CLIFFORD LINE MANIFOLDS

NASSAR H. ABDEL-ALL

This article presents a new distribution of Clifford Klein manifolds. Special kinds of the distribution, under some assumption, are studies. The geometrical properties of the K-manifolds in the considered distribution are given. The relations between Gauss, mean, scalar normal and LipschitzKilling curvatures are obtained. The methods adapted here as in [1], [2] and [5].

1. Geometric preliminaries.

In this section, we will review the notations used in our previous paper [5]. Consider a Klein 5-dimensional Pseudo-Euclidean space H_{5}^{3} of index three. The most convenient model of the space H_{5}^{3} for the present work is the spherical one (Pseudo sphere of imaginary radius) which might be defined as follows

$$
H_{5}^{3}=\left\{\left(p^{i j}\right) \in \mathbb{R}^{6}: \sum_{\alpha<\beta}\left(p^{\alpha \beta}\right)-\sum_{\alpha}\left(p^{\circ \alpha}\right)^{2}=-1, p^{i j}=-p^{j i}, p^{\circ \alpha}>0\right\}
$$

The space \mathbb{R}^{6} denotes the Euclidean space $\left(\mathbb{R}^{6},<>_{3}\right)$ with the PseudoRiemannian metric

$$
<p, p>_{3}=\sum_{\alpha>\beta}\left(p^{\alpha \beta}\right)^{2}-\sum_{\alpha}\left(p^{\circ \alpha}\right)^{2}
$$

Here and in the sequel, the Latin and Greek indices run over the rangers $\{0,1,2,3\}$ and $\{1,2,3\}$ respectively, except the indices μ, ν taking on the values 1,2 .

Since the metric $<,>_{3}$ is not positive definite, the set of all vectors in H_{5}^{3} can be decomposed into space-like, time-like and isotropic like vectors according to $<,>_{3}$ is positive, negative and zero respectively. The above metric when restricted to H_{5}^{3} yields a Riemannian metric with constant sectional curvature $k_{0}=-1$.

Using the Klein-bijective mapping (K-mapping) between the lines of a hyperbolic space H_{3}^{1} (Minkowski space with the Pseudometric $<,>_{1}$ and the K-points of H_{5}^{3}. The K-image of the set of all lines in H_{3}^{1} is a quadratic hypersurface (Grassmann manifold) immersed in H_{5}^{3}. The Grassmann manifold is denoted by $G_{1,4}^{2}$ (the absolutum of the space H_{5}^{3}) and is given by

$$
\begin{equation*}
\sum_{\alpha, \beta, \gamma} p^{0 \alpha} p^{\beta \gamma}=0, \quad(\beta<\gamma, \alpha \neq \beta) \tag{1}
\end{equation*}
$$

where $p^{i j}$ are the Plûcker coordinates of a point $p \in G_{1,4}^{2}$ (homogeneous coordinates in a 5 -dimensional projective space) [1].

Attach to each K-point of $G_{1,4}^{2}$ a K-frame field $\left\{A_{i j}\right\}$ (orthonormalized frame) where $\left\{A_{i j}\right\}$ is the K-image (the Grassmann product of the two points A_{i}, A_{j}) of the edge (A_{i}, A_{j}) of the orthonormalized frame $\left\{A_{i}\right\}$ (polar tetrahedron with respect to the absolutum $\sum_{\alpha}\left(x^{\alpha}\right)^{2}-\left(x^{0}\right)^{2}=0, x^{0}>0$) of the space H_{3}^{1}, in which x^{i} are the homogeneous coordinates of a 3-dimensional projective space. Thus, the infinitesimal displacements of the frames are given as:

$$
\begin{equation*}
d A_{i}=\omega_{i}^{j} A_{j} \text { and } d A_{i j}=\omega_{i}^{h} A_{h j}+\omega_{j}^{h} A_{i h} \tag{2}
\end{equation*}
$$

with the conditions of normalization

$$
\begin{aligned}
A_{i} \equiv & \left(\delta_{i}^{j}\right),<A_{0}, A_{\alpha}>_{1}=-\delta_{0}^{\alpha},<A_{\alpha}, A_{\beta}>_{1}=\delta_{\alpha}^{\beta}, \\
& <A_{0 \alpha}, A_{i \alpha}>_{3}=-\delta_{0}^{i},<A_{\alpha \beta}, A_{\gamma \eta}>_{3}=\delta_{\gamma \eta}^{\alpha \beta}
\end{aligned}
$$

