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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR PARABOLIC
PROBLEMS OF FRACTIONAL TYPE AND SIGN-CHANGING

MEASURE DATA

M. ABDELLAOUI - H. REDWANE

We prove a new asymptotic behavior result (with respect to the time
variable t) of entropy solutions for fractional parabolic problems, with
Dirichlet boundary at infinity, whose model is

(P)

{
ut +(−∆)s

pu(x) = µ in (0,∞)×RN ,

u(0,x) = u0(x) in RN ,

where (−∆)s
pu is the fractional (s, p)-Laplace operator (with ps < N,

0 < s < 1 and p > 2 − s
N ), u0 ∈ L1

loc(RN) and µ is a bounded, com-
pactly supported Radon measure whose support is compactly contained in
Q := (0,∞)×RN , N ≥ 2 (not depending on time) which does not charge
the sets of the fractional (s, p)-capacity.

Résumé. Soit Ω un ouvert borné de RN , N ≥ 2 et T > 0, nous
montrons un résultat de comportement asymptotique (selon la variable
du temps t) des solutions entropiques pour un problème fractionnaire
prabolique dont le modèle est (P) où (−∆)s

pu est l’opérateur fraction-
naire (s, p)-Laplacian (avec ps < N, 0 < s < 1 et p > 2− s

N ), u0 ∈ L1(Ω)
et µ ∈Ms,p

0 (Q) est une mesure de Radon avec une variation totale bornée
dans Q := (0,∞)×Ω (ne dépend pas du temps) qui ne prend pas en charge
les parties de (s, p)-capacité nulle.
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1. Introduction

This paper is concerned with asymptotic behavior of solutions for some frac-
tional parabolic problems. We point out the results proved in this context are
new, even for regular data. To this aim, we consider model problems{

ut +(−∆)s
pu = µ in Q := (0,∞)×Ω,

u(0,x) = u0(x) in Ω, u(t,x) = 0 on (0,∞)×∂Ω,
(1)

where Ω is a bounded domain in RN (N ≥ 2) with Lipschitz boundary ∂Ω and
u 7→ (−∆)s

pu is the fractional p-Laplace operator, which, up to renormalization
factors, is defined as

(−∆)s
pu(t,x) := P.V.

∫
RN

|u(t,x)−u(t,y)|p−2(u(t,x)−u(t,y))
|x− y|N+ps dy

= lim
ε↓0

∫
RN\Bε (x)

|u(t,x)−u(t,y)|p−2(u(t,x)−u(t,y))
|x− y|N+ps dy,

(2)

where (t,x) ∈ R+ ×RN and P.V. is commonly used abbreviation for ”in the
principal value sense”, u0 is a function in L1(Ω) and µ ∈Ms,p

0 (Q) is any mea-
sure with bounded variation over Q := (0,∞)×Ω which does not charge the sets
of zero fractional-capacity. The purpose of this article is to give different proper-
ties of the fractional capacity in connection with Radon measures under which
the asymptotic behavior of entropy solutions hold; namely, we characterize the
fractional order Sobolev spaces for which the fractional capacity is defined and
we show existence, regularity and asymptotic behavior results for generalized
solutions under suitable assumptions on the data. In our study, we will be only
concerned with nonlocal equations in the case p ̸= 2 which makes the asymp-
totic behavior result more difficult since the operator turns out to be nonlinear
and parabolic. However, we stress that, even when p = 2, while sufficiently
regular data, the existence result for duality solutions is not trivial.

In order to better describe how far the results presented in this paper extend
to the fractional setting those available in the classical case, we shall give a short
review of some of the key point results of the classical local theory. An exis-
tence and regularity theory for general quasilinear equations involving measures
has been established by Boccardo & Gallouët in a series of papers [16–18]. The
authors deal with Dirichlet problems of the type −div(a(x,∇u)) = µ in Ω, with
Dirichlet boundary u = 0 on ∂Ω, where the vector field a(x,∇u) has p-growth
and coercivity with respect to the gradient, and exhibits a measurable depen-
dence on x. The main model case here is given by the p-Laplace operator with
measurable coefficients. Under the optimal assumption p > 2− 1

N , Boccardo &
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Gallouët introduce the notion of SOLA (Solution Obtained as the Limit of Ap-
proximations), that are defined as distributional solutions which have been ob-
tained as limits (a.e. and in Lp−1) of a sequence of W 1,p-solutions (un) of prob-
lems −div(a(x,∇un)) = µn in Ω where the sequence (µn)n∈N ⊂ C∞(Ω) con-
verges to µ weakly in the sense of measures. The final outcome is the existence
of a distributional solution u to the original problem satisfying u ∈ W 1,q(Ω)

for every q < N(p−1)
N−1 ; in this case, the solutions are not in general energy so-

lutions and that does not belong to W 1,p
loc . For this reason such solutions are

often called very weak solutions; we remark that different notions of solutions
have been proposed in [25, 38, 58? ], also in order to prove unique solvabil-
ity (which is still an open problem). Such definitions are all equivalent in the
case of diffuses measures as eventually shown in [25]. Before giving the defi-
nition of solution we need to specify a few nonlocal objects that will be crucial
in the subsequent analysis, we recall that nonlocal operators have attracted in-
creasing attention over the last years. Apart from their theoretical interest, and
the new mathematical phenomena they allow to observe, they intervene in a
quantity of applications and models since they allow to catch more efficiently
certain peculiar aspects of the modelled situations. For instance, we mention
their use in quasi-geostrophic dynamics [31], nonlocal diffusion and modified
porous medium equations [26, 82, 83], dislocation problems [27], phase tran-
sition models [9, 28], image reconstruction problems [48]. For this reason it
is particularly important to study situations when such nonlocal operators are
involved in equations featuring L1 or regular data, as for instance those mod-
elling source terms which are diffuse. This leads to study nonlocal equations
having measures as data, that read, in the elliptic Dirichlet case, as −LΦu = µ

in Ω ⊂ RN , N ≥ 2, where −LΦ is a nonlocal operator defined by

⟨−LΦu,ϕ⟩ :=
∫
RN

∫
RN

Φ(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy,

for every smooth function ϕ with compact support. It is assumed that µ belongs
to M(RN), that is the space of diffuse measures with finite total mass on RN .
The function Φ : R → R is assumed to be continuous, satisfying Φ(0) = 0 to-
gether with a mononocity property and the kernel K : RN ×RN →R is assumed
to be measurable, and satisfying an ellipticity/coercivity properties. Notice that,
upon taking the special case Φ(t) = |t|p−2t, we recover the fractional p-Laplace
operator with measurable coefficients (see [15, 40, 41]). On the other hand, in
the case Φ(t) = t we cover the special case of linear fractional operators, with
measurable coefficients, defined by

⟨−LΦu,ϕ⟩ :=
∫
RN

∫
RN

(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy,
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for these equations see also [12, 29, 30]. Finally, when K(x,y) = |x−y|−(N+ps),
with s ∈ (0,1) and p > 2− s

N , we recover the case of the classical fractional
Laplacian (−∆)s.

