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SOME NEW ITERATIVE SCHEMES FOR SOLVING GENERAL
QUASI VARIATIONAL INEQUALITIES

M.A. NOOR - K.I. NOOR

Several new classes of general quasi variational inequalities involv-
ing two arbitrary operators are introduced and considered in this paper.
Some important cases are discussed, which can be obtained by choosing
suitable and appropriate choice of the operators. It is shown that the im-
plicit obstacle boundary value can be studied via these quasi variational
inequalities. Projection technique is applied to establish the equivalent
between the general quasi variational inequalities and fixed point prob-
lems. This alternative formulation is used to discuss the uniqueness of the
solution as well as to propose a wide class of proximal point algorithms.
Convergence criteria of the proposed methods is considered. Asymptotic
stability of the solution is studied using the first order dynamical system
associated with variational inequalities. Second order dynamical systems
associated with general quasi variational inequalities are applied to sug-
gest some inertial type methods. Some special cases are discussed as
applications of the main results. Several open problems are indicated for
future research work.

1. Introduction

Stampacchia [70] proved that the minimum of a differentiable convex function
associated with obstacle problem in potential problems can be characterized by
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an inequality, which is called the variational inequality. Motivated and inspired
by these facts, Lions and Stampacchia [27] considered and studied the varia-
tional inequalities. They also mentioned that the Riesz-Frechet representation
theorem and Lax-Milgram lemma are special cases of the variational inequali-
ties. Variational inequality theory can be viewed as a novel extension and gen-
eralization of the variational principles, the origin of which can be traced back
to Euler, Lagrange, Newton and Bernoulli’s brothers. By variational principles,
we mean maximum and minimum problems arising in game theory, mechanics,
geometrical optics, general relativity theory, economics, transportation, differ-
ential geometry and related areas. In fact, the history of variational principles
comprises of the following distinct stages: The basic search of solutions of vari-
ational problems, led through the work of Euler, Lagrange, Legendre, Jacobi
and many others, to develop along the lines of differential and integral equa-
tions as well as functional analysis. The Hamiltonian-Jacobi theory represents
a general framework for the mathematical description of the propagation of ac-
tions in nature and optimal modeling of control processes in daily life. Using
the ideas and techniques of Hamiltonian-Jacobi theory in mechanics, Cartan
introduced differential geometry and exterior calculus in the calculus of vari-
ations. Many basic equations of mathematical physics result from variational
problems. It is known that the gauge fields theories are a continuation of Ein-
stein’s concept of describing physical effects mathematically in terms of differ-
ential geometry. These theories play a fundamental role in the modern theory
of elementary particles and are right tool of building up a unified theory of ele-
mentary particles, which includes all kind of known interactions. For example,
the Weinberg-Salam theory unifies weak and electromagnetic interactions. It is
also known that the variational formulation of field theories allows for a degree
of unification absent their versions in terms of differential equations. It is amaz-
ing that a wide class of unrelated problems can be studied in the general and
unified framework of variational inequalities, which occur in various branches
of pure and applied sciences. For more details, see [1, 7, 9, 13, 15–20, 23–
25, 28–49, 51–56, 58, 59, 61–65, 67]. These methods have been extended and
modified in numerous ways for solving the quasi variational inclusions and their
variant forms., see [2,4,10,11, 23,24,29,38,40, 48,52, 53,55,56,57,70,76,77] and
the references there in. If the set involved in the variational inequality depends
upon the solution explicitly or implicity, then the variational inequality is called
the quasi-variational inequality, introduced by Bensoussan and Lions [10] in
the field of impulse control. Noor [39] proved that the quasi-variational in-
equalities are equivalent to the implicit fixed point problem using the projection
lemma(best approximation). This equivalent formulation played an important
role in studying the unique existence of the solution and developing numerical
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methods, dynamical systems, sensitivity analysis and other aspects of quasi-
variational inequalities. One of the most difficult and important problems in
quasi variational inequalities is the development of efficient numerical methods.
Several numerical methods have been developed for solving the variational in-
clusions and their variant forms. These methods have been extended and modi-
fied in numerous ways for solving the quasi variational inclusions and their vari-
ant forms. Noor [38–42, 46] suggested and analyzed several three-step forward-
backward splitting algorithms for solving variational inequalities and quasi vari-
ational inclusions by using the updating technique. These three-step methods
are also known as Noor’s iterations. It is noted that these forward-backward
splitting algorithms are similar to those of Glowinski et al. [20], which they
suggested by using the Lagrangian technique. Haubruge et al. [17] discussed
the convergence analysis and applications of the Glowinski-Le Tallec splitting
method. It is known that three-step schemes are versatile and efficient. These
three-step schemes are a natural generalization of the splitting methods for solv-
ing partial differential equations. For applications of the splitting techniques to
partial differential equations, see Ames [3] and the references therein. In recent
years, considerable interest has been shown in developing various extensions
and generalizations of Noor iterations, both for their own sake and for their ap-
plications. In passing, we point out that the tree-step iterative methods are also
known Noor iterations, which contain Mann (one step)iteration, Ishikawa (two-
step) iterations as special cases. It have shown the Noor orbit demonstrates that
the boundary of the fixed point region is similar to natural features such as bird
nests and certain types of peacock wing structures. This is demonstrated by
geometrical and numerical analysis of composite Julia sets and composite Man-
delbrot sets for the Noor iteration, see Negi et al. [32]. Recently, Noor iterations
[38–40] have been generalized and extended in various directions using innova-
tive ideas to explore their applications in fractal, chaos, images, signal recovery,
polynomiography, fixed point theory, compress programming, nonlinear equa-
tions, compressive sensing, solar energy optimizations and image in painting.
For novel applications, modifications and generalizations of the Noor iterations,
see [6–8, 22, 26, 50, 55, 58–60, 64, 67] and the references therein.

Variational inequalities represent the optimality conditions for the differen-
tiable convex functions on the convex sets in normed space. It is known that
the properties of the solutions of the variational inequalities may not hold, in
general, when the convex set is non-convex. In recent years, the concept of con-
vexity has been generalized in several directions, see, for example [11, 12, 42,
43, 68] and the references therein. A significant generalization of the convex set
is the introduction of the general (g-convex) convex set [38, 42, 49] and gen-
eral (g-convex) functions [42, 43]. We would like to emphasize that the general
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convex set and general convex functions may not be convex sets and convex
functions. Noor [45] had proved that the minimum of a differentiable general
convex function on the general convex set can be characterized by a class of
variational inequality, which is also called the general variational inequality.

Shi [68] considered the problem of solving the Wiener-Hopf equations the
using the fixed point formulation for solving the system of equations associated
with variational inequalities independently. Noor [39] proved that quasi vari-
ational inequalities are equivalent to the implicit Wiener-Hopf equations. This
technique has been used to study the existence of a solution as well as to develop
various iterative methods for solving the variational inequalities. The projected
dynamical systems associated with variational inequalities were considered by
Dupuis and Nagurney [19]. Consequently, equilibrium and nonlinear problems
arising in various branches in pure and applied sciences can now be studied in
the setting of dynamical systems. The novel feature of the projected dynamical
system is that the its set of stationary points corresponds to the set of the corre-
sponding set of the solutions of the variational inequality problem. This equiv-
alent formulation is useful in studying the asymptotic stability of the solution
of the variational inequality applying the Lyapunov theory of functional differ-
ential equations. This dynamical system is a first order initial value problem.
Discretizing the dynamical system and using the finite difference idea, Noor et.
al. [54] have been shown that the dynamical system can be used to suggest some
implicit iterative method for solving quasi variational inequalities. For the appli-
cations and numerical methods applying the dynamical systems, see [19, 39, 45–
47, 51, 52, 54, 66, 67] and the references therein. Variational inequalities are
being used as a mathematical programming tool in modeling various equilibria
in economics, operations research, optimization,regional, machine learning and
transportation sciences. The behavior of such problems solution as a result of
changes in the problem data is always of concern.

