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CLIFFORD LINE MANIFOLDS

NASSAR H. ABDEL-ALL

This article presents a new distribution of Clifford Klein manifolds.
Special kinds of the distribution, under some assumption, are studies. The
geometrical properties of the K-manifolds in the considered distribution are
given. The relations between Gauss, mean, scalar normal and Lipschitz-
Killing curvatures are obtained. The methods adapted here as in [1], [2] and
[5].

1. Geometric preliminaries.

In this section, we will review the notations used in our previous paper [5].
Consider a Klein 5-dimensional Pseudo-Euclidean space H 3

5 of index three. The
most convenient model of the space H 3

5 for the present work is the spherical one
(Pseudo sphere of imaginary radius) which might be de�ned as follows

H 3
5 = {(pi j )∈ R

6 :
�

α<β

(pαβ ) −
�

α

(p◦α )2 = −1, pi j = −p ji , p◦α > 0}

The space R
6 denotes the Euclidean space (R6, < >3) with the Pseudo-

Riemannian metric

< p, p >3=
�

α>β

(pαβ )2 −
�

α

(p◦α)2
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Here and in the sequel, the Latin and Greek indices run over the rangers
{0, 1, 2, 3} and {1, 2, 3} respectively, except the indices µ, ν taking on the
values 1, 2.

Since the metric <, >3 is not positive de�nite, the set of all vectors in
H 3

5 can be decomposed into space-like, time-like and isotropic like vectors
according to <, >3 is positive, negative and zero respectively. The above
metric when restricted to H 3

5 yields a Riemannian metric with constant sectional
curvature k0 = −1.

Using the Klein-bijective mapping (K-mapping) between the lines of a
hyperbolic space H 1

3 (Minkowski space with the Pseudometric <, >1 and the
K-points of H 3

5 . The K-image of the set of all lines in H 1
3 is a quadratic

hypersurface (Grassmann manifold) immersed in H 3
5 . The Grassmann manifold

is denoted by G2
1,4 (the absolutum of the space H 3

5 ) and is given by

(1)
�

α,β,γ

p0α pβγ = 0, (β < γ, α �= β)

where pi j are the Plûcker coordinates of a point p ∈ G2
1,4 (homogeneous

coordinates in a 5-dimensional projective space) [1].
Attach to each K-point of G2

1,4 a K-frame �eld {Ai j } (orthonormalized
frame) where {Ai j } is the K-image (the Grassmann product of the two points
Ai , Aj ) of the edge (Ai , Aj ) of the orthonormalized frame {Ai } (polar tetrahe-
dron with respect to the absolutum

�

α

(xα)2 − (x 0)2 = 0, x 0 > 0) of the space

H 1
3 , in which x i are the homogeneous coordinates of a 3-dimensional projective

space. Thus, the in�nitesimal displacements of the frames are given as:

(2) d Ai = ω
j
i Aj and d Ai j = ωh

i Ah j + ωh
j Aih

with the conditions of normalization

Ai ≡ (δ
j
i ) , < A0, Aα >1= −δα

0 , < Aα , Aβ >1= δβ
α ,

< A0α , Aiα >3= −δi
0 , < Aαβ , Aγ η >3= δαβ

γη

Here the vectors A0, A0α are time-like and Aα, Aβγ are space-like vectors.
The structure equations are given by:

(3) Dωα
0 = ω

β

0�ωα
β , Dωβ

α = ωγ
α�ωβ

γ + ωα
0�ω

β

0

with the stationary conditions:

ωβ
α + ωα

β = 0 , ωi
i = 0 , ωα

0 = ω0
α
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where ω
j
i are the Pfaff�s forms.

