi}^{2})^{2}\right) + (4 - c_{1}^{2})\sqrt{\overline{\Delta}} \ \overline{\phi}^{1}\overline{\phi}^{2} = 0$$

and the family of parametric curves $\{\overline{e}_{\mu}\}$.

Lemma 6. The Gauss curvature and the normal mean curvature vector are $G_{\overline{M}_2} = c_1^2 \overline{\Delta}/2, \stackrel{\rightarrow}{_H\overline{M}_2} = -(i\overline{\Delta}/2) \ (c_1^2 \hat{N}_1 + B \hat{N}_2)$ respectively.

Corollary 2. The Gauss and mean curvatures on \overline{M}_2 are related by

$$c_1^4 H_{\overline{M}_2}^2 = (B^2 - c_1^4) G_{\overline{M}_2}^2$$

So we have the following [9]:

Lemma 7. The K-surface \overline{M}_2 is a Wiengarten-surface.

Equipped with the forms (26) and the associated quadratic tensors, we have the proof of the following [3]:

Lemma 8. The scalar normal curvature of the K-surface \overline{M}_2 is

$$K_{\overline{M}_2} = 2B^2 c_1^2 \overline{\Delta}^3.$$

REFERENCES

- [1] N.H. Abdel-All, *Klein correspondences of a class of line complexes in elliptic spaces*, Tensor, N. S., 48 2 (1989), pp. 110–115.
- [2] N.H. Abdel-All, *Quasi-hyperbolic manifolds*, Tensor, N. S., 51 3 (1992), pp. 224–228.
- [3] B.Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc. New York, 1973.
- [4] V. Hlavaty, Differential line geometry, Noordhoff, Graningen, 1953.
- [5] M.A. Soliman N.H. Abdel-All, *Immersion in a hyperbolic manifold*, Collect. Math., 45 - 2, Universtat de Barcelona (1994), pp. 153–136.
- [6] M.A. Soliman, Stratification of a line complex into special kinds of normal congruences in H³₁, Bull. call. Math. Soc., 73 (1981), pp. 329–330.
- [7] M.A. Soliman N.H. Abdel-All S.F. Hassanien, *The Klein image of a line complex which admit a stratification of a non W-congruences*, Indian J. pure appl. Math., 16 (8), August (1985), pp. 886–891.
- [8] M.A. Soliman, On surface with null Gaussian curvature in elliptic space S₃, Proc. 4th Ann. conf. in statistics, computers science and Maths., (5) (1979), pp. 185–195.
- [9] M. Spivak, A comprehensive introduction to differential geometry, Vol. IV, V, publish or publish, Inc. (1975).
- [10] N. I. Kovancov, *Theory of complexes*, Kiev, 1963.
- [11] T. J. Willmore, *Total curvature in Riemannian Geometry*, Ellis Harwod Limited publishers, 1982.

Mathematic Department, Faculty of Science, Assiut University, Assiut (EGYPT)