Of course, we shall introduce a natural function class allowing for solvabil-
ity of the fractional problem; in particular, we shall introduce a suitable notion
of solution to equations of the type (1). Such solutions, called entropy solutions
and constructed via an approximation procedure with problems involving more
regular data, do not in general lie in the natural energy space associated to the
fractional operator −LΦ, that is W s,p, but exhibit a lower degree of integrability
and differentiability, see Definition 3.1 below. This is in perfect analogy with
what happens in the case of classical, local measure data problems. For such
reasons these solutions should be considered as the analog of the very weak solu-
tions usually considered in the classical case. To this aim, let us first recall what
is already known in the literature: in the case p = 2, general structure conditions
on nonlocal elliptic equations where given in [4, 53, 56] to ensure that the exis-
tence of renormalized/duality solutions holds whenever µ is a measure data (the
corresponding parabolic results can be found in [56]). Their methods rely on
different approaches; the authors in [4] first investigate under which condition
the existence and uniqueness of renormalized solutions for problems with max-
imal monotone graph in R and L1(RN)-data hold; in the second paper, they use
some duality arguments in the sense of Stampacchia [78] to reduce the nonlocal
problem (−∆)su = µ , with µ being a bounded Radon measure whose support
is compactly contained in RN , to the former ”good” situation. This idea was a
bit refined in [65] in order to deal with integro-differential equations including
some cases of measure data. On the other hand, existence results for nonlinear
operators, p ̸= 2, must be handled with care since an easy counterexample, see
[75, 77], show that it may fall. This is essentially due to the fact that the regu-
larization of µ needs a proper functional setting to work; therefore a sufficient
renormalization on the solutions has to be properly defined in the weak sense.
This problem only occurs if we deal with uniqueness and if the data is irregular;
indeed for sufficiently regular data, uniqueness results hold in more generality
(see for instance [13, 42]). The problem of existence/uniqueness in the evolution
case including generalized solutions was dealt in [24, 46, 76] (and in [5, 64] un-
der more restrictive conditions) using an approach due to [45, 47] which relies
on the decomposition of µ (with respect to the capacity) whenever the entropy
argument should not work for general data expect in the framework of Radon-
measure valued solutions, see [62, 73, 74, 81] (and also [72]). Different type
of solutions were also proved in [54, 55] in the context of SOLA (solutions ob-
tained as limit of approximations), Viscosity solutions and solutions obtained
via integration by parts/comparison principles for nonlinear elliptic problems.
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Indeed, to our knowledge, there aren’t any general result including fractional p-
Laplacian operator (2) in the literature giving existence results for generalized
solutions to (1) when a singular measure is considered. Apart from some model
cases contained in [2] where fractional elliptic p-Laplace equations with weight
and general datum are considered, see also [52] for a class of nonlinear degen-
erate elliptic-parabolic problem with fractional time derivative and L1-data and
[3] for existence results of SOLA/Entropy solutions for parabolic problems with
L1-data.

In this article, we aim at establishing rather general asymptotic behavior re-
sults of entropy solutions when µ is a Radon measure which does not charges
the sets of zero fractional capacity. To this purpose, we use alternatively either
the approach of Petitta [66, 67] (see also [68]), based on a key result, namely the
comparison principle result between suitable entropy sub- and super-solutions
of the parabolic problem (1) (which is a natural extension of the one for the el-
liptic case, see [63]) coupled with a compactness/convergence approach mostly
relying on some a priori estimates. We will also exploit one more idea consist-
ing in the characterization of the data in terms of fractional parabolic capacity
defined with fractional order Sobolev spaces. This method relies on the fun-
damental work [67] (re-adapted in [1]) which suggests the use of an adequate
approximate problem to establish some a priori estimates for the sequence of
approximate solutions and to derive a subsequence to obtain a limit function
which is an entropy solution by virtue of the convergence results. We will use
this later method as a key-point in order to get a strong asymptotic behavior
result. We mention that, in [1], a part of the results of this paper was announced
(and proved for a particular case of non-negative measures and non-negative
initial datum) where we consider a fractional parabolic problem in presence of
a nonnegative measure with bounded variation over Q which does not charge
the sets of zero fractional (s, p)-capacity (i.e., µ ∈Ms,p

0,+(Q)) and a nonnegative
initial datum (i.e., µ0 ∈ L1

+(Ω)); nevertheless, we include here all the details, by
using the positive and the negative parts of µ and u0, and give a self-contained
exposition for the sake of clarity. We confine ourselves to the case of entropy
solution; in order not to mix different issues; however, we point out that same re-
sults, can be obtained by using renormalized solutions. A significant point that
we wish to stress in our results is the role of the fractional relative capacity, by
specifying how the aymptotic result would hold under more general data. Our
specific interest in this question is clearly motivated by the study of the parabolic
capacity and its properties (a reason which we feel sufficiently strong for us to
choose the right-hand side as measure data). In addition, the complexity of this
term allows us to observe interesting phenomena compared with other possible
choices of data including measures not charging sets of fractional capacity; as
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an example, the model problem

ut +(−∆)s
pu = f −div(G) in Q, (3)

with f ∈ L1(Ω) and G ∈ Lp′(Ω)N . Let us also refer the reader to [70, 71] (see
also [69]) for a totally different approach, based on equidiffuse properties and
without using the strong convergence of truncatures, to the question of existence
and uniqueness when a zero order term is present. However, the use of this ap-
proach could be suitable in our context, more precisely for fractional-Laplace
problems and equi-diffuse measures.

The paper is organized as follows. In Section 2, we give some notations and
some well-known results as they are used to obtain our main result; we recall the
definition and some properties of the fractional Sobolev spaces in 2.1, and we
define the fractional capacity, we give its properties and its relation to the Radon
measure and we use the fractional capacity to characterize these measures and
we give some necessary and sufficient conditions for the decomposition of µ to
hold in Section 2.2. In Section 3, we introduce the entropy formulation to the
fractional-Laplacian problem and we show that each of these solutions gener-
ate compactness estimates and several other convergence results. In Section 4,
using the above mentioned formulation, we define sub-super problems, and we
investigate the asymptotic behavior result of entropy solution to the fractional
parabolic boundary value problem (1).

2. Preliminary results

2.1. Fractional Sobolev spaces and fractional p-Laplace operators

In this part, we collect some properties of fractional Sobolev spaces, we analyse
the relations among some of their possible definitions and we collect some em-
bedding results. Most of the results we present here are probably well knwon.
We begun with the definition of these spaces. No prerequisite is needed, we just
recall that Ω ⊂ RN is an open set whose boundary ∂Ω and p ∈ [1,∞). The first
order Sobolev space

W 1,p(Ω) := {u ∈ Lp(Ω) :
∫

Ω

|∇u|pdx < ∞}, (4)

is a Banach space endowed with the norm

∥u∥W 1,p(Ω) := (∥u∥p
Lp(Ω)+∥∇u∥p

Lp(Ω))
1
p . (5)
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Denote

W̃ 1,p(Ω) =W 1,p(Ω)∩Cc(Ω)
W 1,p(Ω)

and W 1,p
0 (Ω) =D(Ω)

W 1,p(Ω)
. (6)