In the following, we shall identify the α-parametric families of straight
lines in H 1

3 and their K-images under the K-mapping, that is, a ruled surface,
a line congruence and a line complex immersed in H 1

3 is an α-dimensional
K-manifold immersed in G2

1,4 ⊂ H 3
5 respectively [2]. Consider a general K-

point p ∈ G2
1,4, say without loss of generality p ≡ A03 , and making use of the

formulas (2) we �nd that the principal forms on G2
1,4 are ω

µ

0 , ω
µ

3 . Thus, the
immersion

ω1
3 = bα θα , (θα) ≡ (ω2

0, ω1
0, ω2

3)

de�ne a K-manifold of dimension three, denote it by M3, immersed in the K-
absolutum G2

1,4. The invariants bα are real valued functions de�ned on an open
neighborhood of p.

We may specialize the frames such that the K-inverse of M3 is a line
complex in the canonical form [7]. Thus, we have

ω1
3 = b1 θ 1

Exterior differentiation according to (3) and using Cartan�s lemma yields

(4) ω1
3 = b1θ

1, θα = aαβ θβ

where (θα) ≡ (db1, −ω3
0−b1ω

2
1, b1ω

3
0−ω2

1) with the condition�ω = 1+εb2
1 �=

0, (ε = ±1). The matrix (aαβ) is a non singular symmetric matrix of the
invariants aαβ de�ned in the 2nd order contact elements of p ∈ M3.

From (2) and (4) we have the formulas

(5) dp = ψα Eα , d2 p ≡ I I ν Nν (mod p, dp)

where

(Eα) ≡ (A13, (A23 + b1A01)

�

�̂−1, A02),

(ψα) ≡ (θ 2, θ 1
�

�−1, θ 3),

(Nν ) ≡ (A12, A01) and �̂ε = 1/�ε

The tangent K-space Tp(M3) consists of the K-points p, Eα and the normal
bundle T l

p(M3) consists of the K-points Nν . The veri�cation of the formulas (5)
is routine and is left to the reader. Here, and in later formulas we will agree
on the following. The forms ψα, ψ̃α, φ̃µ, φµ, φ̂µ and φ̄µ are the dual coframes
to the local orthonormal tangent frame �elds Eα, Ẽα, ẽµ, êµ and ēµ on the K-

submanifolds M3, Mc
3, Mc

2, M2, M̂2 and M̄2 of G2
1,4 respectively. The forms

I I ν are the 2nd fundamental forms in the normal directions Nν respectively.
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2. General Clifford distribution.

In general, the system

(6) θ2 = −ω3
0 − b1ω

2
1 , θ3 = b1ω

3
0 − ω2

1

is non-singular (�1 �= 0). If the system (6) is singular (�1 = 0), we have a
K-manifold M3 such that its K-inverse is a Clifford line complex [8]. Here the
K-manifold M3 is called a K-Clifford manifold, we denote it by Mc

3 , immersed
in G2

1,4. Henceforth, the K-manifolds Mc
3 is characterized by the system of

equations

(7) ω1
3 = iθ 1, ω3

0 + iω2
1 = −a22(θ

2 − iθ 3), (i =
√

−1)

Thus the formulas (5) take the form

(8) dp = ψ̃α Ẽα, d2 p ≡ Ĩ I ν Nν (mod p, dp)

where

(9)






(ψ̃α) ≡ (θ 2,
√
2θ 1, θ 3),

(Ẽα) = (E1, (A23 + i A01)/
√
2, E3),

Ĩ I 1 ≡ (2ψ̃1 ψ̃3 − i(ψ̃2)2),
Ĩ I 2 ≡ a22((ψ̃

1)2 + (ψ̃3)2 + 2ψ̃1 ψ̃3),

From (9), one can prove that the Gauss curvature and the normal mean curvature
vector are given by

(10) G = −1 + i and H = (2a22N2 − i N1)/3

The αth mean curvatures Gµ
α in the normal direction Nµ satisfy

G1
3G1

1 + G1
2 = 0, G2

3 = G2
2 = 0, G2

1 = (2a22)/3

Then, it follows easily from (9) that we have

Theorem 1. The lines of curvatures on the manifold Mc
3 in the normal direction

N1 consist of the families of curves

(11) ψ̃1 ± ψ̃3 = 0, ψ̃2 = 0, and ψ̃1 = ψ̃3 = 0.

