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REGULARITY RESULTS FOR NONLINEAR ANISOTROPIC
PARABOLIC EQUATIONS WITH MEASURE DATA

A. SABIRY - G. ZINEDDAINE - A. KASSIDI - L. S. ZHADLI

This study focuses on a class of nonlinear anisotropic parabolic equa-
tions involving measurement data. We prove, under which condition on
si(y), some existence and regularity results for solutions in anisotropic
Sobolev spaces using compactness arguments and convergence results.

1. Introduction

This paper discusses existence and regularity results for weak solutions of the
following problem

∂v
∂ t

−
N

∑
i=1

∂i
[
ai(t,y,v)(1+ |v|)si(y)|∂iv|pi(y)−2

∂iv
]
= µ

in Q := (0,T )×Ω,
v(t,y) = 0 on (0,T )×∂Ω,
v(0,y) = v0(y) in Ω,

(1)
where Ω is a bounded domain in RN (N ≥ 2, T > 0) characterised by a smooth
boundary ∂Ω. The vector field ai(t,y,v) satisfies the conditions given below, µ

is a bounded Radon measure on Q, and v0 belongs to L1(Ω).
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The classical model represented by the problem (1) simplifies to the well-
known anisotropic evolving p-Laplacian equation. Such problems have received
increasing attention in recent years due to their importance in modelling physi-
cal and mechanical processes in anisotropic continua. Although it is impossible
to provide an exhaustive list, several studies have addressed these issues, as re-
ported in [17] (see also the cited references for further investigation). It should
be noted, however, that the parabolic operator of the problem (1) can degenerate
once the solution is no longer bounded. In this case, the diffusion coefficient
may tend towards zero as the solution v increases, indicating a slow diffusion
effect. There is already evidence for the existence of such cases in stationary and
evolving settings, assuming that the growth conditions are isotropic. For exam-
ple, the isotropic elliptic case, where pi = p for i = 1,2, . . . ,N in the problem
(1), was first studied in [6] and further investigated in [10, 15]. In the isotropic
parabolic case, the existence and regularity results for problem (1) were estab-
lished in [18] (and also in [7, 16, 25, 30, 31]), and the study of problem (1) with
non-zero initial data is addressed in [24].

In a recent study [14], an attempt was made to investigate the regularity re-
sults associated with weak solutions within the anisotropic elliptic context of
the problem (1). The work presented in [2] dealt with the existence and regular-
ity of entropy solutions for the stationary problem (1) with lower order terms.
However, it is noteworthy that, to the best of our knowledge, there is a signif-
icant gap in the literature concerning the existence and regularity of nonlinear
anisotropic parabolic equations with measure data.

Therefore, the primary objective of this paper is to address highly compli-
cated issues, specifically nonlinear p(y) anisotropic parabolic problems. The
idea used to establish our main results relies on a fusion of compactness es-
timates and convergence results within variable exponent Sobolev spaces, ex-
ploiting certain approximate problems. Consequently, a key aspect of the main
results is the derivation of a priori estimates, initially using weak solutions. To
obtain global estimates, it becomes necessary to introduce additional assump-
tions on si(y) in order to obtain approximate estimates.

The remainder of this paper is organized as follows. In Section 2, we give
some preliminary results and state the main results. Section 3 is devoted to give
some technical results. In Section 4, we give the proof of our main result.

2. Preliminaries and Statement of the Result
To deal with problem (1), we will employ certain definitions and fundamen-
tal characteristics of anisotropic variable exponent Lebesgue-Sobolev spaces
such as Lpi(y)(Ω) and W 1,pi(y)

0 (Ω), along with the properties of parabolic ca-
pacities. It’s worth noting that we will only revisit essential findings that will
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be subsequently applied, and for a more comprehensive exploration, we refer to
[1, 9, 11–13].

2.1. Variable Exponent Spaces

Let Ω denote a bounded open subset of RN , where N ≥ 2 and Ω denote its clo-
sure. We define a real-valued continuous function p as log-Hölder continuous
in Ω if it satisfies the condition

|p(z)− p(y)| ≤ C
| log |z− y||

for all z, y ∈ Ω such that |z− y|< 1
2
,

where C is a constant. We denote the set of such log-Hölder continuous func-
tions as

C+(Ω) =
{

log-Hölder continuous function p : Ω → R

with 1 < p− ≤ p(y)≤ p+ < N
}
,

where

p− = min
{

p(y) : y ∈ Ω

}
and p+ = max

{
p(y) : y ∈ Ω

}
.

The Lebesgue space with a variable exponent is defined as

Lp(y)(Ω) =
{

v : Ω → R is measurable such that
∫

Ω

|v(y)|p(y)dy <+∞

}
,

which is equipped with the Luxembourg norm

∥v∥p(y) = inf
{

ς > 0;
∫

Ω

|v(y)
ς

|p(y)dy ≤ 1
}
.

It’s important to note that we will use the following inequality

min
{
∥v∥p−

p(y) ; ∥v∥p+

p(y)

}
≤

∫
Ω

|v(y)|p(y)dy ≤ max
{
∥v∥p−

p(y) ; ∥v∥p+

p(y)

}
.

Additionally, if 1 < p− < ∞, then Lp(y)(Ω) is reflexive, and its dual is denoted
as Lp′(y)(Ω), where 1

p(y) +
1

p′(y) = 1. For any v ∈ Lp(y)(Ω) and w ∈ Lp′(y)(Ω), the
Hölder-type inequality holds∫

Ω

|vw|dy ≤
( 1

p(y)
+

1
p′(y)

)
∥v∥p(y)∥w∥p′(y).
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Next, when p(y), p′(y) ∈C+(Ω), we can apply Young’s type inequality, defined
as

ab ≤ ap(y)

p(y)
+

bp′(y)

p′(y)
,

subject to the condition 1
p(y) +

1
p′(y) = 1, for any positive values of a and b.

Extending a variable exponent p : Ω → [1,+∞) to Q = Ω × [0,T ] by set-
ting p(y) := p(t,y) for every (y, t) ∈ Q , we may also consider the generalized
Lebesgue space

Lp(y)(Q) =
{

v : Q → R; measurable such that
∫

Q

∣∣∣v(y, t)∣∣∣p(y)
dydt < ∞

}
,

endowed with the norm

∥v∥Lp(y)(Q) = inf
{

ς > 0;
∫

Q

∣∣∣v(y, t)
ς

∣∣∣p(y)
dydt < 1

}
.