Here the vectors $A_{0}, A_{0 \alpha}$ are time-like and $A_{\alpha}, A_{\beta \gamma}$ are space-like vectors. The structure equations are given by:

$$
\begin{equation*}
D \omega_{0}^{\alpha}=\omega_{0}^{\beta} \Lambda \omega_{\beta}^{\alpha}, D \omega_{\alpha}^{\beta}=\omega_{\alpha}^{\gamma} \Lambda \omega_{\gamma}^{\beta}+\omega_{0}^{\alpha} \Lambda \omega_{0}^{\beta} \tag{3}
\end{equation*}
$$

with the stationary conditions:

$$
\omega_{\alpha}^{\beta}+\omega_{\beta}^{\alpha}=0, \omega_{i}^{i}=0, \omega_{0}^{\alpha}=\omega_{\alpha}^{0}
$$

where ω_{i}^{j} are the Pfaff's forms.
In the following, we shall identify the α-parametric families of straight lines in H_{3}^{1} and their K -images under the K -mapping, that is, a ruled surface, a line congruence and a line complex immersed in H_{3}^{1} is an α-dimensional K-manifold immersed in $G_{1,4}^{2} \subset H_{5}^{3}$ respectively [2]. Consider a general Kpoint $p \in G_{1,4}^{2}$, say without loss of generality $p \equiv A_{03}$, and making use of the formulas (2) we find that the principal forms on $G_{1,4}^{2}$ are $\omega_{0}^{\mu}, \omega_{3}^{\mu}$. Thus, the immersion

$$
\omega_{3}^{1}=b_{\alpha} \theta^{\alpha},\left(\theta^{\alpha}\right) \equiv\left(\omega_{0}^{2}, \omega_{0}^{1}, \omega_{3}^{2}\right)
$$

define a K-manifold of dimension three, denote it by M_{3}, immersed in the Kabsolutum $G_{1,4}^{2}$. The invariants b_{α} are real valued functions defined on an open neighborhood of p.

We may specialize the frames such that the K -inverse of M_{3} is a line complex in the canonical form [7]. Thus, we have

$$
\omega_{3}^{1}=b_{1} \theta^{1}
$$

Exterior differentiation according to (3) and using Cartan's lemma yields

$$
\begin{equation*}
\omega_{3}^{1}=b_{1} \theta^{1}, \theta_{\alpha}=a_{\alpha \beta} \theta^{\beta} \tag{4}
\end{equation*}
$$

where $\left(\theta_{\alpha}\right) \equiv\left(d b_{1},-\omega_{0}^{3}-b_{1} \omega_{1}^{2}, b_{1} \omega_{0}^{3}-\omega_{1}^{2}\right)$ with the condition $\Delta_{\omega}=1+\varepsilon b_{1}^{2} \neq$ $0,(\varepsilon= \pm 1)$. The matrix $\left(a_{\alpha \beta}\right)$ is a non singular symmetric matrix of the invariants $a_{\alpha \beta}$ defined in the $2 n d$ order contact elements of $p \in M_{3}$.

From (2) and (4) we have the formulas

$$
\begin{equation*}
d p=\psi^{\alpha} E_{\alpha}, d^{2} p \equiv I I^{v} N_{v}(\bmod p, d p) \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\left(E_{\alpha}\right) \equiv\left(A_{13},\left(A_{23}+b_{1} A_{01}\right) \sqrt{\hat{\Delta}_{-1}}, A_{02}\right) \\
\left(\psi^{\alpha}\right) \equiv\left(\theta^{2}, \theta^{1} \sqrt{\Delta_{-1}}, \theta^{3}\right) \\
\left(N_{v}\right) \equiv\left(A_{12}, A_{01}\right) \text { and } \hat{\Delta}_{\varepsilon}=1 / \Delta_{\varepsilon}
\end{gathered}
$$