corresponding to the principal curvature ± l and −i .
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From (3) and (7) its easy to see that

D(ψ̃1 − iψ̃3) ≡ 0 (mod ψ̃1 − iψ̃3)

on the manifold Mc
3 . Thus, with the Pfaf�an equation ψ̃1 − iψ̃3 = 0 there is

associated a �eld of planes, that is, a function that assigns to each point p ∈ Mc
3

a plane of the tangent K-space Tp(M
c
3 ). Thus, the Pfaf�an system

(12)
√
2 ω1

3 − iψ̃2 = 0, ω3
0 + iω2

1 = 0, ψ̃1 − iψ̃3 = 0

is completely integrable and through each point of Mc
3 there passes one and

only one integral (holonomic) submanifold of dimension two. Hence, the
system (12) determines a distribution (strati�cation) of one parametric family
of 2-dimensional K-surfaces. The inverse K-representation of the family of K-
surfaces is a family of Clifford line congruences [8]. Therefore, we introduce
the de�nition.

De�nition 1. A K-surface of the family (12) is called a Clifford K-surface
immersed in Mc

3 and we denote it by Mc
2 .

Thus, we have proved the following:

Theorem 2. The K-manifold (7) admits an arbitrary distribution of one-
parametric family of K-surfaces (12).

The in�nitesimal displacements on Mc
2 are given by

(13) dp = φ̃µ ẽ and d2 p ≡ I I N1 (mod p, dp)

where

(14)






(φ̃µ) ≡
√
2 (θ 2, θ 1),

(ẽµ) ≡ ((Ẽ1 − i Ẽ3)/
√
2, Ẽ2),

I I ≡ −i((φ̃1)2 + (φ̃2)2).

From (13) and (14), one can see that the K-surface Mc
2 consist of umbilical

points. The Gauss and mean curvatures are given by G̃ = −2 and H̃ = −i
respectively (G̃ = H̃ 2 − 1). Thus, we have proved the following [9].

Theorem 3. The K-surface Mc
2 ⊂ Mc

3 is a Pseudo K-sphere.

De�nition 2. The distribution (12) is called a Clifford distribution.
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3. General normal distribution.

It is well-known that K-manifold M3 ⊂ G3
1,4 ⊂ H 3

5 admits a normal
distribution (brevity N -distribution) of one-parametric family of K-surfaces
M2 of type normal [6] (normal line congruences in H 1

3 ). The rays of the K-
inverse of M2 cut orthogonally holonomic surface described by the proper point
A0 + t A3 ∈ (A0, A3). The differential equation of this surface is given by

(15) ω3
0 + D(arctanh t) = 0

In [10], it has been proved that the Gauss and mean curvatures of the surface
(15) are given by

(16) K = ξ (l − t2)�1 and H = ξ (2t�1 + c1(l + t2))

respectively, where ξ = 1/(1 + c1t − b2
1t2).

Thus, using (15) and (4), the N -distribution is given by the involutive equation

(17) θ 3 = cνθ
ν, (cν) ≡ (c1, b1)

with the system (4), where c1 is an invariant given as a differentiable function of
the invariants b1, aαβ . It is convenient to rewrite the system of equations which
characterizes the N -distribution as the following

(18)

�
ω1
3 = b1θ

1, θα = bανθ
ν, θ 3 = cνθ

ν,

dc1 = Bθ 1 + (b11 + c1b31)θ
2 − 2b1 ω2

1 + �ω3
0,

where bαν = aαν + cνaα3, � = �−1 − c21 and B is an invariant of the second
order.
The immersion (18) characterizes the K-surface M2 of the N -distribution.
Making use of (18) and (2) we get

(19) dp = φνeν and d2 p ≡ I I
α

N α (mod p, dp)

where

(φµ) ≡ (θ 2
�

�−1, θ 1
√

�) , (eµ) ≡ (

�

�̂−1(E1 + E3),
�

�̂(
�

�−1E2 + c1E3)),

N3 ≡ A02, Nµ = Nµ , �̂ = l/�.