This space maintains the same properties as Lp(y)(Ω). Furthermore, the variable
exponent Sobolev space is defined as

W 1,p(y)(Ω) =
{

v ∈ Lp(y)(Ω) ; |∇v| ∈ Lp(y)(Ω)
}
,

endowed with the norm

∥v∥1,p(y) = ∥v∥p(y)+∥∇v∥p(y),

and satisfies

∥v∥1,p(y) = inf
{

ς > 0;
∫

Ω

(∣∣∣∇v(y)
ς

∣∣∣p(y)
+
∣∣∣v(y)

ς

∣∣∣p(y))
dy ≤ 1

}
. (2)

We define W 1,p(y)
0 (Ω) as the closure of C∞

c (Ω) in W 1,p(y)(Ω). Assuming p− > 1,
it follows that both W 1,p(y)

0 (Ω) and W 1,p(y)(Ω) are separable and reflexive Ba-
nach spaces. Additionally, we adopt the standard notation for Bochner spaces.
For q ≥ 1 and D as a Banach space, Lq(0,T ;D) denotes the space of strongly
measurable functions v : (0,T )→ X such that t 7→ ∥v(t)∥D ∈ Lq(0,T ). Further-
more, C([0,T ];D) represents the space of continuous functions v : [0,T ] → D
endowed with the norm ∥v∥C([0,T ];D) = maxt∈[0,T ] ∥v(t)∥D.
We also define

Lp−(0, T ;W 1,p(y)
0 (Ω)) =

{
v : (0,T )→W 1,p(y)

0 (Ω) measurable with(∫ T

0
∥v(t)∥p−

W 1,p(y)
0 (Ω)

) 1
p− dt <+∞

}
.
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Lemma 2.1. If we denote ρ(v) =
∫

Ω
|v|p(y)dy, for all v ∈ Lp(y)(Ω). Then

1. |v|p(y) < 1(= 1;> 1)⇔ ρ(v)< 1(= 1;> 1);

2. |v|p(y) > 1 ⇒ |v|p
−

p(y) ≤ ρ(v)≤ |v|p
+

p(y);

3. |v|p(y) < 1 ⇒ |v|p
−

p(y) ≥ ρ(v)≥ |v|p
+

p(y);

4. |v|p(y) → 0 ⇔ ρ(v)→ 0, because p+ < ∞.

Proof. See [11, Theorem 1.3].

2.2. The anisotropic variable exponent Sobolev space

We now introduce pi(y) : Ω → (1,∞) as a continuous function for all
i = 1, . . . ,N. The anisotropic variable exponent Sobolev spaces are then defined
as

W 1,pi(y)(Ω) =
{

v ∈ Lpi(y)(Ω) | ∂iv ∈ Lpi(y)(Ω)
}
,

W 1,pi(y)
0 (Ω) =

{
v ∈W 1,1

0 (Ω) | ∂iv ∈ Lpi(y)(Ω)
}
.

There are Banach spaces equipped with norms defined as

∥v∥i = ∥v∥Lpi(y)(Ω)+∥∂iv∥Lpi(y)(Ω) , i = 1, . . . ,N.

We can now state the following lemma, often referred to as the Anisotropic
Sobolev inequality, originally found in [28, 29].

Lemma 2.2. Let Q be a cube in RN with faces aligned with the coordinate
planes. If pi ≥ 1 for i = 1, . . . ,N and v belongs to

⋂N
i=1W 1,pi(Q) spaces, then

the following inequality holds

∥v∥Ls(Q) ≤ K
N

∏
i=1

(
∥v∥Lpi (Q)+ |∂iv|Lpi (Q)

) 1
N
,

where s = p̄∗ = N p̄
N−p̄ , if p̄ < N such that p̄ is defined by

1
p̄
= 1

N ∑
N
i=1

1
pi

. The

constant K depends on N and the values of pi. Moreover, if p̄≥N, the inequality
holds for all s ≥ 1, and K depends on s and the volume of Q.

Theorem 2.3. Suppose a bounded domain Ω ⊂ RN and continuous functions
pi(y)> 1. Consider that pi(y)< p̄∗(y), for i = 0, . . . ,N where

p̄∗(y) =

{
N p̄(y)

N−p̄(y) , if p̄(y)< N

+∞, if p̄(y)≥ N.
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Then, the following Poincar-type inequality holds

∥v∥
Lp+i (y)(Ω)

≤C
N

∑
i=1

|∂iv|Lpi(y)(Ω) , for all v ∈
N⋂

i=1

W 1,pi(y)
0 (Ω).

where C is a positive constant independent of v. Thus, ∑
N
i=1 ∥∂iv∥Lpi(y)(Ω) is an

equivalent norm on
N⋂

i=1

W 1,pi(y)
0 (Ω).

Proof. See [21, Theorem 2.3 ] and [13].

We naturally introduce the functional space

W0 = {v ∈ Lp−i (0,T,W 1,pi(y)
0 (Ω)), |∂iv| ∈ Lpi(y)(Q)},

which endowed with the norm

∥v∥w0 := ∥∂iv∥Lpi(y)(Q),

or, the equivalent norm

∥v∥w0 := ∥v∥
Lp−i (0,T,W 1,pi(y)

0 (Ω))
+∥v∥Lpi(y)(Q)

is a separable and Banach space.

Remark 2.4. . Let Ω⊆RN ,Q= (0,T )×Ω, and pi : Ω→ (1,∞) be a continuous
function. We have the following continuous dense embeddings

Lp+i
(

0,T ;Lpi(y)(Ω)
)
↪→ Lpi(y)(Q) ↪→ Lp−i

(
0,T ;Lpi(y)(Ω)

)
.

Proof. See [3, Remark 3.1].

2.3. Measures and parabolic capacity

Let Q = (0,T )×Ω for each fixed T > 0. It is worth noting that

V =
N⋂

i=0

W 1,pi(y)
0 (Ω)∩ L2(Ω) equipped with its appropriate norm ∥ · ∥

W 1,pi(y)
0

+

∥.∥L2(Ω), the space Wpi(y)(0,T ) setting by

Wpi(y)(0,T ) =
{

v ∈ Lp−i (0,T,V ); ∂iv ∈ (Lpi(y)(Q))N and

vt ∈ L(p−i )
′
(0,T,V ′), for all i = 1, . . . ,N

}
,
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equipped with the following norm

∥v∥Wpi(y)(0,T )
= ∥v∥

Lp−i (0,T,V )
+∥∂iv∥(Lpi(y)(Q))N +∥vt∥L(p−i )′ (0,T,V ′)

.

Note that Wpi(y)(0,T ) ↪→C([0,T ],L2(Ω)) continuously. We introduce the (gen-
eralized) parabolic capacity of a set D in Q as

cappi(y)(D) = inf
{
∥v∥Wpi(y)(0,T )

: D ∈Wpi(y)(0,T ), s ≥ χD a.e. in Q
}
.

This capacity can be extended to Borel sets B ⊆ Q as

cappi(y)(B) = inf
{

cappi(y)(D) : D open subset of Q,B ⊆D
}
.

In the following , Mb(Q) represents the set of Radon measures characterized
by a bounded variation on the set Q, while M0(Q) is defined as follows

M0(Q) =
{

µ ∈Mb(Q) : µ(E) = 0 for every

E ⊂ Q such that cappi(y)(E) = 0
}
.

To better understand the nature of a measure in M0(Q), we detail the structure
of the dual space (Wpi(y)(0,T ))

′.