Let us recall that W̃ 1,p(Ω) is a proper closed subspace of W 1,p(Ω) (see e.g.,
[60, 61]). Moreover, if Ω has the W 1,p-extension property, that is, if for every
u ∈ W 1,p(Ω) there exists w ∈ W 1,p(RN) such that w Ω = u, then W̃ 1,p(Ω) =
W 1,p(Ω), see also [7, 8]. For s ∈ (0,1) and p ∈ [1,∞), we denote by

W s,p(Ω) := {u ∈ Lp(Ω) :
∫

Ω

∫
Ω

|u(x)−u(y)|p

|x− y|N+ps dxdy < ∞}. (7)

The Sobolev space of fractional order is endowed with the norm

∥u∥W s,p(Ω) :=
(∫

Ω

|u|pdx+
∫

Ω

∫
Ω

|u(x)−u(y)|p

|x− y|N+ps dxdy
)1/p

. (8)

Similarly, denote

W̃ s,p(Ω) =W s,p(Ω)∩Cc(Ω)
W s,p(Ω)

and W s,p
0 (Ω) =D(Ω)

W s,p(Ω)
. (9)

Recall that W̃ s,p(Ω) contains W s,p
0 (Ω) as a closed subspace and, by definition,

W s,p
0 (Ω) is the smaller closed subspace of W s,p(Ω) containing D(Ω) = RN ×

RN\(Ωc×Ωc) where Ωc =RN\Ω (see e.g., [57, 59, 80]). In general W 1,p(Ω) is
not a subspace of W s,p(Ω), see [43, Example 9.1], but the following result holds
true.

Proposition 2.1. Let p ∈ [1,∞) and s ∈ (0,1), let Ω ⊂RN be an open set having
the W 1,p-extension property. Then, there exists a constant C = C(N,s, p) ≥ 0
such that for every u ∈W 1,p(Ω),

∥u∥W s,p(Ω) ≤C∥u∥W 1,p(Ω). (10)

Proof. See [84, Proposition 2.3].

The following result has been proved in [84, Lemma 2.4] under the assump-
tion that ϕ ∈C0,1(Ω)∩L∞(Ω).

Lemma 2.2. Let p ∈ [1,∞) and s ∈ (0,1), let u ∈ W s,p(Ω) and ϕ ∈ C0,1(Ω)∩
L∞(Ω). Then, ϕu ∈W s,p(Ω) and there is a constant C > 0 (depending on N, p,s
and ∥ϕ∥L∞(Ω)) such that

∥ϕu∥W s,p(Ω) ≤C∥u∥W s,p(Ω). (11)
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We notice that Lemma 2.2 remains true if one replaced W s,p(Ω) with the
space W̃ s,p(Ω). The linear space of Lebesgue measurable functions u : RN 7→R
such that the quantity(∫

Ω

|u(x)|pdx+
∫∫

D(Ω)

|u(x)−u(y)|
|x− y|N+ps dxdy

)
< ∞, (12)

is denoted by X s,p(Ω). It is easy to see that X s,p(Ω) is not trivial since it contains
bounded and Lipschitz functions. Moreover, X s,p

0 (Ω) is defined as the space of
functions u ∈W s,p(Ω) that vanish a.e. in Ωc. For every function u ∈ X s,p

0 (Ω), it
is clear that∫

RN

∫
RN

|u(x)−u(y)|p

|x− y|N+ps =
∫

Ω

∫
Ω

|u(x)−u(y)|p

|x− y|N+ps dxdy

+2
∫

Ω

|u(x)|p
∫

Ωc

1
|x− y|N+ps dydx.

(13)

Recalling [44, Lemma 6.1], we have∫
Ωc

1
|x− y|N+ps dy ≥C|Ω|

−sp
N

where C = C(N, p,s) > 0. A simple computation, using Poincaré inequality,
gives∫

Ω

|u(x)|pdx ≤C
∫
D(Ω)

|u(x)−u(y)|pdν with dν =
dxdy

|x− y|N+ps , ∀p ≥ 1.

(14)
Thus, we can endow X s,p

0 (Ω) with the equivalent norm

∥u∥W s,p
0 (Ω) :=

(∫
D(Ω)

|u(x)−u(y)|pdν

)1/p

. (15)

Observe that, since X s,p
0 (Ω) is a reflexive Banach space, and as similar to

W s,p
0 (Ω), we have X s,p

0 (Ω) = W ∞
0 (Ω)

X s,p(Ω)
. Now, in order to make the paper

clear as possible, we introduce the fractional Laplace operator (−∆)su for (p =
2) which resembles to the familiar Laplace operator, let 0 < s < 1 and set

CN,s =
s22sΓ(N+2s

2 )

π
N
2 Γ(1− s)

, (16)

where Γ denotes the usual Gamma function, we define the functional Laplacian
(−∆)su by the formula

(−∆)su(x) =CN,sP.V.
∫
RN

u(x)−u(y)
|x− y|N+2s dy

= lim
ε↓0

CN,s

∫
{y∈RN :|y−x|>ε}

u(x)−u(y)
|x− y|N+2s dy.

(17)
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Notice that, if 0 < s < 1
2 and u smooth (Lipschitz continuous for example), the

integral in (17) is in fact not really singular near x. Note also that (−∆)s can
be defined as a pseudo-differential operator by the Fourier transformation (with
symbol |ξ |2s) by the method of bilinear Dirichlet forms (a closed self auto-
adjoint associated to a bilinear symmetric form) or by the contraction semigroup
theory, see [22, 23, 50, 51] for more precise details. As concerned, we have to
define the generalization of the fractional Laplace operator to the case p ̸= 2, and
to study the existence and the regularity of the fractional differential equation
(1) associated with these nonlocal operators (−∆)s

p. We proceed as follows, let
w ∈W s,p(RN) be an arbitrary function, we define

(−∆)s
pw(x) := P.V.

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))
|x− y|N+ps dy, (18)

we restrict the integral Kernel of the functional p-Laplacian to the open set
Ω ⊂ RN , and we define the functional ⟨(−∆)s

pw, ·⟩ for all w ∈W s,p(RN) as

⟨(−∆)s
pw,v⟩= 1

2

∫
RN×RN

|w(x)−w(y)|p−2(w(x)−w(y))(v(x)− v(y))dν , (19)

for all v ∈W s,p(RN). As similar to the case W s,p(RN), if w ∈ X s,p
0 (Ω) then

⟨(−∆)s
pw,v⟩= 1

2

∫
D(Ω)

|w(x)−w(y)|p−2(w(x)−w(y))(v(x)− v(y))dν , (20)

for all v ∈ X s,p(Ω), and is called the regional functional p-Laplacian, see [49–
51], and can also be defined as a pseudo-differential operator from X s,p

0 (Ω) onto
its dual space X s,p

0 (Ω)⋆. A simple calculation in the evolution case, gives that,
if w ∈ Lp(0,T ;X s,p

0 (Ω)) then (−∆)s
p : Lp(0,T ;X s,p

0 (Ω)) 7→ Lp′(0,T ;X s,p
0 (Ω)⋆)

where Lp(0,T ;X s,p
0 (Ω)) is defined as the set of functions u such that u ∈ Lp(Q)

with

∥u∥Lp(0,T ;X s,p
0 (Ω)) =

(∫ T

0

∫
D(Ω)

|u(t,x)−u(t,y)|pdνdt
) 1

p

< ∞. (21)