Motivated and inspired by ongoing research in these dynamic and active
areas, we consider some new classes of general quasi variational inequalities in-
volving two arbitrary operators. For appropriate and suitable choice of the oper-
ators, convex set-valued set and the space, we can obtain the inverse quasi varia-
tional inequalities, quasi complementarity problems and variational inequalities
as special cases. Making use of the best approximation result, we show that
the general quasi variational inequalities are equivalent to the fixed point prob-
lems. We use this alternative formulation to discuss the unique existence of the
solution. Several multi step proximal point methods are proposed and inves-
tigated for solving the general quasi variational inequalities applying the fixed
point, Wiener-Hopf, auxiliary principle and dynamical system. These meth-
ods include the Mann (one-step) iteration, Ishikawa (two-step) iteration, Noor
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(three-step)iteration and forward-backward splitting methods for finding the ap-
proximate solution. Convergence criteria is investigated under suitable condi-
tions. We also considered the second order boundary value problem related
to the variational inequalities coupled with dynamical system. Using the finite
difference forward and backward interpolation, proximal point methods are pro-
posed. We have only investigated the theoretical aspect of the iterative methods.
Developments of the numerical applicable methods need further research efforts
and can be considered an important open problems. Since the general quasi vari-
ational inequalities include the general variational inequalities, quasi variational
inequalities and complementarity problems as special cases, our result continue
to hold for these problems. It is expected the techniques and ideas of this paper
may be starting point for further research.

2. Formulations and basic facts

Let Ω be a nonempty closed set in a real Hilbert space H. We denote by ⟨·, ·⟩
and ∥ · ∥ be the inner product and norm, respectively.

First of all, we now show that the minimum of a differentiable general con-
vex function on a general convex set Ω in H can be characterized by the general
variational inequalities. For this purpose, we recall the following well known
concepts and results [10, 27, 42, 43].

Definition 2.1. A set Ωg is said to be a general convex set, if there exist a
function g : H −→ H such that

µ + t(g(ν)−µ) ∈ Ωg, ∀µ.ν ∈ Ωg, t ∈ [0,1].

Note that every convex set is a general convex set, but the converse is not
true. It is worth mentioning that the general convex (g-convex) set is different
than the E-convex set of Youness [77] and various general convex sets [14–
16]. For the applications of the general convex sets in information technology,
railway systems, computer aided design, digital vector optimization and com-
parison with other concepts, see Cristescu et al. [14–16]. If g = I, then the
general convex set Ωg is exactly the convex set Ω.

Definition 2.2. A function F : Ωg −→ H is said to be a general convex, if there
exists a function g such that

F(µ + t(g(ν)−µ))≤ (1− t)F(µ)+ tF(g(ν)), ∀µ,ν ∈ Ωg, t ∈ [0,1].

Clearly every convex function is a general convex, but the converse is not
true, see [48, 49].
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Lemma 2.3. Let F : Ωg −→H be a differentiable general convex function. Then
µ ∈ Ωg is the minimum of general convex function F on Ωg, if and only if,
µ ∈ Ωg satisfies the inequality

⟨F ′(µ),g(ν)−µ⟩ ≥ 0, ∀ ∈ Ωg, (1)

where F ′(µ) is the differential of F at µ ∈ Ωg.

Proof. Let µ ∈ Ωg be a minimum of a differentiable general convex function F
on Ωg. Then

F(µ)≤ F(g(ν)), ∀v ∈ Ωg. (2)

Since Ωg is a general convex set, so, for all µ,ν ∈Ωg, t ∈ [0,1],vt = µ+t(g(ν)−
µ) ∈ Ωg. Setting ν = vt in (2), we have

F(µ)≤ F(µ + t(g(ν)−µ)).

Dividing the above inequality by t and taking t −→ 0, we have

⟨F ′(µ),g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ωg,

which is the required result(1).
Conversely, let µ ∈ Ωg satisfy the inequality (1). Since F is a general convex
function, ∀µ,ν ∈ Ωg t ∈ [0,1], µ + t(g(ν)−µ) ∈ Ωg and

F(µ + t(g(ν)−µ))≤ (1− t)F(µ)+ tF(g(ν)),

which implies that

F(g(ν))−F(µ)≥ F(µ + t(g(ν)−µ))−F(µ)

t
.

Letting t −→ 0, and using (1), we have

F(g(ν)−F(µ)≥ ⟨F ′(µ),g(ν)−µ⟩ ≥ 0,

which implies that

F(µ)≤ F(g(ν)), ∀ ∈ Ωg

showing that µ ∈ Ωg is the minimum of F on Ωg in H.
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The inequality of the type (1) is called the general variational inequality. It
is known that the problem (1) may not arise as the optimality conditions of the
differentiable convex functions. This motivated us to consider a more general
problem of which the problem (1) is a special case. To be more precise, for
given operators T,g : H −→ H, consider the problem of finding µ ∈ Ω ⊆ H,
such that

⟨Tµ,g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ω, (3)

which is called the general variational inequality, introduced and studied by
Noor [38].

We now introduce the problem of general quasi variational inequality. Let
Ω ⊆ H−→ H be a set-valued mapping which, for any element µ ∈ H, associates
a convex-valued and closed set Ω(µ) ⊆ H. we consider the problem of finding
µ ∈ Ω(µ), such that

⟨T µ +µ −g(µ),g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ω(µ), (4)

which is called the general quasi variational inequality.

Special Cases

We now point out some very important and interesting problems, which can be
obtained as special cases of the problem (4).

(I). If g(µ) = µ, then problem (4) reduces to finding µ ∈ Ω(µ), such that

⟨T (g(µ)),g(ν)−g(µ)⟩ ≥ 0, ∀ν ∈ Ω(µ), (5)

is called the general quasi variational inequality.

(II). If T = I, the identity operator, then problem (5)reduces to finding µ ∈
Ω(µ) such that

⟨µ,g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ω(µ), (6)

This inequality is called the inverse quasi variational inequality.

(III). If g = I, then the problem (4) collapses to finding µ ∈ Ω(µ) such that

⟨T µ,ν −µ⟩ ≥ 0, ∀ν ∈ Ω(µ), (7)

which is called quasi variational inequality, introduced by Bensoussan
and Lions [7] in the impulse control theory. For the numerical analysis,
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sensitivity analysis, dynamical systems and other aspects of quasi varia-
tional inequalities and related optimization programming problems. see
[7, 14, 18, 19, 24, 31, 33, 36, 40, 41, 44–49, 53, 54, 62] and the references
therein.

(IV). If Ω∗(µ) = {µ ∈H : ⟨µ,g(ν)⟩ ≥ 0, ∀ν ∈ Ω(µ)} is a polar (dual) cone
of a convex-valued cone Ω(µ) in H, then problem (4) is equivalent to
finding µ ∈H, such that

g(µ) ∈ Ω(µ), T µ ∈ Ω
∗(µ) and ⟨T µ,g(µ)⟩= 0, (8)

which is known as the general quasi complementarity problems and ap-
pears to be a new one.

(V). For the polar cone Ω∗ = {µ ∈ H : ⟨µ,g(ν)⟩ ≥ 0,∀ν ∈ Ω}, the problem
(8) is equivalent to finding µ ∈H such that

g(µ) ∈ Ω, T µ ∈ Ω
∗ and ⟨T µ,g(µ)⟩= 0, (9)

is called the general complementarity problem. Obviously general quasi
complementarity problems include the general complementarity problem
nolinear, complementary problems and linear complementarity problems,
which were introduced and studied in Cottle et al. [13] and Noor [37, 40].
This inter relations among these problems have played a major role in
developing numerical results for these problems and their applications.

(VI). If Ω(µ) = Ω, where Ω is a convex set in H, then problem (4) reduces to
finding µ ∈ Ω such that

⟨T µ,g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ω, (10)

which is the general variational inequalities (3).

(VII). If Ω(µ) = Ω, then problem (5) reduces to finding µ ∈ Ω, such that

⟨T (g(µ)),g(ν)−g(µ)⟩ ≥ 0, ∀ν ∈ Ω, (11)

is called the general variational inequality.

(VIII). If g = I, then problem (11) reduces to finding µ ∈ Ω such that

⟨T µ,ν −µ⟩ ≥ 0, ∀ν ∈ Ω, (12)

is known as the variational inequality, which was introduced by Lions
and Stampacchia [23], For the recent applications, generalizations, exten-
sions, numerical results, dynamical systems, sensitivity and other aspects,
see [17–20, 23–25, 28–49, 51–56, 58, 59, 61–65, 67] and the references
therein.
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Remark 2.4. It is worth mentioning that for appropriate and suitable choices of
the operators T ,g, set-valued convex set Ω(µ) and the spaces, one can obtain
several classes of variational inequalities, complementarity problems and opti-
mization problems as special cases of the nonlinear quasi-variational inequali-
ties (4). This shows that the problem (4) is quite general and unifying one. It is
interesting problem to develop efficient and implementable numerical methods
for solving the general quasi-variational inequalities and their variants.