The tangent K -space $T_{p}\left(M_{3}\right)$ consists of the K-points p, E_{α} and the normal bundle $T_{p}^{l}\left(M_{3}\right)$ consists of the K-points N_{v}. The verification of the formulas (5) is routine and is left to the reader. Here, and in later formulas we will agree on the following. The forms $\psi^{\alpha}, \tilde{\psi}^{\alpha}, \tilde{\phi}^{\mu}, \phi^{\mu}, \hat{\phi}^{\mu}$ and $\bar{\phi}^{\mu}$ are the dual coframes to the local orthonormal tangent frame fields $E_{\alpha}, \tilde{E}_{\alpha}, \tilde{e}_{\mu}, \hat{e}_{\mu}$ and \bar{e}_{μ} on the Ksubmanifolds $M_{3}, M_{3}^{c}, M_{2}^{c}, M_{2}, \hat{M}_{2}$ and \bar{M}_{2} of $G_{1,4}^{2}$ respectively. The forms $I I^{v}$ are the $2 n d$ fundamental forms in the normal directions N_{v} respectively.

2. General Clifford distribution.

In general, the system

$$
\begin{equation*}
\theta_{2}=-\omega_{0}^{3}-b_{1} \omega_{1}^{2}, \theta_{3}=b_{1} \omega_{0}^{3}-\omega_{1}^{2} \tag{6}
\end{equation*}
$$

is non-singular $\left(\Delta_{1} \neq 0\right)$. If the system (6) is singular $\left(\Delta_{1}=0\right)$, we have a K-manifold M_{3} such that its K-inverse is a Clifford line complex [8]. Here the K-manifold M_{3} is called a K-Clifford manifold, we denote it by M_{3}^{c}, immersed in $G_{1,4}^{2}$. Henceforth, the K-manifolds M_{3}^{c} is characterized by the system of equations

$$
\begin{equation*}
\omega_{3}^{1}=i \theta^{1}, \omega_{0}^{3}+i \omega_{1}^{2}=-a_{22}\left(\theta^{2}-i \theta^{3}\right),(i=\sqrt{-1}) \tag{7}
\end{equation*}
$$

Thus the formulas (5) take the form

$$
\begin{equation*}
d p=\tilde{\psi}^{\alpha} \tilde{E}_{\alpha}, d^{2} p \equiv \tilde{I} I^{\nu} N_{v}(\bmod p, d p) \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\left(\tilde{\psi}^{\alpha}\right) \equiv\left(\theta^{2}, \sqrt{2} \theta^{1}, \theta^{3}\right) \tag{9}\\
\left(\tilde{E}_{\alpha}\right)=\left(E_{1},\left(A_{23}+i A_{01}\right) / \sqrt{2}, E_{3}\right) \\
\tilde{I} I^{1} \equiv\left(2 \tilde{\psi}^{1} \tilde{\psi}^{3}-i\left(\tilde{\psi}^{2}\right)^{2}\right) \\
\tilde{I} I^{2} \equiv a_{22}\left(\left(\tilde{\psi}^{1}\right)^{2}+\left(\tilde{\psi}^{3}\right)^{2}+2 \tilde{\psi}^{1} \tilde{\psi}^{3}\right)
\end{array}\right.
$$

From (9), one can prove that the Gauss curvature and the normal mean curvature vector are given by

$$
\begin{equation*}
G=-1+i \text { and } H=\left(2 a_{22} N_{2}-i N_{1}\right) / 3 \tag{10}
\end{equation*}
$$

The α th mean curvatures G_{α}^{μ} in the normal direction N_{μ} satisfy

$$
G_{3}^{1} G_{1}^{1}+G_{2}^{1}=0, G_{3}^{2}=G_{2}^{2}=0, G_{1}^{2}=\left(2 a_{22}\right) / 3
$$

Then, it follows easily from (9) that we have
Theorem 1. The lines of curvatures on the manifold M_{3}^{c} in the normal direction N_{1} consist of the families of curves

$$
\begin{equation*}
\tilde{\psi}^{1} \pm \tilde{\psi}^{3}=0, \tilde{\psi}^{2}=0, \text { and } \tilde{\psi}^{1}=\tilde{\psi}^{3}=0 \tag{11}
\end{equation*}
$$

corresponding to the principal curvature $\pm l$ and $-i$.