We can define the Marcinkiewicz space Mqi(y)
0 (Q) for every 0 < qi(y)< ∞ and

for i = 0, . . . ,N as the space of measurable functions g satisfying the following
condition

∃C > 0 with meas
{
(t,y) ∈ Q |g(t,y)| ≥ h

}
≤ C

hq−i
.

This space is equipped with the semi-norm

∥g∥Mqi(y)
0 (Q)

= inf
{

C > 0 : meas
{
(t,y) : |g(t,y)| ≥ h

}
≤
(C

k

)qi(y)}
.

It’s important to note that if qi(y) ≥ q−i > 1, we have the following continuous
embedding

Lqi(y)(Q) ↪→Mqi(y)
0 (Q) ↪→ Lqi(y)−ε(Q), for all ε ∈ (0,qi(y)−1].

The standard p-capacity of a Borel set E ⊂ Q is then defined by

capp(y)(E,Q) = inf{∥v∥W0 with v ∈W0 and v ≥ 1

a.e. in a neighbourhood of E}.
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A function v is said to be capp(y)-quasi continuous if for every ε > 0 there ex-
ists an open set E ⊂ Q such that capp(y)(E)< ε and v|Q\E is continuous in Q\E.
Moreover, for every v ∈ W0 there exist a capp(y)-quasi continuous representa-
tive ṽ yielding v = ṽ a.e. in Q.
We will also use the truncation function and its auxiliary function defined by

Tk(r) = max{−k,min(k,r)}, Θk(r) = T1(r−Tk(r)).

and define ΛK(r) =
∫ r

0 Tk(s)ds as the primitive function of the truncation func-
tion.

Proposition 2.5. Any weak solution of (P) with the initial datum v0 ∈ L1(Ω)
satisfies the following estimates

∥v∥
M

pi(y)−1+
pi(y)

N
0 (Q)

≤C1, ∥∂iv∥
M

pi(y)−
N

N+1
0 (Q)

≤C2, (3)

where C j, j = 1, 2, are positive constants that depend solely on v0, µ, N, T ,
and the range of pi(y) such that p−i < pi(y)< p+i , for i = 0, . . . ,N.

Proof. Let vε(y, t) as the entropy solution of the initial boundary value problem
(vε)t −

N

∑
i=1

∂i[ai(t,y,vε ,∂ivε)] = µε in Q,

vε(t,y) = 0 on (0,T )×∂Ω,
vε(0,y) = vε

0(y) in Ω.

Let us now seek some a priori estimates for the sequence vε
i for all i = 1, . . . ,N.

Throughout, the symbol C will represent a generic positive constant, which may
vary from one step to another.
To proceed, we fix ε and set ϕ = 0 in the entropy formulation for vε , yielding
the following ∫

Ω

Λk (vε)(1)+α

N

∑
i=0

∫
Q
|∂iTk (vε)|pi(y) dydt

≤ k
(
|µ|M0(Q)+∥vi(y,ε)∥L1(Ω)

)
≤ k

(
|µ|M0(Q)+∥vi∥L1(Ω)

)
=Ck

(4)

Thus, for any fixed k > 0, starting from the first term on the left-hand side of
(4), and recalling that vε

i (t,y) is nondecreasing in t, we can deduce, follow-
ing a similar reasoning to [23, Theorem 1.7], that vε

i is uniformly bounded in
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L∞
(
0,1;L1(Ω) ). Moreover, from the second term, we conclude Tk (vε

i ) is uni-

formly bounded in Lpi(y)
(

0,1;W 1,pi(y)
0 (Ω)

)
for all i= 0, . . . ,N, and for any fixed

k > 0.
We can obtain a better estimate by using a Gagliardo-Nirenberg type inequality
which allows us to conclude that,
if u ∈ Lqi(y)

(
0,T ;W 1,qi(y)

0 (Ω)
)
∩ L∞

(
0,T ;Lρi(y)(Ω)

)
, with qi(y)≥ 1,ρi(y)≥ 1.

Then u ∈ Lσi(y)(Q) with σi(y) = qi(y)
N+ρi(y)

N and∫
Q
|ui|σi(y)dydt ≤C∥ui∥

ρqi(y)
N

L∞(0,T ;Lpi(y)(Ω))

∫
Q
|∂iu|qi(y)dydt

In fact, we obtain ∫
Q
|Tk (vε)|pi(y)+

pi(y)
N dydt ≤Ck (5)

and therefore we have that

kpi(y)+
pi(y)

N meas{|vε
i | ≥ k} ≤

∫
{|vε

i |≥k}
|Tk (vε

i )|
pi(y)+

pi(y)
N dydt

≤
∫

Q
|Tk (vε

i )|
pi(y)+

pi(y)
N dydt ≤Ck

thus,

meas{|vε
i | ≥ k} ≤ C

kpi(y)−1+ pi(y)
N

(6)

As a result, the sequence vε
i is uniformly bounded in the Marcinkiewicz space

Mpi(y)−1+ pi(y)
N

0 (Q); This, in turn, implies that, since pi(y)> 2N
N+1 he sequence vε

i

is uniformly bounded Lmi(y)(Q) for all i = 1, . . . ,N and for every 1 ≤ mi(y) <
pi(y)−1+ pi(y)

N .
Next, we focus on a similar estimate for the gradients of the functions vε

i . It is
important to note that these estimates apply to any function satisfying (4), and
therefore we will omit the index ε for simplicity. First, observe that

meas{|∂iv| ≥ λ} ≤ meas{|∂iv| ≥ λ ; |vi| ≤ k}+meas{|∂iv| ≥ λ ; |vi|> k} (7)

for all i = 1, . . . ,N. Now, for the first term on the right-hand side of (8), we get

meas{|∂iv| ≥ λ ; |vi| ≤ k} ≤ 1
λ pi()

∫
{|∂iv|≥λ ;|vi|≤k}

|∂ivi|pi(y)dy (8)

=
1

λ pi(y)

∫
{|vi|≤k}

|∂iv|pi(y)dy =
1

λ pi(y)

∫
Q
|∂iTk(v)|pi(y) dy ≤ Ck

λ pi(y)
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For the second term in (8), by applying (6), we obtain

meas{|∂iv| ≥ λ ; |vi|> k} ≤ meas{|vi| ≥ k} ≤ C̄
kσi(y)

,

where σi(y) = pi(y)−1+ pi(y)
N . Thus, combining both terms, we infer

meas{|∂iv| ≥ λ} ≤ C̄
kσi(y)

+
Ck

λ pi(y)
.

A better estimate can be achieved by minimizing the right-hand side with respect
to k. The optimal value of k is given by

k0 =

(
σi(y)C

C̄

) 1
σi(y)+1

λ

σi(y)
σi(y)+1 ,

which leads to the desired estimate

meas{|∂iv| ≥ λ} ≤Cλ
−γi(y),

whereγi(y) = pi(y)
(

σi(y)
σi(y)+1

)
= N pi(y)+pi(y)−N

N+1 = pi(y)− N
N+1 .