The quadratic differential forms I I
α

≡ cα
µνφ

µφν are the 2nd fundamental forms
of the K-surface M2, where the quantities cα

µν are the components of quadratic
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symmetric covariant tensors associated with the forms I I
α
. The components

cα
µν are given from the relations

(20) c111 = −��̂−1 c121 = 2b1�̂−1 , c112 = c1

�

�̂�̂−1,

c211 = �̂−1(b
1
22 + b1b32) , c222 =

�

�̂�−1 c312 = �̂(b11 + c1b31),

c212 =

�

�̂�−1 c311 =

�

�̂�̂−1 (b21 + b1b31) and c322 = B�̂.

The Lipschitz-Killing curvatures G
α

3 corresponding to the normal directions Nα

are given by G
α

3 = Det(Cα ), where Cα ≡ (cα
µν ) are the symmetric matrices

attached to the forms I I
α
. The Gauss curvature on M2 is given by the formula

[11]

G M2
= −1 +

�

α

G
α

3

Explicitly, we have

G M2
= − 1 + �̂�−1{4b2

1 + c21 + (b21 + b1B31)
2(21)

+ (b11 + c1b31)
2 − B(b21 + b1b31

− (b11 + c1b31) (b22 + b1b32)}

The normal mean curvature vector �HM2
[3] is given by

�HM2
= (tr(Cα )/2)N α,

or equivalently

(22) �HM2
= −b1c

2
1�̂−1�̂N 1 + (�̂−1(�̂−1(b22 + b1b32)/2

+ �̂(b11 + c1b31)/2)N 2 + ((�̂−1(b21 + b1b31)/2) + �̂B/2)N 3

The scalar normal curvature of M2 is given by

KM2
=

�

α,β

n(CαCβ − CβCα ), where n(Cα) =
�

µ,ν

(cα
µν)

2

Thus, by virtu of (20), we have

(23) KM2
= 4�̂�̂−1{(ζ1Y2 − ζ2Y1)

2 + (2b1ζ1Y3 − c1Y1)
2 + (2b1ζ2Y3 − c1Y2)

2}
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where Y1 = −B� +

�

�̂�1 c212,

Y2 = �̂�−1c
2
11 − �2c222, Y3 = � + �̂,

ζ1 = b11 + c1b31 and ζ2 = b21 + b1b31.

The asymptotic K-manifold at the K-point p ∈ M2 ⊂ M3 ⊂ G2
1,4 is given by

det(d2 p, p, N2, N3, A13, A23) = 0 or equivalently I I
1
= 0.

This equation characterizes the family of developables on the inverse K-image.
Thus, we have proved the following:

Theorem 4. The asymptotic K-manifold on M2 is in one-to-one correspon-
dence with the developables of its inverse K-image.

4. Clifford N -distribution.

Here, consider the N -distribution (18) for which the holonomic surface
(15) is a Clifford surface (ruled surface with zero Gauss and constant mean
curvatures) [11]. In this distribution, the K-surface M2 is a Clifford surface and
the K-manifold M3 is a Clifford manifold. Thus, the distribution is called N -
distribution of Clifford K-surfaces (brevity CN -distribution). Using (16) and
(18) one can be easily veri�ed that the CN -distribution is decomposed into two
subclasses, denoted by Sµ, characterized by the following:

(S1)

�
ω1
3 − iθ 1 = 0, θ 3 − 2θ 1 − iθ 2 = 0,

ω3
0 + iω2

1 + 2a22(θ
2 − iθ 1) = 0

(S2)

�
ω1
3 − iθ 1 = 0, θ 3 − c1θ 1 − iθ 2 = 0,

dc1 = (4 − c21) ω3
0 + Bθ 1

respectively.