From (3) and (7) its easy to see that

$$
D\left(\tilde{\psi}^{1}-i \tilde{\psi}^{3}\right) \equiv 0\left(\bmod \tilde{\psi}^{1}-i \tilde{\psi}^{3}\right)
$$

on the manifold M_{3}^{c}. Thus, with the Pfaffian equation $\tilde{\psi}^{1}-i \tilde{\psi}^{3}=0$ there is associated a field of planes, that is, a function that assigns to each point $p \in M_{3}^{c}$ a plane of the tangent K-space $T_{p}\left(M_{3}^{c}\right)$. Thus, the Pfaffian system

$$
\begin{equation*}
\sqrt{2} \omega_{3}^{1}-i \tilde{\psi}^{2}=0, \omega_{0}^{3}+i \omega_{1}^{2}=0, \tilde{\psi}^{1}-i \tilde{\psi}^{3}=0 \tag{12}
\end{equation*}
$$

is completely integrable and through each point of M_{3}^{c} there passes one and only one integral (holonomic) submanifold of dimension two. Hence, the system (12) determines a distribution (stratification) of one parametric family of 2-dimensional K-surfaces. The inverse K-representation of the family of Ksurfaces is a family of Clifford line congruences [8]. Therefore, we introduce the definition.

Definition 1. A K-surface of the family (12) is called a Clifford K-surface immersed in M_{3}^{c} and we denote it by M_{2}^{c}.

Thus, we have proved the following:
Theorem 2. The K-manifold (7) admits an arbitrary distribution of oneparametric family of K-surfaces (12).

The infinitesimal displacements on M_{2}^{c} are given by

$$
\begin{equation*}
d p=\tilde{\phi}^{\mu} \tilde{e} \text { and } d^{2} p \equiv I I N_{1}(\bmod p, d p) \tag{13}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\left(\tilde{\phi}^{\mu}\right) \equiv \sqrt{2}\left(\theta^{2}, \theta^{1}\right) \tag{14}\\
\left(\tilde{e}_{\mu}\right) \equiv\left(\left(\tilde{E}_{1}-i \tilde{E}_{3}\right) / \sqrt{2}, \tilde{E}_{2}\right) \\
I I \equiv-i\left(\left(\tilde{\phi}^{1}\right)^{2}+\left(\tilde{\phi}^{2}\right)^{2}\right)
\end{array}\right.
$$

From (13) and (14), one can see that the K-surface M_{2}^{c} consist of umbilical points. The Gauss and mean curvatures are given by $\tilde{G}=-2$ and $\tilde{H}=-i$ respectively $\left(\tilde{G}=\tilde{H}^{2}-1\right)$. Thus, we have proved the following [9].
Theorem 3. The K-surface $M_{2}^{c} \subset M_{3}^{c}$ is a Pseudo K-sphere.
Definition 2. The distribution (12) is called a Clifford distribution.

3. General normal distribution.

It is well-known that K-manifold $M_{3} \subset G_{1,4}^{3} \subset H_{5}^{3}$ admits a normal distribution (brevity N-distribution) of one-parametric family of K-surfaces M_{2} of type normal [6] (normal line congruences in H_{3}^{1}). The rays of the Kinverse of M_{2} cut orthogonally holonomic surface described by the proper point $A_{0}+t A_{3} \in\left(A_{0}, A_{3}\right)$. The differential equation of this surface is given by

$$
\begin{equation*}
\omega_{0}^{3}+D(\operatorname{arctanh} t)=0 \tag{15}
\end{equation*}
$$

In [10], it has been proved that the Gauss and mean curvatures of the surface (15) are given by

$$
\begin{equation*}
K=\xi\left(l-t^{2}\right) \Delta_{1} \text { and } H=\xi\left(2 t \Delta_{1}+c_{1}\left(l+t^{2}\right)\right) \tag{16}
\end{equation*}
$$

respectively, where $\xi=1 /\left(1+c_{1} t-b_{1}^{2} t^{2}\right)$.
Thus, using (15) and (4), the N-distribution is given by the involutive equation

$$
\begin{equation*}
\theta^{3}=c_{\nu} \theta^{v},\left(c_{\nu}\right) \equiv\left(c_{1}, b_{1}\right) \tag{17}
\end{equation*}
$$

with the system (4), where c_{1} is an invariant given as a differentiable function of the invariants $b_{1}, a_{\alpha \beta}$. It is convenient to rewrite the system of equations which characterizes the N-distribution as the following