Returning to our context, we conclude that for all ε ≥ 0, |∂ivε | is equi-bounded
bounded in Mγi(y)

0 (Q), where γi(y) = pi(y)− N
N+1 . Moreover, since pi(y) >

2N+1
N+1 , we have that |∂ivε | is uniformly bounded in Lsi(y)(Q) for all 1 ≤ si(y) <
pi(y)− N

N+1 .

3. Assumptions and technical results

3.1. Assumption and lemmas

Our work is based on the following assumptions. We are concerned with the
problem represented by vt −

N

∑
i=1

∂i
[
ai(t,y,v,∂iv)

]
= µ in Q = (0,T )×Ω,

v(t,y) = 0 on (0,T )×∂Ω, v(0,y) = v0(y) in Ω,

(9)

where µ is a bounded Radon measure on Q, v0 ∈ L1(Ω) and ai : Ω× [0,T ]×
RN ×RN → R, i = 0, . . . ,N is a Carathéodory function satisfying the following
condition, there exist θ ∈ Lpi(y)(Q) and α, β > 0 such that, for each (t,y) ∈ Q
and all (v,ξi) ∈ RN ×RN ,

ai(t,y,v,ξi) ·ξi ≥ L(|v|)|ξi|pi(y), (10)
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|ai(t,y,v,ξi)| ≤ β [θ(t,y)+L(|v|)|ξi|pi(y)−1], (11)

[ai(y, t,v,ξi)−ai(y, t,v,η)](ξi −ηi)> 0 for all ξi ̸= ηi. (12)

Furthermore, the function L satisfies

L(|v|)≥ α > 0, f or all v ∈ RN . (13)

In this section, we will present the most important technical results that will be
needed for the rest of the article. In our study we are mainly interested in mea-
surable functions having truncations in the energy space Lp−i (0,T ;W 1,pi(y)

0 (Ω)).
To this aim, let us define T 1,p⃗(y)

0 (Ω) as the set of measurable functions v :
Q → R such that Tk(v) belongs to Lp−i (0,T ;W 1,pi(y)

0 (Ω)) for every k > 0 and
i = 1, . . . ,N.

Lemma 3.1. Let v ∈ T 1,p⃗(y)
0 (Q), where i = 1, . . . ,N. Then, there exists a unique

measurable function u : Q 7→ RN such that ∂iT k(v) = uχ|v|≤k a.e. in Q for each
k > 0, where χE is the characteristic function of the measurable set E. Further-
more, if

N

∑
i=1

∫
Q
|∂iTk(v)|pi(y)dydt ≤C(k+1),

then u coincides with the classical gradient of v and is denoted as ∂iu = v.
where v is cappi(y) almost everywhere finite, i.e. cappi(y){(t,y) ∈ Q : |v(t,y)|=
+∞} = 0, and there exists a cappi(y)−quasi-continuous representative. of v,
namely a function ṽ such that ṽ = v almost everywhere in Q and ṽ is cappi(y)-
quasi continuous.

Proof. A similar argument to that presented in [4, Lemma 2.1] can be applied.
Based on the proof of this lemma, we have established that the following for-
mula holds

∂iTk(v) = uiχ|vi|≤k a.e. in Q, (14)

for each k > 0 and for all i = 1, . . . ,N, where vi ∈ W 1,Pi(y)
loc (Ω) and ui = ∂iv.

Additionally, for any k,ε > 0, we have Tk (Tk+ε(vi)) = Tk(vi). Hence, Ωk =
|vi|< k, we obtain for almost everywhere ∂iTk+ε(v)= ∂iTk(vi). Since

⋃
k>0 Ωk =

Ω, the assertion (14) follows.
We now need to prove that vi ∈W 1,pi(y)

loc (Ω) if ui ∈ LPi(y)
loc (Ω). Indeed, under

this condition, ∂iTk(v)→ ui in Lpi(y)
loc (Ω). Furthermore, we must show that vi ∈
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Lpi(y)
loc (Ω). If this were not the case, then there would exist a closed ball B ⊂ Ω

such that
Sk = ∥Tk(u)∥Lpi(y)(B) → ∞

as k → ∞. By normalizing, let uk
i = Tk(vi)/Sk. Then, uk

i → 0 almost everywhere,
∥uk

i ∥Lpi(y)(B) = 1, and ∥∂iuk
i ∥Lpi(y)(B) → 0. This contradicts the compactness of

the embedding W 1,pi(y)(B)⊂ Lpi(y)(B).

Definition 3.2. Let Ω ⊂ RN be a bounded open subset where N ≥ 2 and µ ∈
M0(Q) (the space of Radon measures on Q with total bounded variation). A
measurable function v ∈C([0,T ];L1(Ω)) is a weak solution of the problem (1),
if ai(t,y,v,∂iv) ∈ L1(Q)N , Tk(v) ∈ Lp−i (0,T ;W 1,pi(y)

0 (Ω)) for i = 1, . . . ,N, and

∫ T

0
⟨vt ,ϕ⟩dt +

N

∑
i=1

∫
Q

ai(t,y,v)
(

1+ |vε |
)si(y)

|∂ivε |pi(y)−2
∂ivε ·∂iϕdydt

=
∫

Q
fεϕdµ, for all ϕ ∈C∞

c (Q). (15)

Lemma 3.3. [8, Lemma 7.1] Let g : R → R be a continuous piecewise C1-
function such that g(0) = 0 and g′ is zero away from a compact set of R.

Let us denote G(r) =
∫ r

0
g(δ )dδ . If v ∈ Lp−i (0,T ;W 1,pi(y)

0 (Ω)) is such that vt ∈

L(p−i )
′
(0,T ;W−1,p′i(y)(Ω))+L1(Q) and if ψ ∈ C∞(Q̄), for i = 0, . . . ,N, then we

have∫ T

0
⟨vt ,g(v)ψ⟩dt =

∫
Ω

G(v(T ))ψ(T )dy−
∫

Ω

G(v(0))ψ(0)dy−
∫

Q
ψtG(v)dydt.

3.2. Technical results

It is crucial to introduce a key element in our arguments, namely a generalised
existence result that extends the results established in [27] to cases involving
measure data. To achieve this, we need to introduce an approximation problem
for each natural number ε , along with its associated properties, which will play
a crucial role in our subsequent analysis. It’s worth noting that both µ and v
can be effectively approximated by sequences of smooth functions (µε ) and (vε

0)
generated by convolution. To understand the convolution functions used in our
problem, let’s start by defining the notion of convolution, and then specify the
convolution functions applied to µ and v0.
The convolution of a function f with a function η (often called the convolution
kernel) is defined by :

( f ∗η)(y) =
∫
Rn

f (y)η(y− z)dz.
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The function µ is approximated by a sequence of smooth functions µε obtained
through convolution with a regularizing kernel ηε . Generally, the kernel ηε is
used, such that:

ηε(y) =
1
εn η

( y
ε

)
,

where η is a smooth function with compact support, and it satisfies η(y) ≥ 0
for all ∈ Rn, and

∫
Rn η(y)dy = 1. Thus, µε is defined by the convolution µε =

µ ∗ηε . Similarly, the initial function v0 is approximated by a sequence of smooth
functions vε

0 obtained through convolution with a regularizing kernel ηε . This
means that vε

0 = v0 ∗ηε .
We will now examine the behaviour of the sequence (vε) which consists of

solutions to the following problems

(Pε)


(vε)t −

N

∑
i=1

∂i[ai(t,y,vε ,∂ivε)] = µε in Q,

vε(t,y) = 0 on (0,T )×∂Ω, vε(0,y) = vε
0(y) in Ω.