For the sake of completeness and to convey the main ideas, we include the
following example, which is mainly due to Noor and Noor [45, 46].

Example 2.5. [45, 46]. To convey an idea of the applications of the general
quasi variational inequalities, we consider the implicit second-order obstacle
boundary value problem of finding µ such that

−µ ′′ ≥ φ(x) on Ω1 = [a,b]
µ ≥M(µ) on Ω1 = [a,b]
[µ ′′+φ(x)][µ −M(µ)] = 0 on Ω1 = [a,b]
µ(a) = 0, µ(b) = 0.

 (13)

where φ(x,µ) is a continuous function and M(µ) is the cost (obstacle) function.
The prototype encountered is

M(µ) = η + inf
i
{µ

i}. (14)

In (14), η represents the switching cost. It is positive, when the unit is turned
on and equal to zero when the unit is turned off. The operator M provides the
coupling between the unknowns µ = (µ1,µ2, . . . ,µ i). We study the problem
(13) in the framework of quasi variational inequality approach. To do so, we
first define the set as

Ω(µ) = {ν : ν ∈H1
0(Ω1) : ν ≥M(µ), on Ω1},

which is a closed convex-valued set in H1
0(Ω), where H1

0(Ω) is a Sobolev
(Hilbert) space. One can easily show that the energy functional associated with
the problem (13) is

I[ν ] = −
∫ b

a

(
d2ν

dx2

)
νdx−2

∫ b

a
φ(x)νdx, ∀ν ∈ Ω(µ)

=
∫ b

a

(
dν

dx

)2

dx−2
∫ b

a
φ(x)νdx

= ⟨T ν ,ν⟩−2⟨φ(x),ν⟩, (15)
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where

⟨T µ,ν⟩ = −
∫ b

a

(
d2µ

dx2

)
νdx =

∫ b

a

dµ

dx
dν

dx
dx (16)

φ(ν) =
∫ b

a
φ(x)νdx.

It is clear that the operator T defined by (16) is linear, symmetric and positive.
Noor and Noor [50] have shown that the minimum of the functional I[ν ] defined
by (15) associated with the problem (13) on the closed convex-valued set Ω(µ)
can be characterized by the inequality of type

⟨T µ,ν −µ⟩ ≥ ⟨φ ,ν −µ⟩, ∀ν ∈ Ω(µ), (17)

which is exactly the quasi variational inequality (7).

We also need the following result, known as the projection Lemma(best
approximation), which plays a crucial part in establishing the equivalence be-
tween the general quasi variational inequalities and the fixed point problems.
This result is used in the analysing the convergence analysis of the projective
implicit and explicit methods for solving the variational inequalities and related
optimization problems.

Lemma 2.6. [36, 39] Let Ω(µ) be a closed and convex-valued set in H. Then,
for a given z ∈H, µ ∈ Ω(µ) satisfies the inequality

⟨µ − z,ν −µ⟩ ≥ 0, ∀ν ∈ Ω(µ), (18)

if and only if,
µ = ΠΩ(µ)(z),

where ΠΩ(µ) is implicit projection of H onto the closed convex-valued set Ω(µ).

It is well known that the implicit projection operator ΠΩ(µ) is not nonex-
pansive, but it is required to satisfy the following assumption, which plays an
important part in the derivation of the results..

Assumption 1.

∥ΠΩ(µ)ω −ΠΩ(ν)ω∥ ≤ η∥µ −ν∥,∀µ,ν ,ω ∈H, (19)

where η > 0 is a constant.
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Assumption 1 has been used to prove the existence of a solution of general
quasi variational inequalities as well as in analyzing convergence of the iterative
methods.
In many important applications, the convex-valued set Ω(µ) can be written as

Ω(µ) = m(µ)+Ω,

is known as the moving convex set,where m(µ) is a point-point mapping and Ω

is a convex set. In this case, we have

ΠΩ(µ)ω = Πm(µ)+Ω = m(µ)+ΠΩ[w−m(µ)], ∀µ,w ∈ Ω.

We note that, if m(µ) is a Lipschitz continuous mapping with constant γ > 0,
then

∥ΠΩ(µ)w−ΠΩ(ν)w∥ = ∥m(µ)−m(ν)+ΠΩ[w−m(µ)]−ΠΩ[w−m(ν)∥
≤ 2∥m(µ)−m(ν)∥ ≤ 2γ∥µ −ν∥, ∀µ,ν ,w ∈ Ω.

which shows that Assumption 1 holds with η = 2γ.

Definition 2.7. [20, 38] An operator T : H→H is said to be:

(i). Strongly monotone, if there exist a constant α > 0, such that

⟨T µ −T ν ,µ −ν⟩ ≥ α∥µ −ν∥2, ∀µ,ν ∈H.

(ii). Lipschitz continuous, if there exist a constant β > 0, such that

∥T µ −T ν∥ ≤ β∥µ −ν∥, ∀µ,ν ∈H.

(iii). Monotone, if

⟨T µ −T ν ,µ −ν⟩ ≥ 0, ∀µ,ν ∈H.

(iv). Pseudo monotone, if

⟨T µ,ν −µ⟩ ≥ 0 ⇒ ⟨T ν ,ν −µ⟩ ≥ 0, ∀µ,ν ∈H.

Remark 2.8. Every strongly monotone operator is a monotone operator and
monotone operator is a pseudo monotone operator, but the converse is not true.
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3. Projection Method

In this section, we use the fixed point formulation to suggest and analyze some
new implicit methods for solving the general quasi variational inequalities.

Using Lemma 2.6, one can show that the general quasi variational inequali-
ties are equivalent to the fixed point problems.

Lemma 3.1. [54] The function µ ∈ Ω(µ) is a solution of the general quasi
variational inequality (4), if and only if, µ ∈ Ω(µ) satisfies the relation

µ = ΠΩ(µ)[g(µ)−ρT µ], (20)

where ΠΩ(µ) is the projection operator and ρ > 0 is a constant.

Proof. Let µ ∈ Ω(µ) be the problem (4). Then

⟨ρT µ +µ −g(µ),h(ν)−µ⟩ ≥ 0, ∀ν ∈ Ωµ .

Using Lemma 2.6, we have

µ = ΠΩ(µ)[g(µ)−ρT µ],

the required result.

Lemma 3.1 implies that the general quasi variational inequality (4) is equiv-
alent to the fixed point problem (20). This equivalent fixed point formulation
(20) will play an important role in deriving the main results.

From the equation (20), we have

µ = ΠΩ(µ)[g(µ)−ρT µ].

We define the function F associated with (20) as

F(µ) = ΠΩ(µ)[g(µ)−ρT µ], (21)

To prove the unique existence of the solution of the problem (4), it is enough to
show that the map F defined by (21) has a fixed point.

Theorem 3.2. Let the operators T ,g be strongly monotone with constants
α > 0,σ > 0 and Lipschitz continuous with constants β > 0,ζ > 0, respectively.
If Assumption 1 holds and there exists a parameter ρ > 0, such that

|ρ − α

β 2 |<
√

α2 −β 2k(2− k)
β 2 , α > β

√
k(2− k), k < 1, (22)
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where

θ =
√

(1−2αρ +ρ2β 2)+ k

k =
√

1−2σ +ζ 2 +η .

then there exists a unique solution of the problem (4).