$$
\left\{\begin{array}{l}
\omega_{3}^{1}=b_{1} \theta^{1}, \theta_{\alpha}=b_{\alpha \nu} \theta^{v}, \theta^{3}=c_{\nu} \theta^{\nu} \tag{18}\\
d c_{1}=B \theta^{1}+\left(b_{11}+c_{1} b_{31}\right) \theta^{2}-2 b_{1} \omega_{1}^{2}+\Delta \omega_{0}^{3}
\end{array}\right.
$$

where $b_{\alpha \nu}=a_{\alpha \nu}+c_{\nu} a_{\alpha 3}, \Delta=\Delta_{-1}-c_{1}^{2}$ and B is an invariant of the second order.
The immersion (18) characterizes the K-surface M_{2} of the N-distribution. Making use of (18) and (2) we get

$$
\begin{equation*}
d p=\phi^{\nu} e_{\nu} \text { and } d^{2} p \equiv \overline{I I}^{\alpha} \bar{N}_{\alpha}(\bmod p, d p) \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
\left(\phi^{\mu}\right) \equiv\left(\theta^{2} \sqrt{\Delta_{-1}}, \theta^{1} \sqrt{\Delta}\right),\left(e_{\mu}\right) \equiv\left(\sqrt{\hat{\Delta}_{-1}}\left(E_{1}+E_{3}\right), \sqrt{\hat{\Delta}}\left(\sqrt{\Delta_{-1}} E_{2}+c_{1} E_{3}\right)\right) \\
\bar{N}_{3} \equiv A_{02}, \bar{N}_{\mu}=N_{\mu}, \hat{\Delta}=l / \Delta
\end{gathered}
$$

The quadratic differential forms $\overline{I I}^{\alpha} \equiv c_{\mu \nu}^{\alpha} \phi^{\mu} \phi^{\nu}$ are the $2 n d$ fundamental forms of the K-surface M_{2}, where the quantities $c_{\mu \nu}^{\alpha}$ are the components of quadratic
symmetric covariant tensors associated with the forms $\overline{I I}^{\alpha}$. The components $c_{\mu \nu}^{\alpha}$ are given from the relations

$$
\begin{gather*}
c_{11}^{1}=-\Delta \hat{\Delta}_{-1} c_{21}^{1}=2 b_{1} \hat{\Delta}_{-1}, c_{12}^{1}=c_{1} \sqrt{\hat{\Delta} \hat{\Delta}_{-1}}, \tag{20}\\
c_{11}^{2}=\hat{\Delta}_{-1}\left(b_{22}^{1}+b_{1} b_{32}\right), c_{22}^{2}=\sqrt{\hat{\Delta} \Delta_{-1}} c_{12}^{3}=\hat{\Delta}\left(b_{11}+c_{1} b_{31}\right), \\
c_{12}^{2}=\sqrt{\hat{\Delta} \Delta_{-1}} c_{11}^{3}=\sqrt{\hat{\Delta} \hat{\Delta}_{-1}}\left(b_{21}+b_{1} b_{31}\right) \text { and } c_{22}^{3}=B \hat{\Delta} .
\end{gather*}
$$

The Lipschitz-Killing curvatures \bar{G}_{3}^{α} corresponding to the normal directions \bar{N}_{α} are given by $\bar{G}_{3}^{\alpha}=\operatorname{Det}\left(C^{\alpha}\right)$, where $C^{\alpha} \equiv\left(c_{\mu \nu}^{\alpha}\right)$ are the symmetric matrices attached to the forms $\overline{I I}^{\alpha}$. The Gauss curvature on M_{2} is given by the formula [11]

$$
G_{M_{2}}=-1+\sum_{\alpha} \bar{G}_{3}^{\alpha}
$$

Explicitly, we have

$$
\begin{align*}
G_{M_{2}}= & -1+\hat{\Delta} \Delta_{-1}\left\{4 b_{1}^{2}+c_{1}^{2}+\left(b_{21}+b_{1} B_{31}\right)^{2}\right. \tag{21}\\
& +\left(b_{11}+c_{1} b_{31}\right)^{2}-B\left(b_{21}+b_{1} b_{31}\right. \\
& \left.-\left(b_{11}+c_{1} b_{31}\right)\left(b_{22}+b_{1} b_{32}\right)\right\}
\end{align*}
$$