Proposition 3.4. Let 1 < pi(y) < N, µ ∈M0(Q) and assume that ai(t,y,s,ξ )
satisfies (10)-(13). Then, there exists a function v∈T 1,p⃗(y)

0 (Ω) with ai(t,y,v,∂iv)

belongs to Lqi(y)(Q) for all qi(y)< pi(y)−
N

N +1
, i= 0, . . . ,N and v verifies (15)

in the sense of Definition 3.2.

Proof. Let µε be a sequence of C∞
c (Q)-functions such that

µε → µ tightly in M0(Q), with ∥µε∥L1(Q) ≤ ∥µ∥M0(Q), and (vε
0) a sequence

of C∞
c (Ω)-functions such that vε

0 → v0 in L1(Ω), with ∥vε
0∥L1(Ω) ≤ ∥v0∥L1(Ω). In

addition, let vε be a weak solution of the problem (Pε). Observe that, according
to the results of [20], there is one weak solution for (Pε ), i.e., a function vε ∈
Lp−i (0,T ;W 1,pi(y)

0 (Ω)) such that (vε)t ∈ Lp−i (0,T ;W−1,pi(y)(Ω))∩L∞(Q) an the
following identity holds true∫ t

0
⟨(vε)t ,ϕ⟩dt +

N

∑
i=1

∫ t

0

∫
Ω

ai(s,y,vε ,∂ivε) ·∂iϕdyds =
∫ t

0

∫
Ω

ϕdµε , (16)

by taking ϕ = Tk(vε), for each ϕ ∈
N⋂

i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω))∩ L∞(Q) in (16)

and integrating in ]0,T [ we have∫
Ω

Θk(vε)(t)dy+
N

∑
i=1

∫ t

0

∫
Ω

ai(s,y,vε ,∂ivε) ·∂iTk(v)dyds

=
∫ t

0

∫
Ω

Tk(vε)dµε +
∫

Ω

Θk(vε
0)dy,
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which implies, from (10) and as ∥vε
0∥L1(Ω) and ∥µε∥L1(Q) are bounded, that

∫
Ω

Θk(vε)(t)dy+α

N

∑
i=1

∫ t

0

∫
Ω

|∂iTk(vε)|pi(y)dyds

≤ k(∥µ∥M0(Q)+∥vε
0∥L1(Ω)) =Ck.

As Θk(ℓ)≥ 0 and |Θ1(ℓ)| ≥ |ℓ|−1, we obtain

∫
Ω

|vε |(t)dy+α

N

∑
i=1

∫ t

0

∫
Ω

|∂iTk(vε)|pi(y)dydt

≤C(k+1), for all k > 0, ∀t ∈ [0,T ],

choosing the supremum on (0,T ) , we have∫
Ω

|vε |(t)dy ≤C, f or all t ∈ [0,T ], (17)

which gives an estimate of vε in L∞(0,T ;L1(Ω)) and also

N

∑
i=1

∫
Q
|∂iTk(vε)|pi(y)dydt ≤C(k+1), f or i = 0, . . . ,N. (18)

This means that for each k > 0, Tk(v) is bounded in
N⋂

i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω)).

As a result, there exists a function v ∈ T 1,p⃗(y)
0 (Ω) such that, up to subsequences,

vε → v a. e. in Q,

Tk(vε)⇀ Tk(v) weakly in Lp−i (0,T ;W 1,pi(y)
0 (Ω)),

strongly in Lpi(y)(Q) and a.e. in Q.

(19)

Choosing ϕ = Tk(B(vε)) with B(ℓ) =
∫ ℓ

0
b(|σ |)

1
pi(y)−1 dσ as test function in the

weak formulation of (16) for each pi(y)> 1 (which is an eligible choice because
Tk(B(vε)) ∈ Lp−i (0,T ;W 1,pi(y)

0 (Ω))). According to the definition of Tk(ℓ), we
obtain

∫ T

0
⟨(vε)t ,Tk(B(vε))⟩dt +

N

∑
i=1

∫
Q

ai(t,y,vε ,∂ivε)∂ivεb(|vε |)
1

pi(y)−1 dydt

≤
∫

Q
Tk(B(vε))dµε ,
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applying (10), we get (by fixing Λ(ℓ) =
∫ ℓ

0
Tk(B(σ))dσ) that

∫
Ω

Λ(vε)(t)dy+
N

∑
i=1

∫
{|B(uε )|≤k}

|b(|vε |)|p
′
i(y)|∂ivε |pi(y)dydt

≤ k
[
∥µε∥M0(Q)+

∫
Ω

Λ(vε
0)dy

]
,

and since µε is bounded in L1(Q) and vε
0 is bounded in L1(Ω) we obtain∫

Ω

Λ(vε(t))dy ≤C, f or all t ∈ [0,T ],

which means that |∂iB(vε)| is bounded in the Marcinkiewicz space

Mpi(y)−1+ pi(y)
N

0 (Q).

Hence b(|vε |)|∂ivε |pi(y)−1 is bounded in the Marcinkiewicz space

M
1+ pi(y)N−N+pi(y)

N(pi(y)−1)
0 (Q),

and as{
(t,y) : |ai(t,y,vε ,∂ivε)|> k

}
⊂
{
(t,y) : β (θ(t,y)+b(|vε |)|∂ivε |pi(y)−1)> k

}
,

then, ai(t,y,vε ,∂ivε) is bounded in Lqi(y)(Q), but we can not yet prove that its
weak limit is ai(t,y,v,∂iv); this will be accomplished by demonstrating that ∂ivε

converges to ∂iv almost everywhere. For this, we will employ the technique
used in [26], with minor alterations related to the hypothesis (11). For m, k > 0,
we choose Tm(vε −Tk(v)) as the test function in the weak formulation of (Pε ).
Since, ∥µε∥L1(Q) ≤C0 (we will designate from now on by Ci positive constants
independent of ε and m), we obtain

N

∑
i=1

∫
Q

ai(t,y,vε ,∂ivε) ·∂iTm(vε −Tk(v))dydt (20)