For a K-surface of S1, we denote it by M̂2, we have

(24) dp = ψ̂µêµ and d2 p ≡ (ψ̂1 − ψ̂2)2 N (mod p, dp)

where
(ψ̂µ) ≡

√
2(θ 2, θ 1),

(êµ) ≡ (A13 + i A02, A01 − i A23 − 2i A02)/
√
2

and N ≡ i A12 + 2a22(i A23 − A13) is a time like normal vector. From (24), it
follows that the 2nd osculating space T 2

p (M̂2) has dimension three. Thus, the

inverse K-image is a linear parabolic line congruence in H 1
3 [4]. Thus, we have

proved.
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Lemma 1. The tangent K-plane Tp(M̂2) to the K-surface M̂2 contain a �xed

isotropic vector �Q =
√
2 (ê1 + ê2).

Consequently, we have:

Corollary 1. The inverse K-image of �Q is the directrix of the inverse K-image
of the K-surface M̂2.

From the foregoing results, we have the geometrical characterization of the
K-surface M̂2 as the following.

Theorem 5. The K-surface M̂2 consists of all K-points which are polar conju-
gate to the isotropic vector �Q with respect to the K-absolutum G2

1,4 ⊂ H 3
5 .

From (24) one can prove the following [10], [11].

Lemma 2. The principal direction on M̂2 corresponding to the principal cur-
vatures 0, 2i are φ̂1 ± φ̂2 = 0 respectively.

Lemma 3. The asymptotic K-manifold at p ∈ M̂2 is degenerate into one family
of principal directions given by φ̂1 − φ̂2 = 0.

From (7) and (S1), one can see that the system (S1) is involutive on the
K-manifold given by (7). Hence this characterizes a distribution on Mc

3 . Thus,
we have

Lemma 4. The K-surface M̂2 given as an immersion in the Clifford manifold
Mc

3 .

The proof is omitted.
The distribution (S2) is de�ned on a Clifford K-manifold, denote it by M̃c

3 ,
belonging to a subclass of the class (7) under the condition a22 = 0. It is easy to
see that the 2nd osculating space T 2

p (M
c
3 ) has the dimension four. Consequently

the inverse K-image is a linear Clifford line complex in H 1
3 [4], [10]. Thus, we

have proved the following:

Theorem 6. The K-manifold M̃c
3 is a Wiengarten- manifold immersed in G2

1,4.

The distribution (S2) consists of K-surfaces, without loss of generality we
take one of them, say M2 ⊂ M̃c

3 . The fundamental equations on the K-surface

M2 are given as

(25) dp = φ
µ

eµ and d2 p ≡ Î Iµ N̂µ (mod p, dp)

where (φ
µ
) ≡ (

√
2 θ 2,

�
2 − c21 θ 1),

(eµ) ≡ ((A13 + i A02)/
√
2, (A23 + i A01 + c1A02)�)
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and (N̂µ) ≡ (N1, N3)

The forms Î Iµ are given by

(26)

�
Î I 1 ≡ i((φ

1
) − 2�(φ

2
)2 − ic1

√
2�φ

1
φ
2
)

Î I 2 ≡ B�(φ
2
)2,

where � = 1/(2 − c21).

From (25) and (26), it follows that the Lipschitz-Killing curvatures in the
normal directions N̂µ are Ĝ1

3 = (4 − c21)�/2 and Ĝ2
3 = 0, respectively.

As a similar way to [1], one can prove the following:

Lemma 5. The lines of curvatures on the normal sections N̂µ are the family of
curves

ic
√
2 ((φ

1
)2 − (φ

2
)2) + (4 − c21)

�
� φ

1
φ
2

= 0

and the family of parametric curves {eµ}.

Lemma 6. The Gauss curvature and the normal mean curvature vector are
G M2

= c21 �/2, →
H M 2

= −(i�/2) (c21 N̂1 + B N̂2) respectively.

Corollary 2. The Gauss and mean curvatures on M2 are related by

c41 H 2

M2
= (B2 − c41)G

2

M2
.

So we have the following [9]:

Lemma 7. The K-surface M2 is a Wiengarten-surface.

Equippedwith the forms (26) and the associated quadratic tensors, we have
the proof of the following [3]:

Lemma 8. The scalar normal curvature of the K-surface M2 is

KM2
= 2B2 c21 �

3
.
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