Proof. From Lemma 3.1, it follows that problems (20) and (4) are equivalent.
Thus it is enough to show that the map F(µ), defined by (21) has a fixed point.
For all ν ̸= µ ∈ Ω(µ), we have

∥F(µ)−F(ν)∥ = ΠΩ(µ)∥[g(µ)−ρT µ]−ΠΩ(ν)[g(ν)−ρT v]∥
= ∥ΠΩ(µ)[g(ν)−ρT ν ]−ΠΩ(ν)[g(ν)−ρT ν ]∥
+ ∥ΠΩ(ν)[g(ν)−ρT ν ]−ΠΩ(µ)[g(µ)−ρ(T µ]∥
≤ ∥µ −ν − (g(µ)−g(ν))∥+η∥ν −µ∥

+∥ν −µ −ρ(T ν −T µ)∥. (23)

Since the operators g,T are strongly monotone with constant σ > 0,α > 0 and
Lipschitz continuous with constant ζ > 0,β > 0, respectively, it follows that

∥µ −ν − (g(µ)−g(ν))∥2 ≤ ∥µ −ν ||2 −2⟨g(µ)−g(ν),µ −ν⟩+ζ
2∥g(µ)−g(ν)∥2

≤ (1−2σ +ζ
2)∥µ −ν∥2. (24)

and

∥µ −ν − (T µ −T ν)∥2 ≤ ∥µ −ν ||2 −2⟨T µ −T ν ,µ −ν⟩+ζ
2∥T µ −T ν∥2

≤ (1−2αρ +ρ
2
β

2)∥µ −ν∥2. (25)

From (49), (24)and (25), we have

||F(µ)−F(ν)|| ≤
{√

(1−2σ +ζ 2)+η +
√
(1−2αρ +ρ2β 2)

}
∥µ −ν∥

= θ∥µ −ν∥,

where

θ =
√

(1−2αρ +ρ2β 2)+ k (26)

k =
√

1−2σ +ζ 2 +η . (27)

From (22), it follows that θ < 1, which implies that the map F(u) defined by
(21) has a fixed point, which is the unique solution of (4).
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The fixed point formulation (20) is applied to propose and suggest the iter-
ative methods for solving the problem (4).

This alternative equivalent formulation (20) is used to suggest the following
iterative methods for solving the problem (4) using the updating technique of
the solution.

Algorithm 1. For a given µ0 ∈ H, compute the approximate solution {µn+1}
by the iterative schemes

yn = {ΠΩ(µn)[g(µn)−ρT µn]} (28)

wn = {ΠΩ(yn)[g(yn)−ρT yn]} (29)

µn+1 = {ΠΩ(wn)[(wn)−ρT wn]}. (30)

Algorithm 2 is a three step forward-backward splitting algorithm for solv-
ing general quasi variational inequality (4). This method is very much similar to
that of Glowinski et al. [20] for variational inequalities, which they suggested
by using the Lagrangian technique.

We now study the convergence analysis of Algorithm 2, which is the main
motivation of our next result.

Theorem 3.3. Let the operators T ,g satisfy all the assumptions of Theorem
3.2. If the condition (22) holds, then the approximate solution {un} obtained
from Algorithm 2 converges to the exact solution µ ∈ Ω(µ) of the general quasi
variational inequality (4) strongly in H.

Proof. From Theorem 3.2, we see that there exists a unique solution µ ∈
Ω(µ) of the general quasi variational inequalities (4). Let µ ∈ Ω(µ) be the
unique solution of (4). Then, using Lemma 3.1, we have

µ = {ΠΩ(µ)[g(µ)−ρT µ]} (31)

= {ΠΩ(µ)[g(µ)−ρT µ]} (32)

= {ΠΩ(µ)[g(µ)−ρT µ]}. (33)

From (30),(31) and Assumption (1), we have

∥µn+1 −µ∥ = ΠΩ((wn)[g(wn)−ρT wn]−Π(µ)[µ −ρT µ}∥
≤ ∥ΠΩ((wn)[wn −ρT wn]−ΠΩ(wn)[g(µn)−ρT µ}∥
+ ∥{Π(wn)[g(µn)−ρT µ]−ΠΩ(µ)[g(µ)−ρT µ}∥
≤ ∥g(wn)−g(µ)−ρ(T wn −T µ)||+η∥wn −µ∥
≤ ∥wn −µn − (g(wn)−g(µn))∥+∥wn −µn −ρ(T wn −T µ)∥
≤ θ∥wn −µ∥, (34)
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where θ is defined by (26).
In a similar way, from (28) and (32), we have

∥wn −µ∥ ≤ θ∥yn −µ − (g(yn)−g(µ))∥
+∥yn −µ −ρ(Tyn −T µ)∥+η∥yn −µ∥

≤ θ∥yn −µ∥, (35)

where θ is defined by (26).
From (28) and (33), we obtain

∥yn −µ∥ ≤ θ∥µn −µ∥. (36)

From (35) and (36), we obtain

∥wn −µ∥ ≤ θ∥µn −µ∥. (37)

Form the above we equations, have

∥µn+1 −µ∥ ≤ θ∥µn −µ∥.

From (22), it follows that θ < 1, Consequently the sequence {un} converges
strongly to µ . From (36), and (37), it follows that the sequences {yn} and {wn}
also converge to µ strongly in H. This completes the proof.

We now suggested and analyzed the three step scheme for solving the gen-
eral quasi variational inequality (4). These three step schemes also are called
the novel Noor iterations. For the applications of novel Noor iterations in signal
recovery, polynomiography, fixed point theory, compress programming, nonlin-
ear equations, compressive sensing and image in painting, see [3–6, 8, 22, 26,
55, 58, 59, 64] and the references therein.

Algorithm 2. For a given µ0 ∈ H, compute the approximate solution {µn+1}
by the iterative schemes

yn = (1− γn)µn + γnΠΩ(µn)[g(µn)−ρT µn]

wn = (1−βn)yn +βnΠΩ(yn)[g(yn)−ρT yn]

µn+1 = (1−αn)wn +αnΠΩ(wn)[g(wn)−ρT wn].

Convergence analysis of Algorithm 2 can be studied using the techniques as
developed in [7, 26, 55, 58]. For γn = 0, Algorithm 2 reduces to:

Algorithm 3. For a given µ0 ∈Ω(µ), compute {µn+1} by the iterative schemes

wn = (1−βn)µn +βnΠΩ(µn)[g(µn)−ρT µn]

µn+1 = (1−αn)µn +αnΠΩ(µn)[g(wn)−ρT wn],
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which is known as the Ishikawa iterative scheme for the problem (4).
Note that for γn = 0 and βn = 0, Algorithm 2 is called the Mann iterative
method, that is.

Algorithm 4. For a given µ0 ∈Ω(µ), compute {µn+1} by the iterative schemes

µn+1 = (1−βn)µn +βΠΩ(µn)[g(µn)−ρT µn].

We suggest another perturbed iterative scheme for solving the general quasi
variational inequality (4).

Algorithm 5. For a given µo ∈ H, compute the approximate solution {µn} by
the iterative schemes

yn = (1− γn)µn + γnΠΩ(µn)[g(µn)−ρT µn]+ γnhn

wn = (1−βn)yn +βnΠΩ(yn)[g(yn)−ρT yn]+βn fn

µn+1 = (1−αn)wn +αnΠΩ(wn)[g(wn)−ρT wn]+αnen,

where {en}, { fn}, and {hn} are the sequences of the elements of H in-
troduced to take into account possible inexact computations and ΠΩ(µn) is the
corresponding perturbed projection operator and the sequences {αn}, {βn} and
{γn} satisfy

0 ≤ αn,βn,γn ≤ 1; ∀n ≥ 0,
∞

∑
n=0

αn = ∞.

For γn = 0, we obtain the perturbed Ishikawa iterative method and for γn = 0
and βn = 0, we obtain the perturbed Mann iterative schemes for solving general
variational inequality (4).

Algorithm 6. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)[g(µn)−ρT µn], n = 0,1,2, ...

which is known as the projection method and has been studied extensively.

Algorithm 7. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)[g(µn)−ρT µn+1], n = 0,1,2, ...

which is known as the implicit projection method and is equivalent to the
following two-step method.

Algorithm 8. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)[g(µn)−ρT ωn], n = 0,1,2, ...
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We also propose the following iterative method.

Algorithm 9. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)[g(µn+1)−ρT µn+1], n = 0,1,2, ...

which is known as the modified projection method and is equivalent to the
iterative method.

Algorithm 10. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT un]

µn+1 = ΠΩ(ωn)[g(ωn)−ρT ωn], n = 0,1,2, ...

which is two-step predictor-corrector method for solving the problem (4).
We can rewrite the equation (20) as:

µ = ΠΩ(µ)

[
g
(

µ +µ

2

)
−ρT

]
. (38)

This fixed point formulation is used to suggest the following implicit method.

Algorithm 11. [56]. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative
scheme

µn+1 = ΠΩ(µn+1)

[
g
(

µn +µn+1

2

)
−ρT µn+1

]
. (39)

Applying the predictor-corrector technique, we suggest the following iner-
tial iterative method for solving the problem (4) .

Algorithm 12. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)

[
g
(

ωn +µn

2

)
−ρT ωn

]
.