2.2. Fractional capacity and space of measures

The attempt to find a different formulation for (1), when µ is sufficiently regular,
which could allow to have both existence and uniqueness have developed in [52]
and in [3] where the notions of entropy and renormalized solutions have been,
respectively, introduced. Both these definitions, which have been proved to be
equivalent in [79] ask for solutions in the functional space

T s,p
0 (Ω) :=

{
u : [0,T ]×RN 7→ R measurable s.t.,

Tk(u) belongs to Lp(0,T ;X s,p
0 (Ω)) for every k > 0

}
,

(22)
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and use a weak formulation of the equation where nonlinear test functions de-
pending on u are used in order to restrict the equation on subsets where u is
bounded. Both these approaches are able to get uniqueness provided that µ be-
longs to L1(Q)+Lp′(0,T ;X s,p

0 (Ω)∗). In terms of measures, this restriction has a
slightly relationship with the notion of fractional parabolic p-capacity as it was
proved in [6] for the stationary case. In order to state this result, we need first
to introduce the notion of the fractional parabolic p-capacity (for more details,
see [84, Section 3] and references quoted therein, in particular [8, 33, 39], where
more properties and estimates are presented).

Definition 2.3. For s ∈ (0,1) and p ∈ (1,∞), a Choquet capacity on a topo-
logical space is defined as the mapping C : D(T ) (the power set of T ) 7→ [0,∞)
satisfying

(C0) C( /0) = 0,

(C1) A ⊂ B ⊂ T implies C(A)⊆ C(B),

(C2) (An)n∈N ⊂ T an increasing sequence implies

lim
n→∞

C(An) = C((∪∞
n=1An),

(C3) (Kn)n ⊂ T a decreasing sequence, Kn compact, implies

lim
n→∞

C(Kn) = C((∩∞
n=1Kn).

Following the lines of the previous definition for Choquet capacities, here
we want to give some basic knowledge on what has been done, up to known,
about the classical Bessel capacity of order (s, p) denoted by cap(s,p), see [8, 60]
for details. It is defined for any open set U ⊂ RN by

cap(s,p)(U) = inf
{
∥u∥p

W s,p(RN)
: u ∈W s,p(RN), u ̸= 1 a.e. on U

}
. (23)

For an arbitrary set E ⊂ RN ,

cap(s,p)(E) = inf
{

cap(s,p)(U) : U is an open set in RN containing E
}
, (24)

and where, as usual, we use the convention that inf /0 = +∞; then one can ex-
tend this definition by regularity to any Borel subset of Q. Let us recall that a
function u ∈ W s,p(RN) is said to be cap(s,p)-quasi-continuous (cap(s,p)-q.c) if
for every ε > 0, there exists an open set U ⊂ RN such that cap(s,p)(U) ≤ ε and
u is continuous in RN\U . It is well known that every Bessel capacity cap(s,p) is
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a Choquet capacity, see [8, Section 2.2], and that every function u ∈ W s,p(RN)
admits a unique (up to a polar set) cap(s,p)-q.c function ũ : RN 7→ R such that
ũ = u cap(s,p)-q.e. on RN . Thanks to this fact it is also possible to prove the
following: for any capacity set K ⊂ RN , we have

cap(s,p)(K) = inf
{
∥u∥p

W s,p(RN)
: u ∈W s,p(RN)∩Cc(RN), u ≥ 1 on K

}
. (25)

Moreover, if B ⊂ RN is a Borel set, we have

cap(s,p)(B) = sup
{

cap(s,p)(K) : K ⊆ B ⊂ RN compact
}
. (26)

Further results on the relationship between the classical Bessel capacity cap(s,p)
and the related Hausdorff measures can be found in [8, 60]. Now, we recall the
required functional parabolic spaces and fractional capacity associated to our
problem (for further details, see [10, 11, 14, 20, 21, 34–36, 85]).

Definition 2.4. Let Q = (0,T )×Ω for any fixed T > 0, and let us recall that

W s,p(Q) =
{

u ∈ Lp(0,T ;W s,p(Ω)); ut ∈ Lp′(0,T ;(W s,p(Ω)∗)
}
, (27)

(resp., W̃ s,p(Q) the corresponding definition for the space W̃ s,p(Ω)). So, if U ⊂
Q is a relatively open set (with respect to the relative topology of Q), we define
the (relatively) functional parabolic capacity of U (with respect to Q) as

capQ
(s,p)(U) := inf

{
∥u∥p

W s,p(Q) : u ∈ Lp(0,T ;W̃ s,p(Ω)), u ≥ 1 a.e. on U
}
,

(28)
where as usual we set inf /0 =+∞, then for any arbitrary set E ⊂ Q we define

capQ
(s,p)(E) = inf

{
capQ

(s,p)(U) : U relatively open in Q containing E
}
. (29)

Let K ⊂ Q be a compact set, then

cap(s,p)(K) = inf
{
∥u∥p

W s,p(Q) : u ∈W s,p(Q)∩Cc(Q), u ≥ 1 on K
}
, (30)

and, for any Borel set B ⊂ Q, we have

capQ
(s,p)(B) = sup

{
capQ

(s,p)(K) : K ⊆ B ⊂ Q compact
}
.

This second definition of capacity, that enjoys the Choquet-properties as
well as the first we gave, will turn out to be very useful to our aim since it
allows to extend the notion of Bessel capacity to sets with respect to any open
set contained in Q.
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Proposition 2.5. Let E be an arbitrary set of Q. Then

capQ
(s,p)(E) = cap(s,p)(E). (31)

As mentioned before, let us recall some fundamental properties extended
directly both to the case of relatively functional capacity.

Proposition 2.6. Some properties are in order to be given:

(i) A set E ⊂ Q is called relatively polar if capQ
(s,p)(E) = 0.

(ii) A property P(t,x) is said to hold on a set F ⊂ Q relatively quasi every-
where (r.q.e.) if there exists a relatively polar set E ⊂ F such that the
property holds everywhere on F\E.

(iii) A function u : Q 7→ R is said to be relatively quasi-continuous (r.q.c.)
if for every ε > 0 there exists a relatively open set U ⊂ Q such that
capQ

(s,p)(U)< ε and u Q\U is continuous.

(iv) For any function in W̃ s,p(Q), there exists a unique (up to a relatively polar
set) relatively quasi-continuous representative (r.q.c.r).

(v) Let un be a sequence of r.q.c. functions in W̃ s,p(Q) which converges to
a r.q.c. function u ∈ W̃ s,p(Q). Then, there exists a subsequence which
converges r.q.e. to u on Q.

(vi) Assume that Q has the W s,p-extension property, that is, for every element
w∈ Lp(0,T ;W s,p(Ω)) there exists a function U ∈ Lp(0,T ;W s,p(RN)) with
U Q = u. Then, cap(s,p) and capQ

(s,p) are equivalent.

Now, let us define the concept of the fractional elliptic (s, p)-capacity asso-
ciated to our problem. If K ⊂ Ω is a capacity set then cap(s,p)(K) can be defined
by

cape
(s,p)(K) = inf{∥u∥p

W s,p(Ω) : u ∈W s,p(Ω)∩Cc(R),u ≥ 1 on K}.