The normal mean curvature vector $\vec{H}_{M_{2}}$ [3] is given by

$$
\vec{H}_{M_{2}}=\left(\operatorname{tr}\left(C^{\alpha}\right) / 2\right) \bar{N}_{\alpha},
$$

or equivalently

$$
\begin{gather*}
\vec{H}_{M_{2}}=-b_{1} c_{1}^{2} \hat{\Delta}_{-1} \hat{\Delta} \bar{N}_{1}+\left(\hat { \Delta } _ { - 1 } \left(\hat{\Delta}_{-1}\left(b_{22}+b_{1} b_{32}\right) / 2\right.\right. \tag{22}\\
\left.+\hat{\Delta}\left(b_{11}+c_{1} b_{31}\right) / 2\right) \bar{N}_{2}+\left(\left(\hat{\Delta}_{-1}\left(b_{21}+b_{1} b_{31}\right) / 2\right)+\hat{\Delta} B / 2\right) \bar{N}_{3}
\end{gather*}
$$

The scalar normal curvature of M_{2} is given by

$$
K_{M_{2}}=\sum_{\alpha, \beta} n\left(C^{\alpha} C^{\beta}-C^{\beta} C^{\alpha}\right), \text { where } n\left(C^{\alpha}\right)=\sum_{\mu, \nu}\left(c_{\mu \nu}^{\alpha}\right)^{2}
$$

Thus, by virtu of (20), we have
(23) $K_{M_{2}}=4 \hat{\Delta} \hat{\Delta}_{-1}\left\{\left(\zeta_{1} Y_{2}-\zeta_{2} Y_{1}\right)^{2}+\left(2 b_{1} \zeta_{1} Y_{3}-c_{1} Y_{1}\right)^{2}+\left(2 b_{1} \zeta_{2} Y_{3}-c_{1} Y_{2}\right)^{2}\right\}$
where $Y_{1}=-B \Delta+\sqrt{\hat{\Delta} \Delta_{1}} c_{12}^{2}$,

$$
\begin{gathered}
Y_{2}=\hat{\Delta} \Delta_{-1} c_{11}^{2}-\Delta^{2} c_{22}^{2}, Y_{3}=\Delta+\hat{\Delta} \\
\zeta_{1}=b_{11}+c_{1} b_{31} \text { and } \zeta_{2}=b_{21}+b_{1} b_{31}
\end{gathered}
$$

The asymptotic K-manifold at the K-point $p \in M_{2} \subset M_{3} \subset G_{1,4}^{2}$ is given by

$$
\operatorname{det}\left(d^{2} p, p, N_{2}, \bar{N}_{3}, A_{13}, A_{23}\right)=0 \text { or equivalently } \overline{I I}^{1}=0
$$

This equation characterizes the family of developables on the inverse K-image. Thus, we have proved the following:
Theorem 4. The asymptotic K-manifold on M_{2} is in one-to-one correspondence with the developables of its inverse K-image.

4. Clifford N-distribution.

Here, consider the N-distribution (18) for which the holonomic surface (15) is a Clifford surface (ruled surface with zero Gauss and constant mean curvatures) [11]. In this distribution, the K-surface M_{2} is a Clifford surface and the K-manifold M_{3} is a Clifford manifold. Thus, the distribution is called N distribution of Clifford K-surfaces (brevity $C N$-distribution). Using (16) and (18) one can be easily verified that the $C N$-distribution is decomposed into two subclasses, denoted by S_{μ}, characterized by the following:

$$
\left\{\begin{array}{l}
\omega_{3}^{1}-i \theta^{1}=0, \theta^{3}-2 \theta^{1}-i \theta^{2}=0 \tag{1}\\
\omega_{0}^{3}+i \omega_{1}^{2}+2 a_{22}\left(\theta^{2}-i \theta^{1}\right)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\omega_{3}^{1}-i \theta^{1}=0, \theta^{3}-c^{1} \theta^{1}-i \theta^{2}=0 \tag{2}\\
d c_{1}=\left(4-c_{1}^{2}\right) \omega_{0}^{3}+B \theta^{1}
\end{array}\right.
$$