From equation (20), we have

µ = ΠΩ(µ)

[
g(µ)−ρT

(
µ +µ

2

)]
. (40)

This fixed point formulation (40) is used to suggest the implicit method for
solving the problem (4) as:
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Algorithm 13. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)

[
g(µn)−ρT

(
µn +µn+1

2

)]
. (41)

We can use the predictor-corrector technique to rewrite Algorithm 13 as:

Algorithm 14. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn],

µn+1 = ΠΩ(ωn)

[
g(µn)−ρT

(
µn +ωn

2

)]
.

is known as the mid-point implicit method for solving the problem (4).
We again use the above fixed formulation to suggest the following implicit

iterative method.

Algorithm 15. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)

[
g(µn+1)−ρT

(
µn +µn+1

2

)]
. (42)

Using the predictor-corrector technique, Algorithm 15 can be written as:

Algorithm 16. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn],

µn+1 = ΠΩ(ωn)

[
g(ωn)−ρT

(
µn +ωn

2

)]
,

which appears to be new one.
It is obvious that the above Algorithms have been suggested using different

variant of the fixed point formulations (20). It is natural to combine these fixed
point formulation to suggest a hybrid implicit method for solving the problem
(4) and related optimization problems.
One can rewrite (20) as

µ = ΠΩ(µ)

[
g
(

µ +µ

2

)
−ρT

(
µ +µ

2

)]
. (43)

This equivalent fixed point formulation enables us to suggest the following
implicit method for solving the problem (4).
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Algorithm 17. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)

[
g
(

µn +µn+1

2

)
−ρT

(
µn +µn+1

2

)]
. (44)

To implement the implicit method, one uses the predictor-corrector tech-
nique. We use Algorithm 9 as the predictor and Algorithm 17 as corrector.
Thus, we obtain a new two-step method for solving the problem (4).

Algorithm 18. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)

[
g(

ωn +µn

2
)−ρT

(
ωn +µn

2

)]
,

which is a new predictor-corrector two-step method.
For a parameter ξ , one can rewrite the (20) as

µ = ΠΩ(u)[g
(
(1−ξ )µ +ξ µ)

)
−ρT µ].

This equivalent fixed point formulation enables to suggest the following inertial
method for solving the problem (4).

Algorithm 19. For a given µ0,µ1 ∈ Ω(µ), compute µn+1 by the iterative
scheme

µn+1 = ΠΩ(µn)[g
(
(1−ξ )µn +ξ µn−1

)
−ρT µn], n = 0,1,2, ....

It is noted that Algorithm 19 is equivalent to the following two-step method.

Algorithm 20. For a given µ0 ∈ Ω(µ), compute µn+1 by the inertial iterative
scheme

ωn = (1−ξ )un +ξ un−1

µn+1 = ΠΩ(µn)[g(ωn)−ρT µn].

Using this idea, we can suggest the following iterative methods for solving
general quasi variational inequalities.

Algorithm 21. For a given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

µn+1 = (1−αn)µn +ξn(un −un−1)+αnΠΩ(µn)[g(µn)−ρT µn], n = 0,1,2, ...
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which is called the inertial proximal point method and appears to be new one.
Here αn,ξn ≥ 0 are constants and term ξn(un − un−1) is called the inertial

term.

Algorithm 22. For a given u0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

yn = (1−ξ )un +ξ un−1

un+1 = ΠΩ(yn)[g(yn)−ρTyn)], n = 0,1,2, ....

We now suggest multi-step inertial methods for solving the general quasi
variational inequalities (4).

Algorithm 23. For given µ0,µ1 ∈ Ω(µ), compute µn+1 by the recurrence rela-
tion

ωn = µn −Θn (µn −µn−1)

yn = (1−βn)ωn +βnΠ(ωn)

[
g
(

ωn +µn

2

)
−ρT

(
ωn +µn

2

)]
,

µn+1 = (1−αn)yn +αnΠΩ(yn)

[
g
(

ωn +yn

2

)
−ρT

(
yn +ωn

2

)]
,

where βn,αn,Θn ∈ [0,1],∀n ≥ 1.

Algorithm 23 is a three-step modified inertial method for solving general
quasi variational inclusion(4).
Similarly a four-step inertial method for solving the general quasi variational
inequalities (4) is suggested.

Algorithm 24. For given µ0,µ1 ∈ Ω(µ), compute µn+1 by the recurrence rela-
tion

ωn = µn −Θn (µn −µn−1) ,

tn = (1− γn)ωn + γnΠ(ωn)

[
g
(

ωn +µn

2

)
−ρT

(
ωn +µn

2

)]
,

yn = (1−βn)tn +βΠΩ(µn)

[
g
(

tn +ωn

2

)
−ρT

(
tn +ωn

2

)]
,

µn+1 = (1−αn)yn +αnΠΩ(yn)

[
g
(

yn + tn
2

)
−ρT

(
yn + tn

2

)]
,

where αn,βn,γn,Θn ∈ [0,1], ∀n ≥ 1.

Using the technique of Noor et al. [38] and Jabeen et al [22], one can inves-
tigate the convergence analysis of these inertial projection methods.
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4. Wiener-Hopf Equations Technique

In this section, we discuss the Wiener-Hopf equations associated with the quasi
variational inequalities. It is worth mentioning that the Wiener-Hopf equations
associated with variational inequalities were introduced and studied by Shi [68].
Noor [42] proved that the quasi variational inequalities are equivalent to the im-
plicit Wiener-Hopf equations.

We now consider the problem of solving the Wiener-Hopf equations related
to the general quasi variational inequalities. Let T be an operator and RΩ(µ) =
I−ΠΩ(µ), where I is the identity operator and ΠΩ(µ) is the projection operator.
We consider the problem of finding z ∈H such that

T ΠΩ(µ)z+ρ
−1RΩ(µ)z = 0. (45)

The equations of the type (45) are called the implicit Wiener-Hopf equa-
tions. It have been shown that the implicit Wiener-Hopf equations play an im-
portant part in the developments of iterative methods, sensitivity analysis and
other aspects of the variational inequalities and related optimization problems.

Lemma 4.1. The element µ ∈ Ω(µ) is a solution of the quasi variational in-
equality (4), if and only if, z ∈H satisfies the resolvent equation (45), where

µ = ΠΩ(µ)z, (46)

z = g(µ)−ρT µ, (47)

where ρ > 0 is a constant.

From Lemma 4.1, it follows that the general quasi variational inequalities
(4) and the implicit Wiener-Hopf equations (45) are equivalent. This alternative
equivalent formulation has been used to suggest and analyze a wide class of
efficient and robust iterative methods for solving the strongly nonlinear quasi
variational inequalities and related optimization problems.
We use the Wiener-Hopf equations (45) to suggest some new iterative methods
for solving the nonlinear quasi variational inequalities. From (46) and (47),

z = g(ΠΩ(µ)z)−ρT g(ΠΩ(µ)z).

Thus, we have

g(µ) = ρT µ +g(µ)−ρT g(ΠΩ(µn)[g(µ)−ρT µ]).

implies that

ρT µ −ρT g(ΠΩ(µn)[g(µ)−ρT µ]) = 0.
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Consequently, for a constant αn > 0, we have

µ = (1−αn)µ +αn{ρT g(ΠΩ(µn))[g(µ)−ρT µ]−ρT µ}
= (1−αn)µ +αnΠΩ(µ){ρT ω −ρT µ}, (48)

where

ω = ΠΩ(µ)[g(µ)−ρT µ]. (49)

Using (48) and (49), we can suggest the following new predictor-corrector
method for solving the quasi variational inequalities.

Algorithm 25. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = (1−αn)µn +αnΠ(ωn)

{
ρT ωn −ρT µn

}
.

If αn = 1, then Algorithm 25 reduces to

Algorithm 26. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)[ρT ωn −ρT µn],

which appears to be a new one.
In a similar way, we can suggest and analyse the predictor-corrector inertial

method for solving the quasi variational inequalities (4), which only involve
only one projection.

Algorithm 27. For given u0,u1 ∈ Ω(µ), compute un+1 by the iterative scheme

ωn = µn −ξn(µn −µn−1)

µn+1 = (1−αn)µn +αnΠ(ωn)

{
ρT ωn −ρT ωn

}
One can study the convergence of the Algorithm 27 using the technique in

[45, 51, 55].