If U ⊂ Ω is an open set, we define the elliptic (s, p)-capacity of U as follows

cape
(s,p)(U) := inf

{
∥u∥p

W s,p(Ω) : u ∈W s,p(Ω), u ≥ 1 a.e. on U
}
.

Since cape
(s,p) is a choquet capacity, we have that for every Borel set B ⊂ RN

cape
(s,p)(B) = sup{cape

(s,p)(K) : K ⊆ B ⊂ Ω compat}. (32)



ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR PARABOLIC PROBLEMS · · · 189

Now, we want to recall some feature about spaces of measures; more pre-
cisely, the most important tools to deal with the evolution functional problem
(1). By Ms,p(Q) we denote the space of finite Radon measures on Q, and by
Ms,p

0,+(Q) ⊂ Ms,p(Q) the cone of nonnegative (finite Radon) measures on Q.
For any µ ∈Ms,p(Q), we set ∥µ∥Ms,p(Q) := |µ|(Q) where |µ| denotes the total
variation of µ . The space of continuous functions with compact support in Q
will be denoted by Cc(Q), and the space of continuous functions in Q by C(Q);
we also set

C0(Q) :=
{

ϕ ∈C(Q) s.t. ϕ(t,x) = 0 on (0,T )×∂Ω
}
. (33)

The duality map ⟨·, ·⟩ between the spaces Ms,p(Q) and Cc(Q), namely ⟨µ,ϕ⟩=∫
Q ϕ(t,x)dµ(t,x), can be extended to functions ϕ ∈C0(Q). Let us denote with
Ms,p

0 (Ω) the set of all measures with bounded variation over Ω that does not
charge the sets of zero elliptic (s, p)-capacity, that is, if µ ∈ Ms,p

0 (Q) then
µ(E) = 0 for all E ∈ Ω such that cape

(s,p)(E) = 0. Analogously we define
Ms,p

0 (Q) the set of all measures with bounded variation over Q that does not
charge the sets of parabolic (s, p)-capacity, that is, if µ ∈Ms,p

0 (Q) then µ(E) =
0 for all E ∈ Q such that cap(s,p)(E) = 0. Moreover we suppose that µ does
not depend on the time variable t (i.e., there exists a bounded Radon mea-
sure ν on Ω such that, for every Borel set B ⊆ Ω, and 0 < t0, t1 < T , we have
µ(B× (t0, t1)) = (t1 − t0)ν(B). Actually, we investigate the limit as T tends
to infinity of the solution u(T,x) of problem (1). Since we want to deal with
problem (1) where µ is a measure which does not charge sets of null capacity,
this means that we consider measure data (not depending on the time variable t)
which can be splitted in Ω.

Lemma 2.7. If µ ∈Ms,p
0 (Ω), then there exist G ∈ Lp′(Ω)N and f ∈ L1(Ω) such

that µ = f −div(G), in the sense that,∫
Q

ϕdµ =
∫

Ω

f dx+
∫

Ω

G ·∇ϕdxdt (34)

for every ϕ ∈C∞
c (Ω).

Proof. The previous proof remains the same also for measures that are zero on
the sets of zero fractional (s, p)-capacity (i.e., the capacity defined starting from
W s,p

0 (Ω), s > 1), since these measures can be decomposed as hγ , with h a Borel
function and γ a measure of W−s,p′(Ω). Thus, it is possible to prove that every
signed measure on Ω which is zero on the sets of zero (s, p)-capacity can be
decomposed in the sum of an element in W−s,p′(Ω) and of a function in L1(Ω),
and vice versa.
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Moreover, we will deal with functions that may not belong to the fractional
Sobolev spaces, so that we need to give a suitable definition of gradient for
functions that enjoy some properties. To this purpose, if k > 0, we define

Tk(s) = max(−k,min(k;s)) ∀s ∈ R, (35)

the truncature at levels k and −k, and Θk(s) =
∫ s

0 Tk(τ)dτ . One has Θk(s) ≥ 0.
The truncations will be very useful for defining good class of solutions, as in
[13].

Definition 2.8. Let u be a measurable function on Q such that Tk(u) belongs to
Lp(0,T ;W s,p

0 (Ω)) for every k > 0. Then, see [13, Lemma 2.1], there exists a
unique measurable function v : Q → RN such that

∇Tk(u) = vχ{|u|<k} a.e. in Q for every k > 0. (36)

We will define the gradient of u as the function v, and we will denote it by
v = ∇u. If u belongs to L1(0,T,W 1,1

0 (Ω)), the gradient coincides with the usual
gradient in distributional sense.

The following lemma (see e.g. [78]) which is of analytic nature will be
useful in deriving an a priori estimate of entropy solutions.

Lemma 2.9. Let G : R 7→ R be a Lipschitz function such that G(0) = 0. Then,
for every u ∈ Lp(0,T ;W s,p

0 (D)), D is any bounded open subset of RN , we have
G(u) ∈ Lp(0,T ;W s,p

0 (D)) and ∇G(u) = G′(u)∇u a.e. in (0,T )×D.

The following result contains a generalization of the integration by parts
formula when the time derivative is less regular (its proof can be found in [32,
46]).

Lemma 2.10. Let f : R 7→ R be a continuous C1-function such that f (0) = 0
and f ′ is zero away from a compact set of R; let us denote F(s) =

∫ s
0 f (τ)dτ .

If u ∈ Lp(0,T ;W s,p
0 (Ω)) is such that ut ∈ Lp′(0,T ;W−s,p′(Ω))+ L1(Q) and if

ψ ∈C∞(Q), then we have∫ T

0
⟨ut , f (u)ψ⟩dt

=
∫

Q
F(u(T ))ψ(T )dx−

∫
Ω

F(u(0))ψ(0)dx−
∫

Ω

ψtF(u)dxdt.
(37)

3. Entropy formulation and main result

In this section we introduce some properties of entropy solutions and we give
some intermediary results in order to prove our asymptotic behavior result. It
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is well known that, if dealing with L1 or measure data, the concept of solution
in the sense of distributions of problem like (1) is not strong enough to give
uniqueness of solution. We need to introduce the definition of entropy solution
of (1).

Definition 3.1. Let µ ∈ Ms,p
0 (Ω) and let u0 ∈ L1(Ω). A measurable func-

tion u ∈ C([0,∞],L1(Ω)) is an entropy solution of (1) if, for all k > 0, Tk(u) ∈
Lp(0,T ;X s,p

0 (Ω) for every k > 0, and it holds∫
Ω

Θk(u−ϕ)(T )dx−
∫

Ω

Θk(u0 −ϕ(0))dx+
∫ T

0
⟨ϕt ,Tk(u−ϕ)⟩dt

+
1
2

∫ T

0

∫
D(Ω)

U(t,x,y)[Tk(u(t,x)−ϕ(t,x))−Tk(u(t,x)−ϕ(t,y))]dνdt

≤
∫

Q
Tk(u−ϕ)dµ ∀ϕ ∈ Lp(0,T ;X s,p

0 (Ω))∩L∞(Q)∩C([0,T ];L1(Ω))

(38)
with ϕt ∈ Lp′(0,T ;X−s,p′(Ω)) (here U(t,x,y) = |u(t,x)− u(t,y)|p−2(u(t,x)−
u(t,y))).