respectively.
For a K-surface of S_{1}, we denote it by \hat{M}_{2}, we have

$$
\begin{equation*}
d p=\hat{\psi}^{\mu} \hat{e}_{\mu} \text { and } d^{2} p \equiv\left(\hat{\psi}^{1}-\hat{\psi}^{2}\right)^{2} N(\bmod p, d p) \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\hat{\psi}^{\mu}\right) & \equiv \sqrt{2}\left(\theta^{2}, \theta^{1}\right) \\
\left(\hat{e}_{\mu}\right) & \equiv\left(A_{13}+i A_{02}, A_{01}-i A_{23}-2 i A_{02}\right) / \sqrt{2}
\end{aligned}
$$

and $N \equiv i A_{12}+2 a_{22}\left(i A_{23}-A_{13}\right)$ is a time like normal vector. From (24), it follows that the $2 n d$ osculating space $T_{p}^{2}\left(\hat{M}_{2}\right)$ has dimension three. Thus, the inverse K -image is a linear parabolic line congruence in H_{3}^{1} [4]. Thus, we have proved.

Lemma 1. The tangent K-plane $T_{p}\left(\hat{M}_{2}\right)$ to the K-surface \hat{M}_{2} contain a fixed isotropic vector $\vec{Q}=\sqrt{2}\left(\hat{e}_{1}+\hat{e}_{2}\right)$.

Consequently, we have:
Corollary 1. The inverse K-image of \vec{Q} is the directrix of the inverse K-image of the K-surface \hat{M}_{2}.

From the foregoing results, we have the geometrical characterization of the K-surface \hat{M}_{2} as the following.
Theorem 5. The K-surface \hat{M}_{2} consists of all K-points which are polar conjugate to the isotropic vector \vec{Q} with respect to the K-absolutum $G_{1,4}^{2} \subset H_{5}^{3}$.

From (24) one can prove the following [10], [11].
Lemma 2. The principal direction on \hat{M}_{2} corresponding to the principal curvatures $0,2 i$ are $\hat{\phi}^{1} \pm \hat{\phi}^{2}=0$ respectively.

Lemma 3. The asymptotic K-manifold at $p \in \hat{M}_{2}$ is degenerate into one family of principal directions given by $\hat{\phi}^{1}-\hat{\phi}^{2}=0$.

From (7) and $\left(S_{1}\right)$, one can see that the system $\left(S_{1}\right)$ is involutive on the K-manifold given by (7). Hence this characterizes a distribution on M_{3}^{c}. Thus, we have
Lemma 4. The K-surface \hat{M}_{2} given as an immersion in the Clifford manifold M_{3}^{c}.

The proof is omitted.
The distribution $\left(S_{2}\right)$ is defined on a Clifford K-manifold, denote it by \tilde{M}_{3}^{c}, belonging to a subclass of the class (7) under the condition $a_{22}=0$. It is easy to see that the $2 n d$ osculating space $T_{p}^{2}\left(M_{3}^{c}\right)$ has the dimension four. Consequently the inverse K -image is a linear Clifford line complex in H_{3}^{1} [4], [10]. Thus, we have proved the following:
Theorem 6. The K-manifold \tilde{M}_{3}^{c} is a Wiengarten-manifold immersed in $G_{1,4}^{2}$.
The distribution $\left(S_{2}\right)$ consists of K -surfaces, without loss of generality we take one of them, say $\bar{M}_{2} \subset \tilde{M}_{3}^{c}$. The fundamental equations on the K -surface \bar{M}_{2} are given as

$$
\begin{equation*}
d p=\bar{\phi}^{\mu} \bar{e}_{\mu} \text { and } d^{2} p \equiv \hat{I} I^{\mu} \hat{N}_{\mu}(\bmod p, d p) \tag{25}
\end{equation*}
$$

where $\left(\bar{\phi}^{\mu}\right) \equiv\left(\sqrt{2} \theta^{2}, \sqrt{2-c_{1}^{2}} \theta^{1}\right)$,

$$
\left(\bar{e}_{\mu}\right) \equiv\left(\left(A_{13}+i A_{02}\right) / \sqrt{2},\left(A_{23}+i A_{01}+c_{1} A_{02}\right) \bar{\Delta}\right)
$$