Remark 4.2. We have only given some glimpse of the technique of the Wiener-
Hopf equations for solving the quasi variational inequalities. One can explore
the applications of the Wiener-Hopf equations in developing efficient numerical
methods for variational inequalities and related nonlinear optimization prob-
lems.



NEW ITERATIVE FOR SOLVING GENERAL QUASI VARIATIONAL INEQUALITIES349

5. Auxiliary principle technique

There are several techniques such as projection, resolvent, descent methods for
solving the variational inequalities and their variant forms. None of these tech-
niques can be applied for suggesting the iterative methods for solving the sev-
eral nonlinear variational inequalities and equilibrium problems. To overcome
these drawbacks, one usually applies the auxiliary principle technique, which is
mainly due to Glowinski et al [20] as developed in [48, 51, 52, 56], to suggest
and analyze some proximal point methods for solving general quasi variational
inequalities (4). We apply the auxiliary principle technique involving an arbi-
trary operator for finding the approximate solution of the problem (4).

For a given µ ∈ Ω(µ) satisfying (4), find w ∈ Ω(µ) such that

⟨ρT (w+η(µ −w)),g(ν)−w⟩+ ⟨M(w)−M(µ),ν −w⟩ ≥ 0, ∀ν ∈ Ω(µ), (50)

where ρ > 0,η ∈ [0,1] are constants and M is an arbitrary operator. The in-
equality (78) is called the auxiliary general quasi variational inequality.
If w = µ, then w is a solution of (4). This simple observation enables us to
suggest the following iterative method for solving (4).

Algorithm 28. For a given µ0 ∈ Ω(µ), compute the approximate solution
µn+1 by the iterative scheme

⟨ρT (µn+1 +η(µn −µn+1)),g(ν)−µn+1⟩
+⟨M(µn+1)−M(µn),ν −µn+1⟩ ≥ 0, ∀ν ∈ Ω(µ). (51)

Algorithm 28 is called the hybrid proximal point algorithm for solving the
general quasi variational inequalities (4).

Special Cases

We now discuss some special cases are discussed.

(I). For η = 0, Algorithm 28 reduces to

Algorithm 29. For a given µ0 ∈Ω(µ), compute the approximate solution
µn+1 by the iterative scheme

⟨ρT µn+1,g(ν)−µn+1⟩+ ⟨M(µn+1)−M(µn),ν −µn+1⟩ ≥ 0,

∀ν ∈ Ω(µ), (52)

is called the implicit iterative methods for solving the problem (4).
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(II). If η = 1, then Algorithm 28 collapses to

Algorithm 30. For a given µ0 ∈Ω(µ), compute the approximate solution
µn+1 by the iterative scheme

⟨ρT µn,g(ν)−µn+1⟩+ ⟨M(µn+1)−M(µn),ν −µn+1⟩ ≥ 0, ∀ν ∈ Ω(µ),

is called the explicit iterative method.

(III). For η = 1
2 , Algorithm 28 becomes:

Algorithm 31. For a given µ0 ∈Ω(µ), compute the approximate solution
µn+1 by the iterative scheme〈

ρT
(

µn+1 +µn

2

)
,g(ν)−µn+1

〉
+ ⟨M(µn+1)−M(µn),v−µn+1⟩ ≥ 0,

∀ν ∈ Ω(µ),

is known as the mid-point proximal method for solving the problem (4).

For the convergence analysis of Algorithm 29, we need the following concepts.

Definition 5.1. An operator T is said to be pseudomontone with respect to the
operator g, if

⟨T µ,g(ν)−µ⟩ ≥ 0, ∀ν ∈ Ω(µ),

implies that

−⟨T v,g(µ)−ν⟩ ≥ 0, ∀ν ∈ Ω(µ).

Theorem 5.2. Let the operator T be a pseudo-monotone with respect to the
operator g. Let the approximate solution µn+1 obtained in Algorithm 29 con-
verges to the exact solution µ ∈ Ω(µ) of the problem (4). If the operator M is
strongly monotone with constant ξ ≥ 0 and Lipschitz continuous with constant
ζ ≥ 0, then

ξ∥µn+1 −µn∥ ≤ ζ∥µ −µn∥. (53)

Proof. Let µΩ(µ) be a solution of the problem (4). Then,

−⟨ρ(T v,µ −g(ν)⟩ ≥ 0, ∀ν ∈ Ω(µ), (54)

since the operator T is a pseudo-monotone with respect to the operator g.
Takin v = µn+1 in (54), we obtain

−⟨ρT µn+1,µ −g(µn+1)⟩ ≥ 0. (55)
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Setting v = µ in (79), we have

⟨ρT µn+1,µ −g(µn+1)⟩+ ⟨M(µn+1)−M(µn),µ −µn+1⟩ ≥ 0. (56)

Combining (56) and (55), we have

⟨M(µn+1)−M(µn),µ −µn+1⟩ ≥ −⟨ρT µn+1,µ −g(µn+1)⟩ ≥ 0. (57)

From the equation (57), we have

0 ≤ ⟨M(µn+1)−M(µn),µ −µn+1⟩
= ⟨M(µn+1)−M(µn),µ −µn +µn −un+1⟩
= ⟨M(µn+1)−M(µn),µ −µn⟩+ ⟨M(µn+1 −M(µn),µn −µn+1⟩,

which implies that

⟨M(µn+1 −M(µn),µn+1 −µn⟩ ≤ ⟨M(µn+1)−M(µn),µ −µn⟩.

Now using the strongly monotonicity with constant ξ > 0 and Lipschitz conti-
nuity with constant ζ of the operator M, we obtain

ξ∥µn+1 −µn∥2 ≤ ζ∥µn+1 −µn∥∥µn −µ∥.

Thus

ξ∥µn −µn+1∥ ≤ ζ∥µn −µ∥,

the required result (53).

Theorem 5.3. Let H be a finite dimensional space and all the assumptions of
Theorem 5.2 hold. Then the sequence {µn}

∞

0
given by Algorithm 29 converges

to the exact solution µ ∈ Ω(µ) of (4).

Proof. Let µ ∈Ω(µ) be a solution of (4). From (53), it follows that the sequence
{∥µ − µn∥} is nonincreasing and consequently {un} is bounded. Furthermore,
we have

ξ

∞

∑
n=0

∥µn+1 −µn∥ ≤ ζ∥µn −µ∥,

which implies that

lim
n→∞

∥µn+1 −µn∥= 0. (58)

Let µ̂ be the limit point of {µn}
∞

0
; whose subsequence {µn j}

∞

1
of {µn}

∞

0
con-

verges to µ̂ ∈ Ω(µ). Replacing wn by µn j in (79), taking the limit n j −→ ∞ and
using (58), we have

⟨ρT µ̂,g(ν)− µ̂⟩ ≥ 0, ∀ν ∈ Ω(µ),
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which implies that û solves the problem (4) and

∥µn+1 −µ∥ ≤ ∥µn −µ∥.

Thus, it follows from the above inequality that {µn}
∞

1
has exactly one limit point

û and
lim
n→∞

(µn) = µ̂,

which is the required result.

In recent years, some inertial type iterative methods have been applied to
find the approximate solutions of variational inequalities and related optimiza-
tions. We again apply the auxiliary approach to suggest some hybrid inertial
proximal point schemes for solving the general quasi variational inequalities.

For a given µ ∈ Ω(µ) satisfying (4), find w ∈ Ω(µ) such that

⟨ρT (w+η(µ −w)),g(ν)−w⟩
+⟨M(w)−M(µ)+α(µ −µ),ν −w⟩ ≥ 0, ∀ν ∈ Ω(µ), (59)

where ρ > 0,η ,α ∈ [0,1] are constants and M is a nonlinear operator.
Clearly w = µ, implies that w is a solution of (4). This simple observation
enables us to suggest the following iterative method for solving (4).

Algorithm 32. For a given µ0,µ1 ∈ Ω(µ), compute the approximate solution
µn+1 by the iterative scheme

⟨ρT (µn+1 +η(µn −µn+1)),g(ν)−µn+1⟩
+⟨M(µn+1)−M(µn)+α(µn −µn−1),ν −µn+1⟩ ≥ 0, ∀ν ∈ Ω(µ)

Algorithm 32 is called the hybrid proximal point algorithm for solving the
general quasi variational inequalities (4). For α = 0, Algorithm 32 is exactly
Algorithm 28. Using the technique and ideas of Theorem 5.2 and Theorem 5.3,
one can analyze the convergence of Algorithm 32 and its special cases.
For M = I, the identity operator, Algorithm 32 reduces to the following inertial
method for solving the problem (4).