An analogous definition will be given in the elliptic case following [13, 75].
To our aim, it suffices to give the definition in the case of measures which does
not charge sets of zero elliptic (s, p)-capacity.

Definition 3.2. Let µ ∈Ms,p
0 (Ω) and let u0 ∈ L1(Ω). A measurable function v

is an entropy solution of problem{
(−∆)s

pv(x) = µ in Ω,

v(t,x) = 0 on ∂Ω
(39)

if v is finite a.e. in Ω, Tk(v) belongs to X s,p
0 (Ω) for every k > 0, and∫ ∫

Rh

|v(x)− v(y)|p−2dν → 0 as h → 0 (40)

where
Rh ={(x,y) ∈ Ω×Ω : h+1 ≤ max{|v(x)|, |v(y)|}

with min{|v(x)|, |v(y)|} ≤ h or v(x)v(y)< 0}
and it holds

1
2

∫ ∫
DΩ

|v(x)− v(y)|p−2(v(x)− v(y)) · [Tk(v(x)−ϕ(x))−Tk(v(y)−ϕ(y))]dν

≤
∫

Ω

Tk(v(x)−ϕ(x))dµ

(41)
for every k > 0 and every ϕ ∈ X s,p

0 (Ω)∩L∞(Ω).
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In order to prove some a priori estimates and further properties of entropy
solutions, we will need a few technical ingredients

Lemma 3.3. Let B be a Borel set in Ω, and 0 ≤ t0 ≤ t1 ≤ T . Then

cap(s,p)(B× (t0, t1)) = 0 if and only if cape
(s,p)(B) = 0 (42)

Proof. (⇒) Suppose that cape
(s,p)(B) = 0, then there exists an open subset Uε ,

with 0 < ε < 1 and B ⊂ Uε , such that cape
(s,p)(Uε) < ε then we can choose

vε ∈ W (s,p)
0 (Ω) such that χUε

≤ vε ≤ 1 a.e. in Ω and ∥vε∥W s,p
0 (Ω) ≤ ε , and that

∥vε∥L2(Ω) ≤ C(ε) with C(ε) tends to zero as ε goes to zero; that is the term
∥vε∥W (s,p)

0 (Ω))
+∥vε∥L2(Ω)≤C(ε). By using the definition of the fractional capac-

ity of ]t0, t1[×Uε with u(t,x) = vε(x) we obtain that cap(s,p)(]t0, t1[×Uε)≤C(ε);
then, as ε goes to zero, we finally obtain that cap(]t0, t1[×B) = 0.

(⇐) Suppose that cap(s,p)(]t0, t1[×B) = 0, hence there exists an open set Aε

such that (]t0, t1[×B) ⊂ Aε and cap(s,p)(Aε) < ε . Now, we choose t ′0, t
′
1 such

that t0 < t ′0 < t ′1 < t1, then [t ′0, t
′
1]×{x}, with x ∈ B, is a compact subset of Aε ;

hence, there exists an open subset Uε ⊂ Ω such that ]t ′0, t
′
1[×{x} ⊂]t ′0, t

′
1[×Uε ⊂

Aε , which implies that B ⊂ U := Ux∈BUx ⊂ Ω and ]t ′0, t
′
1[×U ⊂ Aε ; we deduce

that cap(s,p)(]t ′0, t
′
1[×U) ≤ cap(s,p)(Aε) ≤ ε . Now, we choose uε ∈ W s,p such

that χ]t ′0,t
′
1[×U ≤ uε and ∥uε∥W s,p ≤ ε and vε =

1
t ′1−t ′0

∫ t ′1
t ′0

uεdt, it is clear that vε ∈
W s,p

0 (Ω), χU ≤ vε a.e. in Ω and ∥vε∥W s,p
0 (Ω) ≤ C(ε), which implies, by the

arbitrariness of ε , that cape
(s,p)(B) = 0.

Remark 3.4. Thanks to the result we derive that measures of Ms,p
0 (Q) (which

does not depend on time) can actually be identified with a measure in Ms,p
0 (Ω).

So, if B is a Borel set in Ω of zero elliptic (s, p)-capacity; then, thanks to Lemma
3.3, we deduce that cap(s,p)(B× (0,T )) = 0 and so µ(B× (0,T )) = 0; and

0 = µ(B× (0,T )) = T ν(B) (43)

where ν ∈Ms,p
0 (Ω), and so ν(B) = 0, thus µ ∈Ms,p

0 (Ω). Hence, in our case
we can always identify µ and ν .

Now, following [1, 5, 64] and for p > 2− s
N , we have u is bounded in the

Marcinkiewicz space Mp−1+ ps
N and |∇u| is bounded in Marcinkiewicz space

Mp− N
N+s (if p < N), and u is bounded in the Marcinkiewicz space Mq(Q) for

every q < ∞ and |∇u| is bounded in the Marcinkiewicz space Mr(Q) for every
r < N (if p = N). On the other hand, if v is a solution of the elliptic problem
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(39), we have v ∈C([0,∞],L1(Ω)) and such a solution turns out to be an entropy
solution of the parabolic problem (1) with initial datum u0(x) = v(x) since∫

Ω

Θk(v−ϕ)(T )dx−
∫

Ω

Θk(v−ϕ)(0)dx

=
∫

Q

d
dt

Θk(v−ϕ)dxdt =
∫ T

0
⟨(v−ϕ)t ,Tk(v−ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt

=−
∫ T

0
⟨ϕt ,Tk(v−ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt

(44)

that can be canceled out with the analogous term in (38) getting the right for-
mulation (41) for v.

Now, let us introduce the notion of entropy sub- and super-solutions needed
in the comparison principle result and in the proof of the asymptotic behavior
result.

Definition 3.5. A function u(t,x) ∈C([0,∞],L1(Ω)) is an entropy sub-solution
of problem (1) if Tk(u) ∈ Lp(0,T ;X s,p

0 (Ω)) for every k > 0, and{
ut(t,x)+(−∆)s

pu(t,x)≥ µ in (0,∞)×Ω,

u(0,x) = u0(x)≥ u0(x) in Ω, u(t,x)≥ 0 on (0,∞)×∂Ω
(45)

On the other hand, u ∈ C(0,∞;L1(Ω)) is an entropy super-solution of problem
(1) if Tk(u) ∈ Lp(0,T ;X s,p

0 (Ω)) for every k > 0, and{
ut(t,x)+(−∆)s

pu(t,x)≤ µ in (0,∞)×Ω,

u(0,x) = u0(x)≤ u0(x) in Ω, u(t,x)≤ 0 on (0,∞)×∂Ω
(46)

where both (45) and (46) are understood in their entropy sense, i.e., u(t,x) sat-
isfies∫

Ω

Θk(u−ϕ)+(T )dx−
∫

Ω

Θk(u0 −ϕ(0))+dx+
∫ T

0
⟨ϕt ,Tk(u−ϕ)+⟩dt

+
1
2

∫ T

0

∫
D(Ω)