≥
N

∑
i=1

∫
Q

ai(t,y,Tk(vε),∂iTk(vε)) ·∂iTm(Tk(vε)−Tk(v))dydt

−
N

∑
i=1

∫
{|vε |>k}

|ai(t,y,Tk+m(vε), ∂iTk+m(vε))||∂iTk(v)|dydt.
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Using (19), |∂iTk(v)|χ|vε |>k converges strongly to zero in Lpi(y)(Q), by tending ε

to infinity, the last term goes to zero for each m > 0 fixed. This means, by (20),
that

N

∑
i=1

∫
Q

ai(t,y,Tk(vε)), ∂iTk(vε)) ·∂iTm(Tk(vε)−Tk(vε))dydt

≤ m C0 +ϖm(ε). (21)

On the other hand, let’s 0 < ςi(y)< 1 and Em
k = {(t,y) ∈ Q : |Tk(vε)−Tk(v)|>

m}, we obtain

N

∑
i=1

∫
Q

[
[ai(t,y,Tk(vε),∂iTk(vε))

−ai(t,y,Tk(vε),∂iTk(v)]∂i(Tk(vε)−Tk(v))
]ςi(y)

dydt

=
N

∑
i=1

∫
Q

[
[ai(t,y,Tk(vε), ∂iTk(vε))−ai(t,y,Tk(vε), ∂iTk(v))]

×∂iTm(Tk(vε)−Tk(v))
]ςi(y)

dydt

+
N

∑
i=1

∫
Em

k

[
[ai(t,y,Tk(vε), ∂iTk(vε))−ai(t,y,Tk(vε), ∂iTk(v))]

×∂i(Tk(vε)−Tk(v))
]ςi(y)

dydt,

Hence, combined (21) with Hölder’s inequality of exponent 1
ςi(y)

, we get

N

∑
i=1

∫
Q

[
[ai(t,y,Tk(vε),∂iTk(vε))−ai(t,y,Tk(vε),∂iTk(v))] (22)

×∂i(Tk(vε)−Tk(v))
]ςi(x)

dydt ≤ meas (Q)1−ς+
[
mc0 +ϖm(ε)

−
N

∑
i=1

∫
Q

ai(t,y,Tk(vε),∂iTk(v))∂iTm(Tk(vε)−Tk(v))
]ςi(y)

dydt

+
N

∑
i=1

∫
Em

k

[(
ai(t,y,Tk(vε),∂iTk(vε))−ai(t,y,Tk(vε), ∂iTk(v))

)
×∂i(Tk(vε)−Tk(v))

]ςi(y)
dydt,

As Tk(vε) converges to Tk(v) in Lp−i (0,T ;W 1,pi(y)
0 (Ω)) By applying the hypoth-

esis (Pε), it is simple to show that the first term on the right hand side of (22)
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becomes zero when ε approaches infinity. As a result, the sequence(∣∣∣ai(t,y,Tk(vε),∂iTk(vε))−ai(t,y,Tk(vε),∂iTk(v))
∣∣∣)

ε

is bounded in Lpi(y)(Q)

for each m > 0, and for each i = 1, . . . ,N, then by Hölder’s inequality, we obtain

N

∑
i=1

∫
Q

[(
ai(t,ε,y,Tk(vε),∂iTk(vε))−ai(t,y,Tk(vε),∂iTk(v))

)]
×∂i

(
Tk(vε)−Tk(v)

)ςi(y)
dydt ≤ meas (Q)1−ς

+
i [mc0 +2ϖm(ε)]

ς
−
i

+ c1[ meas {(t,y) ∈ Q : |Tk(vε)−Tk(v)|> m}]1−ς
+
i .

By tending ε to infinity and then m to zero, and since Tk(vε) converges in mea-
sure to Tk(v), we state that

lim
ε→∞

N

∑
i=1

∫
Q

[(
(ai(t,y,Tk(vε),∂iTk(vε))−ai(t,y,Tk(vε),∂iTk(v))

)
×∂i(Tk(vε)−Tk(v))

]ςi(y)
dydt = 0,

we conclude, by reasoning as in [26], for i= 1, . . . ,N that ∂iTk(vε)a.e. converges
to ∂iTk(v) for all k > 0, in fact, ∂ivε converges to ∂iv a.e. in Q, which proves that

ai(t,y,vε ,∂ivε)→ ai(t,y,v,∂iv) strongly in Lqi(y)(Q),

for all qi(y)< pi(y)− N
N+1 . Finally, by passing to the limit, tending v to infinity,

in the weak formulation of (16) for each ϕ ∈C∞
c ([0,T ]×Ω) to conclude that v

satisfies (15) in the distributional sense (this means that v is a weak solution of
(9) and this concludes the proof of Proposition 3.4.

4. Main result and proof

In this section we define the notion of weak solution to problem (1) and we give
the existence result for such a solution

Theorem 4.1. Assume that ai satisfies (11)-(13), µ ∈M0(Q) and v0 ∈ L1(Ω).
Let qi(y)> 1, si(y)≥ 0, 2− 1

N+1 < pi(y)<N and suppose that there are positive
constants ζ− and m0, where

b(|m|)≥ ζ
−|m|si(y), for all m ∈ R : |m|> m0. (23)

Then, (1) has a weak solution v such that

(i) if si(y)> 1, then v ∈
N⋂

i=1

W0 ∩Lζi(y)(Q) for each ζ
−
i <

(p−i N+p−i −N)(s−i +1)
N+1 ,
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(ii) if 0 ≤ s−i ≤ si(y)≤ s+i ≤ 1 and p−i > 2−
1+ s−i (N −1)

N
, then we have

v belongs to
⋂N

i=1 Lq−i (0,T ;W 1,qi(y)
0 (Ω)) for every q−i <

N(p−i −1+s−i )
N−(1−s−i )

.

In addition, if µ is a function in
N⋂

i=1

Lσ ′
i (y)(Q) where 1 < σi(y) < (p⋆i (y))

′, then

(1) has a weak solution v such that

(iii) if si(y)> 1− p⋆i (y)
σ ′

i (y)
, then v ∈

N⋂
i=1

W0 ∩L
(N(p−i +1)+p−i )σ−

i (s−i +1)

N+p−i −σ
−
i p−i (Q).

(iv) if 0 ≤ si(y) < 1− p⋆i (y)
σ ′

i (y)
and p−i > max

{
1,2− σ

−
i (1+s−i (N−1))+N(σ−

i −1)
Nσ

−
i

}
,

then v belongs to
N⋂

i=1

Lq−i (0,T ;W 1,qi(y)
0 (Ω)) such that q−i =

Nσ
−
i (p−i −1+s−i )

N−σ
−
i (1−s−i )

.

Proof. To prove Theorem 4.1, let µ ∈M0(Q) and v0 ∈ L1(Ω). Consider the two
sequences (vε

0) of L∞(Ω)-functions and ( fε) of Lp′(y)(Q)-functions satisfying{
fε → µ in the weak* topology of measures and ∥ fε∥L1(Q) ≤C,

vε
0 → v0 in L1(Ω) and ∥vε

0∥L1(Ω) ≤C.
(24)

Consider that vε is the weak solution of (Pε)

(Pε)


(vε)t −

N

∑
i=1

[ai(t,y,vε)(1+ |vε |)si(y)|∂ivε |pi(y)−2
∂ivε ] = fε

in Q := (0, T )×Ω,
vε(0,y) = vε

0(y) in Ω, vε(t,y) = 0 on (0,T )×∂Ω,

where µε and vε
0 are specified as before.