Algorithm 33. For a given µ0,µ1 ∈ Ω(µ), compute the approximate solution
µn+1 by the iterative scheme

⟨ρT (µn+1 +η(µn −µn+1)),g(ν)−µn+1⟩
+⟨µn+1 −µn +α(µn −µn−1),ν −µn+1⟩ ≥ 0, ∀ν ∈ Ω(µ)

which is called the hybrid proximal point method.
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For different and suitable values of the parameters η ,α, operators and set-
valued convex sets, one can suggest and investigate several new and known
methods for solving the general quasi variational inequalities and related non-
convex programming problems. For the implementable numerical methods need
further research efforts.

6. Dynamical Systems Technique

In this section, we consider the dynamical systems technique for solving quasi
variational inequalities. The projected dynamical systems associated with varia-
tional inequalities were considered by Dupuis and Nagurney [19] . This dynam-
ical system is a first order initial value problem. This implies that the numerical
methods for solving initial value and boundary value can be used to develop nu-
merical methods for solving variational inequalities. Consequently, variational
inequalities, equilibrium and nonlinear problems arising in various branches in
pure and applied sciences can now be studied in the setting of dynamical sys-
tems. For the applications of dynamical systems, see [19, 52, 54, 66, 67]. We
consider some iterative methods for solving the general quasi variational in-
equalities. We investigate the convergence analysis of these new methods in-
volving only the monotonicity of the operators.

We now define the residue vector R(µ) by the relation

R(µ) = ΠΩ(µ)[g(µ)−ρT µ]−µ}. (60)

Invoking Lemma 3.1, one can easily conclude that µ ∈ H is a solution of the
problem(4), if and only if, µ ∈H is a zero of the equation

R(µ) = 0. (61)

We now consider a dynamical system associated with the general quasi vari-
ational inequalities (4). Using the equivalent formulation (3.1), we suggest a
class of projection dynamical systems as

dµ

dt
= λ{ΠΩ(µ)[g(µ)−ρT u]−µ}, µ(t0) = α, (62)

where λ is a parameter. The system of type (72) is called the projection dynam-
ical system associated with the problem (4). Here the right hand is related to the
projection and is discontinuous on the boundary. From the definition, it is clear
that the solution of the dynamical system always stays in H. This implies that
the qualitative results such as the existence, uniqueness and continuous depen-
dence of the solution of (4) can be studied.

We note that µ ∈ Ω(µ) is a solution of the general quasi variational inequal-
ity (4), if and only if, µ ∈ Ω(µ) is an equilibrium point.
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Definition 6.1. [19] The dynamical system is said to converge to the solution
set S∗ of (72), if , irrespective of the initial point, the trajectory of the dynamical
system satisfies

lim
t→∞

dist(µ(t),S∗) = 0, (63)

where

dist(µ,S∗) = infν∈S∗∥µ −ν∥.

It is easy to see, if the set S∗ has a unique point µ∗, then (63) implies that

lim
t→∞

µ(t) = µ
∗.

If the dynamical system is still stable at µ∗ in the Lyapunov sense, then the
dynamical system is globally asymptotically stable at µ∗.

Definition 6.2. The dynamical system is said to be globally exponentially
stable with degree η at µ∗, if, irrespective of the initial point, the trajectory of
the system satisfies

∥µ(t)−µ
∗∥ ≤ u1∥µ(t0)−µ

∗∥exp(−η(t − t0)), ∀t ≥ t0,

where u1 and η are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally
asymptotically stable and the dynamical system converges arbitrarily fast.

Lemma 6.3. (Gronwall Lemma)[19] Let µ̂ and ν̂ be real-valued nonnegative
continuous functions with domain {t : t ≤ t0} and let α(t) = α0(|t − t0|), where
α0 is a monotone increasing function. If, for t ≥ t0,

µ̂ ≤ α(t)+
∫ t

t0
µ̂(s)ν̂(s)ds,

then

µ̂(s)≤ α(t)exp
{∫ t

t0
ν̂(s)ds

}
.

We now show that the trajectory of the solution of the projection dynamical
system (72) converges to the unique solution of the general quasi variational
inequality (4). The analysis is in the spirit of Noor and Noor [52] and Xia and
Wang [73, 74].
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Theorem 6.4. Let the operator T : H −→ H be strongly monotone with con-
stant α > 0 and Lipschitz continuous with constant β > 0. Let the operator g
be Lipschitz continuous with constant ζ > 0. If λ{(1+η + ζ +ρβ} < 1 and
Assumption 1 then, for each µ0 ∈ Ωµ, there exists a unique continuous solution
µ(t) of the dynamical system (72) with µ(t0) = µ0 over [t0,∞).

Proof. Let

G(µ) = ΠΩ(µ)[g(µ)−ρT µ]−µ}, ∀µ ∈ H.

where λ > 0 is a constant and G(µ) = dµ

dt , For ∀µ,ν ∈ H, and using (25), we
have

∥G(µ)−G(ν)∥
≤ λ{ΠΩ(µ)[g(µ)−ρT µ]−ΠΩ(ν)[g(ν)−ρT ν ]∥+∥µ −ν∥}
= λ{∥g(µ)−g(ν)∥+∥ΠΩ(µ)[µ −ρT µ]−ΠΩ(µ)[ν −ρT ν ]∥

+∥ΠΩ(µ)[ν −ρT ν ]−ΠΩ(ν)[ν −ρT ν ]∥}
≤ λ{∥µ −ν∥+η∥µ −ν∥+∥g(µ)−g(ν)−ρ(T µ −T ν)}
≤ λ{∥µ −ν∥+η∥µ −ν∥+{ζ +ρβ}∥µ −ν∥}
≤ λ{(1+η +ζ +ρβ}∥µ −ν∥.

where have used the fact that g is Lipschitz continuous with a constant ζ and
the operator T is strongly monotone with constant α > 0 and Lipschitz con-
tinuous with constant β > 0,respectively. This implies that the operator G(µ)
is a Lipschitz continuous with constant λ{(1+η + ζ +ρβ} < 1 and for each
µ ∈ Ω(µ), there exists a unique and continuous solution µ(t) of the dynam-
ical system (72), defined on an interval t0 ≤ t < T1 with the initial condition
µ(t0) = µ0. Let [t0,T1) be its maximal interval of existence. Then we have to
show that T1 = ∞. Consider , for any µ ∈ Ω(µ),

∥G(µ)∥ = ∥dµ

dt
∥

= λ∥[g(u)−ρT µ]−µ∥
≤ λ{∥ΠΩ(µ)[g(µ)−ρT µ]−ΠΩ(µ)[0]∥+∥ΠΩ(µ)[0]−µ∥}
≤ λ{δ∥{g(µ)−ρT µ∥+∥ΠΩ(µ)[g(µ)]−ΠΩ(µ)[0]∥

+∥ΠΩ(µ)[0]−µ∥}
≤ λ{(ρβ +2+ζ )∥µ∥+∥ΠΩ(µ)[0]∥}.

Then

∥µ(t)∥ ≤ ∥µ0∥+
∫ t

t0
∥µ(s)∥ds

≤ (∥µ0∥+ k1(t − t0))+ k2

∫ t

t0
∥µ(s)∥ds,
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where k1 = λ∥ΠΩ(µ)[0]∥ and k2 = ρβ +2+ζ . Hence by the Gronwall Lemma
6.3, we have

∥µ(t)∥ ≤ {∥u0∥+ k1(t − t0)}ek2(t−t0), t ∈ [t0,T1).

This shows that the solution is bounded on [t0,T1). So T1 = ∞.

Theorem 6.5. If the operator g :H−→H is strongly monotone with constant
σ > 0 and ζ > 0, then the dynamical system (72) converges globally exponen-
tially to the unique solution of the general quasi variational inequality (4).