U(t,x,y)[Tk(u(t,x)−ϕ(t,x))−Tk(u(t,x)−ϕ(t,y))]dνdt

≥
∫

Q
Tk(u−ϕ)dµ

(47)

for every ϕ ∈C(0,T ;L1(Ω))∩Lp(0,T ;X s,p
0 (Ω))∩L∞(Q), ϕ ≥ 0 a.e. in Q such
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that ϕt ∈ Lp(0,T ;X−s,p′(Ω)). And u(t,x) satisfies∫
Ω

Θk(u−ϕ)−(T )dx−
∫

Ω

Θk(u0 −ϕ(0))−dx+
∫ T

0
⟨ϕt ,Tk(u−ϕ)−⟩dt

+
1
2

∫ T

0

∫
D(Ω)

U(t,x,y)[Tk(u(t,x)−ϕ(t,x))−Tk(u(t,x)−ϕ(t,y))]dνdt

≤
∫

Q
Tk(u−ϕ)dµ

(48)

for every ϕ ∈C(0,T ;L1(Ω))∩Lp(0,T ;X s,p
0 (Ω))∩L∞(Q), ϕ ≥ 0 a.e. in Q such

that ϕt ∈ Lp(0,T ;X−s,p′(Ω))

Now, we are able to state our comparison principle result.

Lemma 3.6. Let µ ∈Ms,p
0 (Ω), and let u and u be, respectively, the entropy sub-

and super-solutions of problems (1), and let u be the unique entropy solution of
the same problem. Then, for every t > 0

u(t)≤ u(t)≤ u(t) a.e. in Ω. (49)

Proof. See [1, Lemma 3.2].

Our main result is the following

Theorem 3.7. Let µ ∈Ms,p
0 (Ω) be independent of the time variable t, p> 2N+s

N+s ,
u0 ∈ L1(Ω) be a function, and let u(t,x) be the entropy solution of problem (1).
Then

lim
t→∞

u(t,x) = v(x) (50)

where v(x) is the entropy solution of the corresponding elliptic problem (39).

4. Proof of the main result

Now, we are able to prove our main result and we will prove it in few steps.

Proof of Theorem 3.7. Let us first suppose that v⊕ and v⊖ are, respectively,
the entropy solutions of the elliptic problems{

(−∆)s
pu = µ

+ in Ω,

v = 0 on ∂Ω,

{
(−∆)s

pv =−µ
− in Ω,

v = 0 on ∂Ω,

according to the comparison principle result [63], we have both

v⊖(x)≤ 0 ≤ v⊕(x) and v⊖(x)≤ v(x)≤ v⊕(x) ∀x ∈ Ω. (51)



ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR PARABOLIC PROBLEMS · · · 195

On the other hand, we prove that v⊕ and v⊖ are also entropy solutions of the
corresponding parabolic problems with themeselves as initial data.

Step.1 : A priori estimates (u0 = v⊕). Let un(t,x) be the entropy solution
of the fractional parabolic problem1{

(un)t(t,x)+(−∆)s
pun(x) = µ in (0,1)×Ω,

un(0,x) = u(n,x) in Ω, un(t,x) = 0 on Σ := (0,1)×∂Ω
(52)

with n ∈ N∪0 and u(0,x) = v⊕, since µ does not depend on time, un turns out
to be the time translation (of lenght n) of the solution u with initial datum v⊕.
Lemma 3.6 ensures that u(t,x) ≤ v⊕ for every (t,x) ∈ Q. So, by using again
the comparison principle result between the solution u(t + s,x) (with s > 0 a
positive parameter) with u0 = u(s,x) as initial datum and the solution u(t,x)
with u0 = v⊕ as initial datum, we have that

u(t + s,x)≤ u(t,x) a.e. in Ω, ∀s, t ≥ 0.

We recall that u ∈C∞((0,∞),L1(Ω)), then by [1, Lemma 2.19] we also have
un(t,x) ∈ L1(Ω)∫ T

0

∫
DΩ

|Tk(un(t,x)−Tk(un(t,y)))|pdxdt ≤Ck.
(53)

Hence, un is uniformly bounded in the Marcinkiewicz space Mp+1+ ps
N (Q) which

implies, since in particular p > 2N+s
N+s , that un is uniformly bounded in Lm(Q) for

every 1 ≤ m < p+ 1+ ps
N . We also have that |∇un| is equipped in Mγ(Q) with

γ = p− N
N+s which implies that, since p > 2N+s

N+s , |∇un| is uniformly bounded in
Ls(Q) with 1 ≤ s < p− N

N+s . Thus, there exist a function u ∈ Lq(0,T ;W s,q
0 (Ω))

for every q< p−1+ ps
N such that un converges to u weakly in Lq(0,T ;W s,q

0 (Ω)).
Observe that, obviously we have u = u a.e. in Q and also (un)t ∈ L1(Q) +
Lβ ′

(0,T ;W−s,β ′
(Ω)) uniformly with respect to n where β ′ = q

p−1 for every q <

p− 1+ ps
N , which imply by estimate (53), Aubin Simon type result an the fact

the function Tk(s) is bounded that
un → u in L1(Q),

Tk(un)⇀ Tk(u) weakly in Lp(0,1;W s,p
0 (Ω)),

Tk(un)→ Tk(u) strongly in Lp(Q),

∇un → ∇u a.e. in Q.

1In the following we will indicate the parabolic cylinder Q1 := (0,1)×Ω by Q and the bound-
ary Σ1 : (0,1)×Ω by Σ.
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To prove that we can pass to the limit in the entropy formulation∫
Ω

Θk(un −ϕ)dx−
∫

Ω

Θk(un(0,x)−ϕ(0))dx+
∫ T

0
⟨ϕt ,Tk(un −ϕ)⟩dt

+
∫ T

0
⟨(−∆)s

pun,Tk(un −ϕ)⟩dt ≤
∫ T

0

∫
Ω

Tk(un −ϕ)dµ

(54)

for every ϕ ∈ Lp(0,T ;X s,p
0 (Ω))∩L∞(Q)∩C([0,1];L1(Ω)) such that ϕt belongs

to Lp′(0,T ;X−s,p′(Ω)). Recalling that µ = f −div(G) with f ∈ L1(Ω) and G ∈
Lp′(Ω)N , Tk(un −ϕ) converges to Tk(u−ϕ) *-weakly in L∞(Q), and Tk(un −ϕ)
converges to Tk(u−ϕ) weakly in Lp(0,T ;X s,p

0 (Ω)) we get∫
Q

Tk(un −ϕ)dµ =
∫

Q
Tk(u−ϕ)dµ +ω(k).

On the other hand, using the a.e. convergence of the gradients and Fatou’s
lemma, we have∫ T

0
⟨(−∆)s

pun,Tk(un −ϕ)⟩

=
∫ T

0
⟨(−∆)s

pun − (−∆)s
pϕ,Tk(un −ϕ)⟩dt +

∫ T

0
⟨(−∆)s

pϕ,Tk(un −ϕ)⟩dt

≤ lim inf
n→∞

∫ T

0
⟨(−∆)s

pun − (−∆)s
pϕ,Tk(un −ϕ)⟩dt

=
∫ T

0
⟨(−∆)s

pϕ,Tk(u−ϕ)⟩dt +ω(n).