Such a solution is established by well-known results (see [1, 19]) and belongs to
N⋂

i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω))∩C(0,T ;L2(Ω)). As { fε} is bounded in L1(Q), and

according to Proposition 3.4, vε is bounded in T 1,p⃗(y)
0 (Q) such that

ai(t,y,vε ,∂ivε) ∈
N⋂

i=1

Lqi(y)(Q),

for each qi(y)< pi(y)−
N

N +1
, and vε solves (Pε) in the sense of distributions.
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Consequently, there is v and a subsequence (still denoted by vε ) such that



vε ⇀ v a. e. in Q,

Tk(vε)⇀ Tk(v) weakly in
N⋂

i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω)),

strongly in
N⋂

i=1

Lpi(y)(Q) and a.e.in Q.

(25)

On the other side, we take Ψk(vε) = T1(vε − Tk(vε)), with k ≥ k0 where k0 ∈
N, as test function in the weak formulation of (Pε) and given that ∂iΨk(vε) =
∂ivε χ{k≤|vε |<k+1} and Ψk(vε) = 0 if |vε | ≤ k, we can obtain easily

∫ T

0
⟨(vε)t , T1(vε −Tk(vε))⟩dt +

N

∑
i=1

∫
{k≤|vε |<k+1}

ai(t,y,vε ,∂ivε) ·∂ivεdydt

≤
∫
{|vε |≥k}

| fε |dydt, (26)

for every k ≥ k0.
Using the integration by parts formula of Lemma 3.1 and from (23), it follows
that the some subsequence {uε} verifies

∫
Ω

Θk(vε(τ))dy+ζ
−
i ks−i

N

∑
i=1

∫
{k≤|vε |<k+1}

|∂ivε |pi(y)dydt

≤
∫
{|vε |≤k}

| fε |dydt +
∫

Ω

Θk(vε(0))dy, (27)

where Θk(ℓ) defined as follows Θk(ℓ) =
∫ ℓ

0
Λ(τ)dτ . Let us notice that we re-

quire to distinguish two cases:
1st case: If si(y) > 1. For a.e. t ∈ (0,T ), by means (24), (27) and the fact that
fε is bounded in L1(Q) and |θk(vε

0)| ≤ |vε
0| a.e. in Ω, we can write that

∫
Ω

Θk(vε)(t)dy ≤C, for all t belongs to [0,T ]. (28)

From now on, we will denote by C any constant that is dependent on particular
variables and whose value can vary from one line to the next, implying the
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estimation of v in L∞(0,T ;L1(Ω)) and

N

∑
i=1

∫
{k≤|vε |<k+1}

|∂ivε |pi(y)dydt (29)

≤
N

∑
i=1

∫
Q
|∂iTk0(vε)|pi(y)dydt +

N

∑
i=1

1
ζ
−
i

∫
{|vε |≥k}

| fε |
ksi(y)

dydt

≤
N

∑
i=1

∫
Q
|∂iTk0(vε)|pi(y)dydt +

[∥vε∥L1(Ω)+∥µ∥M0(Q)]

ζ
−
i

∞

∑
k=1

1

ks−i

≤C
[
∥µ∥L1(Q)+∥vε

0∥L1(Ω)

]
. (30)

These previous results produce a bound for vε in
N⋂

i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω))∩

L∞(0,T ;L1(Ω)); as a result, from (25), we obtain a bound for its weak limit v in

N⋂
i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω))∩L∞(0,T ;L1(Ω)).

In the same way that the proof of Proposition 3.4, we get a bound of v in

N⋂
i=1

Lqi(y)(Q) for each q−i <
(p−i N + p−i −N)(s−i +1)

(N +1)
,

which is verified, as |vε |si(y)+1 ≤C(1+M(v)) and M(v) ∈
N⋂

i=1

Lqi(y)(Q) for each

q−i < p−i − N
N +1

where M(ℓ) is defined as M(ℓ) =
∫ ℓ

0
b(|y|)

1
pi(y)−1 dy.

2nd case: If 0 ≤ si(y)≤ 1.
Let Γi(y) ∈ R where Γi(y)> 1− si(y) and 1 < qi(y)< 2, then, by applying the
inequality of Hölder and ( 27) for a.e. t ∈ (0,T ), for i = 1, . . . ,N, we have

N

∑
i=1

∫
Ω

|∂ivε(t,y)|qi(y)dy =
N

∑
i=1

∫
Ω

|∂iv(t,y)|qi(y)

(|v(t,y)|+1)
Γi(y)qi(y)

2

(
|vε(t,y)|+1

)pi(y)dydt

(31)

≤
N

∑
i=1

[(∫
Ω

|∂ivε(t,y)|qi(y)

(|vε(t,y)|+1)Γ(y)
dydt

) q−i
p−i
(∫

Ω

(
|vε(t,y)|+1

) Γ
−
i q−i

p−i −q+i dydt
) p−i −q−i

p−i
]
.
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Similar to (29) and integrate over t, if Γi(y)> 1− si(y) and Γ
−
i =

N(p−i )−q−i )
N −q−i

which leads to q−i <
N(s−i +1))

N − (1− s−i )
, we have by means the Sobolev’s embedding

theorem that(∫
Q
|vε |q

⋆
i (y)dydt

) q−i
(q⋆i )

−
≤

∫
Q
|∂ivε |qi(y)dydt ≤

(
C+

∞

∑
k=1

c
kΓi(y)+si(y)

) q−i
p−i

×
(∫

Q

(
|vε(t,y)|+1

) Γ
−
i q−i

p−i −q+i dydt
) p−i −q−i

p−i (32)

≤
[∫

Q
(|vε(t,y)|+1)

Γ
−
i q−i

p−i −q+i dydt
] p−i −q−i

pi(y)

≤
[∫

Q
(|vε(t,y)|+1)ϒ−

dydt
] p−i −q−i

p−i

where ϒ− <
p−i q−i

p−i −q+i
.

As a consequence, one may readily get a priori estimates on

vε in
N⋂

i=1

Lqi(y)(0,T ;W 1,qi(y)
0 (Ω)) for each q−i <

Ns−i +N
N −1+ s−i

.