and $\left(\hat{N}_{\mu}\right) \equiv\left(\bar{N}_{1}, \bar{N}_{3}\right)$
The forms $\hat{I} I^{\mu}$ are given by

$$
\left\{\begin{array}{l}
\hat{I} I^{1} \equiv i\left(\left(\bar{\phi}^{1}\right)-2 \bar{\Delta}\left(\bar{\phi}^{2}\right)^{2}-i c_{1} \sqrt{2 \overline{\Delta \phi}}{ }^{1} \bar{\phi}^{2}\right) \tag{26}\\
\hat{I} I^{2} \equiv B \bar{\Delta}\left(\bar{\phi}^{2}\right)^{2}
\end{array}\right.
$$

where $\bar{\Delta}=1 /\left(2-c_{1}^{2}\right)$.
From (25) and (26), it follows that the Lipschitz-Killing curvatures in the normal directions \hat{N}_{μ} are $\hat{G}_{3}^{1}=\left(4-c_{1}^{2}\right) \bar{\Delta} / 2$ and $\hat{G}_{3}^{2}=0$, respectively.

As a similar way to [1], one can prove the following:
Lemma 5. The lines of curvatures on the normal sections \hat{N}_{μ} are the family of curves

$$
i c \sqrt{2}\left(\left(\bar{\phi}^{1}\right)^{2}-\left(\bar{\phi}^{2}\right)^{2}\right)+\left(4-c_{1}^{2}\right) \sqrt{\bar{\Delta}} \bar{\phi}^{1} \bar{\phi}^{2}=0
$$

and the family of parametric curves $\left\{\bar{e}_{\mu}\right\}$.
Lemma 6. The Gauss curvature and the normal mean curvature vector are $G_{\bar{M}_{2}}=c_{1}^{2} \bar{\Delta} / 2, \vec{H}_{M_{2}}=-(i \bar{\Delta} / 2)\left(c_{1}^{2} \hat{N}_{1}+B \hat{N}_{2}\right)$ respectively.

Corollary 2. The Gauss and mean curvatures on \bar{M}_{2} are related by

$$
c_{1}^{4} H \frac{\bar{M}_{2}}{}=\left(B^{2}-c_{1}^{4}\right) G_{\bar{M}_{2}}^{2}
$$

So we have the following [9]:
Lemma 7. The K-surface \bar{M}_{2} is a Wiengarten-surface.
Equipped with the forms (26) and the associated quadratic tensors, we have the proof of the following [3]:

Lemma 8. The scalar normal curvature of the K-surface \bar{M}_{2} is

$$
K_{\bar{M}_{2}}=2 B^{2} c_{1}^{2} \bar{\Delta}^{3}
$$

REFERENCES

[1] N.H. Abdel-All, Klein correspondences of a class of line complexes in elliptic spaces, Tensor, N. S., 48-2 (1989), pp. 110-115.
[2] N.H. Abdel-All, Quasi-hyperbolic manifolds, Tensor, N. S., 51-3 (1992), pp. 224-228.
[3] B.Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc. New York, 1973.
[4] V. Hlavaty, Differential line geometry, Noordhoff, Graningen, 1953.
[5] M.A. Soliman - N.H. Abdel-All, Immersion in a hyperbolic manifold, Collect. Math., 45-2, Universtat de Barcelona (1994), pp. 153-136.
[6] M.A. Soliman, Stratification of a line complex into special kinds of normal congruences in H_{1}^{3}, Bull. call. Math. Soc., 73 (1981), pp. 329-330.
[7] M.A. Soliman - N.H. Abdel-All - S.F. Hassanien, The Klein image of a line complex which admit a stratification of a non W-congruences, Indian J. pure appl. Math., 16 (8), August (1985), pp. 886-891.
[8] M.A. Soliman, On surface with null Gaussian curvature in elliptic space S_{3}, Proc. 4th Ann. conf. in statistics, computers science and Maths., (5) (1979), pp. 185-195.
[9] M. Spivak, A comprehensive introduction to differential geometry, Vol. IV, V, publish or publish, Inc. (1975).
[10] N. I. Kovancov, Theory of complexes, Kiev, 1963.
[11] T. J. Willmore, Total curvature in Riemannian Geometry, Ellis Harwod Limited publishers, 1982.

Mathematic Department, Faculty of Science, Assiut University, Assiut (EGYPT)