So, being u(t,x) is monotone nondecreasing in t and using (51), there exists a
function such that u(t,x) converges to w a.e. in Ω as t tends to infinity, and
satisfying

v(x)≤ w(x)≤ u(t,x)≤ v⊕(x),

which implies, by Dominated convergence theorem and the fact that w does not
depend on time, that

u(t,x)→ u in L1(Ω).

Our aim to check that u = v a.e. in Ω. To do that, it suffices to pass to the
limit in (54) (observe that u does not depend on time, i.e., u(t,x) = w(x) and
un(t,x) = u(t +n,x)). Thus,∫

Ω

Θk(un −ϕ)(1)dx−
∫

Ω

Θk(un(0,x)−ϕ(0,x))dx+
∫ T

0
⟨ϕt ,Tk(un −ϕ)⟩dt

= ω(n),
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which implies that u satisfies the entropy formulation for the elliptic problem
(39). In fact∫

Ω

Θk(un −ϕ)(1)dx−
∫

Ω

Θk(un(0,x)−ϕ(0,x))dx

=
∫

Ω

Θk(w(x)−ϕ(1))dx−
∫

Ω

Θk(w(x)−ϕ(0))dx+ω(n)

=
∫

Ω

∫ 1

0

d
dt

Θ(w(x)−ϕ)dtdx

=
∫ 1

0
⟨w(x)−ϕ)t ,Tk(w(x)−ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt.

Since Tk(un −ϕ) converges to Tk(u−ϕ) weakly in Lp(0,T ;X s,p
0 (Ω)), we have∫ 1

0
⟨ϕt ,Tk(un −ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt

= ω(n)+
∫ 1

0
⟨ϕt ,Tk(w−ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt

we deduce that (since w does not depend on time) that∫
Ω

(un −ϕ)(1)dx−
∫

Ω

Θk(un(0,x)−ϕ(0,x))dx+
∫ T

0
⟨ϕt ,Tk(un −ϕ)⟩dt

= ω(n)+
∫ 1

0
⟨wt ,Tk(w−ϕ)⟩X−s,p′ (Ω),X s,p

0 (Ω)dt = ω(n),

which implies that w(x) = v(x). Similarly, using the same arguments we can
prove that the solution of (1) with v⊖ as initial data converges to v in L1(Ω).
Hence, by Lemma 3.6, we conclude that the right holds to any solution u(t,x)
of (1) with u0 such that v⊖ ≤ u0 ≤ v⊕.

Step.2 : The case v⊖,τ ≤ u0 ≤ v⊕,τ with τ > 1. For any fixed τ > 1 and re-
calling that µ± can be decomposed as µ± = f±−div(G±) with f± ≥ 0 in L1(Ω)
and G± ∈ Lp′(Ω)N (see [19]) we readapt the idea of [66, 67] (see also [1]) to
prove that the result holds true for every initial data satisfying v⊖,τ ≤ u0 ≤ v⊕,τ

where v⊕,τ and v⊖,τ are solutions of the elliptic problems (39) with, respectively,

µ
⊕,τ =

{
τµ

+ if f+ = 0

τ f+− (div(G+) if f+ ̸= 0

and

µ
⊖,τ =

{
− τµ

− if f− = 0

− τ f−− (div(G−) if f− ̸= 0
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Step.3 : The case u0 ∈ L1(Ω) and µ ̸= 0. Step.2 ensures, if uτ with τ > 1
is the entropy solution of problem (1) with u0,τ(x) as initial data with, that

u0,τ =

{
min(u0,v⊕,τ) if u0 ≥ 0,

max(u0,v⊖,τ) if u0 < 0.

Then, uτ converges, as t tends to ∞, to v a.e. in Ω. On the other hand

Tk(uτ(t,x)) ⇀
t→∞

Tk(v) weakly in X s,p
0 (Ω), ∀k > 0.

Thus, by [67, Lemma 3.4], we have

u0,τ → u0 in L1(Ω) as τ tends to infinity.

So, by using the stability of the solution, we get

Tk(uτ(t,x)) →
τ→∞

Tk(u(t,x)) strongly in Lp(0,T ;X s,p
0 (Ω)).

Now, using the same calculations used in [79], to get the uniqueness of the
solutions applied to u and uτ we have∫

Ω

Θk(u−uτ)(t)dx ≤
∫

Ω

Θk(u0 −u0,τ)dx,

dividing by k and passing to the limit as k tends to zero, we obtain

∥u(t,x)−uτ(t,x)∥L1(Ω) ≤ ∥u0(x)−u0,τ(x)∥L1(Ω),

i.e.,

∥u(t,x)− v(x)∥L1(Ω) ≤ ∥v(t,x)− v(t,x)∥L1(Ω)+∥uτ(t,x)− v(x)∥L1(Ω),

it suffices to choose τ = τ large enough to get

∥u(t,x)−uτ(t,x)∥ ≤
ε

2
.

On the other hand, by Step.2, there exists t > 0 such that

∥uτ(t,x)− v(x)∥L1(Ω) ≤
ε

2
∀t > t,

we finally obtain that
uτ(t,x)→ v(x) in L1(Ω),

which concludes the proof of Theorem 3.7.
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[28] Cabré X. & Sola-Morales X.: Layer solutions in a half-space for boundary reac-
tions. Comm. Pure Appl. Math. 58 (2005), 1678-1732.

[29] Caffarelli L. & Silvestre L.: An extension problem related to the fractional Lapla-
cian. Comm. PDE 32 (2007). 1245-1260.

[30] Caffarelli L. & Silvestre L.: Regularity results for nonlocal equations by approxi-
mation. Arch. Ration. Mech. Anal. 200 (2011), no. 1, 59-88.

[31] Caffarelli L. & Vasseur A.: Drift diffusion equations with fractional diffusion and
the quasi- geostrophic equation. Ann. Math. (II) 171 (2010), 1903-1930.

[32] J. Carrillo, P. Wittbold, Uniqueness of Renormalized Solutions of Degener-
ate Elliptic-Parabolic Problems, Journal of Differential Equations, 156, 93–121



ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR PARABOLIC PROBLEMS · · · 201

(1999).
[33] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131-295 (1954)
[34] Chill, R., Warma, M.: Dirichlet and Neumann boundary conditions for the p-

Laplace operator: What is in between. Proc. Roy. Soc. Edinburgh Sect. A 142,
975-1002 (2012).

[35] Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Amer.
Math. Soc. 352, 4207-4236 (2000)

[36] Daners, D., Drábek, P.: A priori estimates for a class of quasi-linear elliptic equa-
tions. Trans. Amer. Math. Soc. 361, 6475-6500 (2009)

[37] G. Dal Maso, On the integral representation of certain local functionals, Ricerche
Mat., Vol. 22, 1983, pp. 85-113.)

[38] Dal Maso G. & Murat F. & Orsina L. & Prignet A.: Renormalized solutions of
elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (IV) 28 (1999), 741-808.

[39] Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart. Classics
in Mathematics. Springer-Berlin (1984)

[40] Di Castro A. & Kuusi T. & Palatucci G.: Local behavior of fractional p-
minimizers. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, Vol.
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