We now suppose that the assumptions (11)-(13) and (23) are satisfied, and that

the datum µ = f such that f ∈ Lσi(y)(Q) with s−i ≥ 1− (p⋆i )
+

(σ⋆
i )

+
, then it is possi-

ble to use the results of the above calculations to find the solution’s summability
and its gradient with respect to time and space. Let us consider vε the solu-
tion of problem (11) with ( fε) a sequence of regular functions in Lσi(y)(Q) that
approximate the datum µ, by (29) we infer that

N

∑
i=1

∫
Q
|∂ivε |pi(y)dydt ≤

N

∑
i=1

∫
Q
|∂iTk0(vε)|pi(y)dydt +

N

∑
i=1

∫
{|vε |≥k0}

|∂ivε |pi(y)dydt

≤C+
N

∑
i=1

∞

∑
h=1

∫
{|vε |≥h}

| fε |
hs−i

dydt

≤C+
N

∑
i=1

∞

∑
h=1

∞

∑
j=h

∫
{ j≤vε< j+1}

| fε |

h
1− (p⋆i )

+

(σ⋆
i )+

dydt (33)

≤C+
N

∑
i=1

∞

∑
j=0

∫
{ j≤vε< j+1}

| fε |
j

∑
h=0

1

(1+h)
1− (p⋆i )

+

(σ⋆
i )+

dydt.
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As
j

∑
h=0

1

(1+h)s−i
≤C(1+ j)1−s+i with 0 < si(y)< 1, by Hölder’s inequality and

the Sobolev embedding theorem, we can easily determine that

N

∑
i=1

(∫
Q
|vε |p

⋆
i (y)dydt

) p−i
(p⋆i )

−
≤

N

∑
i=1

∫
Q
|∂ivε |pi(y)dydt

≤C
N

∑
i=1

[
1+

∫
Q
| fε |

(
1+ |vε |

) p⋆i (y)
(σ⋆

i )− dydt
]

≤C
[ N

∑
i=1

(∫
Q
(|vε +N|)p⋆i (y)dydt

) 1
(σ⋆

i )−
+N

]

where
p−i

(p⋆i )−
>

1
(σ⋆

i )
− . Then, we simply find an a priori estimate of vε in

N⋂
i=1

Lp−i (0,T ;W 1,pi(y)
0 (Ω)).

Step 1 : If 1 − p⋆i (y)
σ⋆

i (y)
< si(y). Using Ψk

(
|vε |si(y)vε

)
= T1

(
|vε |si(y)vε −

Tk
(
|vε |si(y)vε

))
as test function in the weak formulation of (Pε) and remind-

ing that si(y)> 1− p⋆i (y)
σ⋆

i (y)
, we get, for a. e. t ∈ [0,T ], that

∫ T

0

〈
(vε)t ,T1(|vε |si(y)vε −Tk(|vε |si(y)vε))

〉
dt

+
N

∑
i=1

(s−i +1)
∫
{k≤|vε |si(y)+1<k+1}

|vε |si(y)ai(t,y,vε ,∂ivε) ·∂ivεdydt

≤
∫
{|vε |si(y)+1≥k}

| fε |dydt

Thus, by setting Θ
si(y)
1 (ℓ) =

∫ ℓ

0
T1(|ω|si(y)ω − Tk(|ω|si(y)ω))dω and applying

the integration by parts formula, we obtain

∫ T

0

〈
(vε)t , T1(|vε |si(y)vε −Tk(|vε |si(y)vε))

〉
dt

=
∫

Ω

Θ
si(y)
1 (vε)(T )dy−

∫
Ω

Θ
si(y)
1 (vε)(0)dy,
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As Θ
si(y)
1 (ℓ)≤ |ℓ| and Θ

si(y)
1 (vε)(T )≥ 0, then the first member is positive,

N

∑
i=1

(
s−i +1

)∫
{k≤|vε |si(y)+1<k+1}

|vε |si(y)ai(t,y,vε ,∂ivε) ·∂ivεdydt

≤
∫
{|vε |si(y)+1≥k}

| fε |dydt +C
∫

Ω

Θ
si(y)
1 (vε)(0)dy.

Hence, from (3.1) and (23), we get

N

∑
i=1

∫
{k≤|vε |si(y)+1<k+1}

|∂i(|vε |si(y)vε)|pi(y)dydt ≤C
∫
{|vε |si(y)+1≥k}

| fε |dydt

+C
∫
{|vε |si(y)+1≥k}

|v0|dy f or all k ≥ k1 = ms−i +1
0 .

Therefore, we get, as in [5, Theorem 3], the estimate of |vε |si(y)+1 belngs to

L
(N(pi(y)−1)+pi(y))σi(y)

N+pi(y)−σi(y)pi(y)

and the desired (higher) summability of

vε ∈ Lδi(y)(Q) where δi(y) =
(N(pi(y)+1)+ pi(y))σi(y)(si(y)+1)

N + pi(y)−σi(y)pi(y)
.

Step 2 : If 0 < si(y)< 1− p⋆i (y)
σ⋆

i (y)
.

Let qi(y)< 2, t ∈ [0,T ] and Γi(y) be a function such that Γi(y)< 1−si(y). Using
the previous procedure, and taking the supremum for t in (0,T ), we obtain

C∥vε∥L∞(0,T ;L1(Ω))+
N

∑
i=1

∫
Q
|∂ivε |qi(y)dydt

≤
( ∞

∑
h=1

∞

∑
j=h

∫
{ j≤|vε |< j+1}

| fε |
hΓi(y)+si(y)

dydt
) q−i

p−i
(∫

Q
(1+ |vε |)

Γi(y)qi(y)
pi(y)−qi(y) dydt

) p−i −q−i
p−i

≤C
(

1+
∫

Q
| fε |

(
1+ |vε |

)1−(si(y)+Γi(y))
dydt

) q−
p−

(∫
Q
(1+ |vε |)

Γi(y)qi(y)
pi(y)−qi(y) dydt

) p−i −q−i
p−i

≤C∥ fε∥
q−i
p−i
Lσi(y)(Q)

(∫
Q

(
1+ |vε |

)(1−(si(y)+Γi(y))
)

σ⋆
i (y)

dydt
) q−

p−i (σ⋆
i )−

×
(∫

Q
(1+ |vε |)

Γ
−
i q−i

p−i −q+i dydt
) p−i −q−i

p−i .
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Here, we choose Γ
−
i =

N(p−i −q−i )
N−q+i

where

q−i =
(N(p−i +1)+ p−i )σ

−
i (s−i +1)

N + p−i (1−σ
+
i )

,

to get
Γ
−
i q−i

p−i −q+i
=

Nq−i
N −q+i

= (q⋆i )
−,

which gives that

∥vε∥L∞(0,T ;L1(Ω)) ≤C,

and

N

∑
i=1

(∫
Q
|vε |q

∗
i (y)dydt

) q−i
(q⋆i )

−
≤

N

∑
i=1

∫
Q
|∂ivε |qi(y)dydt

≤C
(∫

Q

(
1+ |vε |

)q⋆i (y)
dydt

) p−i −q−i
p−i .

Therefore, we arrive at the desired estimates of vε in
N⋂

i=1

Lq−i (0,T ;W 1,qi(y)
0 (Ω))

for each

q−i <
Nσ

−
i (s−i +1)

N −σ
−
i (1− s−i )

.
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