Proof. Since the operator g is Lipschitz continuous, it follows from Theorem
6.4 that the dynamical system (72) has unique solution µ(t) over [t0,T1) for any
fixed µ0 ∈ H. Let µ(t) be a solution of the initial value problem (72). For a
given µ∗ ∈ H satisfying (4), consider the Lyapunov function

L(µ) = λ∥µ(t)−µ
∗∥2, u(t) ∈ Ω(µ). (64)

From (72) and (64), we have

dL
dt

= 2λ

〈
µ(t)−µ

∗,
dµ

dt

〉
= 2λ ⟨µ(t)−µ

∗,ΠΩ(µ)[g(µ(t))−ρT µ(t)]−µ(t)⟩
= 2λ ⟨µ(t)−µ

∗,ΠΩ(µ)[g(µ(t))−ρT µ(t)]−µ
∗+µ

∗−µ(t)⟩
= −2λ ⟨µ(t)−µ

∗,µ(t)−µ
∗⟩

+2λ ⟨µ(t)−µ
∗,ΠΩ(µ)[g(µ(t))−ρT µ(t)]−µ

∗⟩
≤ −2λ ⟨ρ(T µ(t)−T µ

∗),g(µ(t))−g(µ∗)⟩
+2λ ⟨µ(t)−µ

∗,ΠΩ(µ)[g(µ(t))−ρT µ(t)]

−ΠΩ(µ)[g(µ
∗(t))−ρT µ

∗(t)]⟩,
≤ −2λσ∥µ(t)−µ

∗∥2 +λ∥µ(t)−µ
∗∥2

+λ∥ΠΩ(µ)[g(µ(t))−ρT µ(t)]

−ΠΩ(µ)[g(µ
∗(t))−ρT µ

∗(t)]∥2 (65)

Using the Lipschitz continuity of the operators T ,g, we have

∥ΠΩ(µ)[g(µ)−ρT µ]−ΠΩ(µ)[g(µ
∗)−ρT µ

∗]∥
≤ δ∥g(µ)−g(µ∗)−ρ(T µ −T µ

∗)∥ ≤ δ (ζ +ρβ )∥µ −µ
∗∥.(66)

From (65) and (66), we have

d
dt
∥µ(t)−µ

∗∥ ≤ 2ξ λ∥µ(t)−µ
∗∥,
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where

ξ = (δ (ζ +ρβ )−1).

Thus, for λ =−λ1, where λ1 is a positive constant, we have

∥µ(t)−µ
∗∥ ≤ ∥µ(t0)−µ

∗∥e−ξ λ1(t−t0),

which shows that the trajectory of the solution of the dynamical system (72)
converges globally exponentially to the unique solution of the general quasi
variational inequality (4).

We use the projection dynamical system (72) to suggest some iterative for
solving the quasi variational inequalities (4). These methods can be viewed
in the sense of Korpelevich [25] and Noor et al [52, 54] involving the double
projections.

For simplicity, we take λ = 1. Thus the dynamical system (72) becomes

dµ

dt
+µ = ΠΩ(µ)

[
g(µ)−ρT u

]
, µ(t0) = α. (67)

The forward difference scheme is used to construct the implicit iterative method.
Discretizing (6), we have

µn+1 −µn

h
+µn = ΠΩ(µn)[g(µn)−ρT µn+1], (68)

where h is the step size.
Now, we can suggest the following implicit iterative method for solving the

general quasi variational inequality (4).

Algorithm 34. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)

[
g(µn)−ρT µn+1 −

µn+1 −µn

h

]
,

This is an implicit method. Algorithm 34 is equivalent to the following
two-step method.

Algorithm 35. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)

[
g(µn)−ρT ωn −

ωn −µn

h

]
,
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Discretizing (6), we now suggest an other implicit iterative method for solv-
ing (4).

µn+1 −µn

h1
+µn = ΠΩ(g(µn+1))[g(µn+1)−ρT µn+1], (69)

where h1 is the step size.
This formulation enables us to suggest the two-step iterative method.

Algorithm 36. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = Πω(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(g(ωn

[
g(ωn)−ρT ωn −

ωn −µn

h1

]
.

Discretizing (6), we have

µn+1 −µn

h
=−µn +ΠΩ(µn+1)[g(µn+1)−ρT µn+1], (70)

where h is the step size.
For h = 1, this helps us to suggest the following implicit iterative method

for solving the problem (4).

Algorithm 37. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

ωn = ΠΩ(µn)[g(µn)−ρT µn]

µn+1 = ΠΩ(ωn)

[
g(ωn)−ρT ωn

]
.

Discretizing (6), we propose another implicit iterative method.

µn+1 −µn

h
+µn = ΠΩ(µn+1)[g(µn)−ρT µn+1],

where h is the step size.
For h = 1, we can suggest an implicit iterative method for solving the prob-

lem (4).

Algorithm 38. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn+1)[g(µn)−ρT µn+1].

Algorithm 38 is an implicit iterative method in the sense of Korpelevich.

From (6), we have

dµ

dt
+µ = ΠΩ((1−α)µ+αµ)[g((1−α)µ +αµ))−ρT ((1−α)µ +αµ)], (71)
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where α ∈ [0,1] is a constant.
Discretization (71) and taking h = 1, we have

µn+1 = ΠΩ((1−α)µn+αµn−1)

[
g((1−α)µn +αµn−1)−ρT ((1−α)µn +αµn−1)

]
,

which is an inertial type iterative method for solving the general quasi varia-
tional inequality (4). Using the predictor-corrector techniques, we have

Algorithm 39. For a given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative schemes

ωn = (1−α)µn +αµn−1

yn = ΠΩ(ωn)

[
g(ωn)−ρT ωn

]
µn+1 = ΠΩ(yn)

[
yn −ρ(T g(ωn)+T yn)

]
,

which is known as the three-step inertial iterative method.

Remark 6.6. For appropriate and suitable choice of the operators T ,g, convex
valued set, parameters and the spaces, one can suggest a wide class of implicit,
explicit and inertial type methods for solving general quasi variational inequali-
ties and related optimization problems. Using the techniques and ideas of Noor
et al [49], one can discuss the convergence analysis of the proposed methods. It
is an interesting problem to discuss the comparison of these proposed methods
with the recent iterative methods in [2, 4, 22, 23, 28, 46, 47, 51, 54–56, 76] and
the references therein.

We use this dynamical system to suggest and investigate some inertial proximal
methods for solving the general quasi variational inequalities (4). These inertial
implicit methods are constructed using the central finite difference schemes and
its variant forms.

To be more precise, we consider the problem of finding µ ∈ Ω(µ) such that

γ µ̈ + µ̇ +µ = ΠΩ(µ)[g(µ)−ρT (µ)], µ(a) = α,µ(b) = β , (72)

where γ ≥ 0, η ≥ 0 and ρ > 0 are constants. Problem (72) is called second
order dynamical system, which is a second boundary value problem.
We discretize the second-order dynamical systems (72) using central finite dif-
ference and backward difference schemes to have

γ
µn+1 −2µn +µn−1

h2 +η
µn −µn−1

h
+µn = ΠΩ(µn)[g(µn)−ρT (µn+1)], (73)

where h is the step size.

If γ = 1,h = 1, then, from equation( 73) we have
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Algorithm 40. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)[g(µn)−ρT (g(µn+1)], n = 0,1,2, . . . .

which is the extragradient method of Korpelevich [25] for solving the quasi
variational inequalities.

Algorithm 40 is an implicit method. To implement the implicit method, we
use the predictor-corrector technique to suggest the two-step inertial method.

Algorithm 41. For given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

yn = (1−θn)µn +θnµn−1

µn+1 = ΠΩ(µn)[g(µn)−ρT (yn)], n = 0,1,2, . . .

where θn ∈ [0.1] is a constant.

Similarly, we suggest the following iterative method.

Algorithm 42. For given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)[g(µn+1)−ρT (µn+1)], n = 0,1,2, . . .

which is known as the double projection method, introduced and studied by
Noor [42, 45] and can be written as

Algorithm 43. For a given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

yn = (1−θn)µn +θ µn−1

µn+1 = ΠΩ(µn)[g(yn)−ρT (yn)], n = 0,1,2, . . .

which is called the two-step inertial iterative Noor method.
Problem (72) can be rewritten as

γ µ̈ + µ̇ +µ = ΠΩ((1−θn)µ+θnu))[g(1−θn)µ +θnµ)−ρT ((1−θn)µ +θnµ)],

µ(a) = α,µ(b) = β , (74)

where γ > 0,θn ≥ 0 and ρ > 0 are constants.

Discretising the system (74), we have

γ
µn+1 −2µn +µn−1

h2 +
µn −µn−1

h
+µn

= ΠΩ((1−θn)µn+θnµn−1)[g(1−θn)µn +θnµn−1)−ρT ((1−θn)µn +θnµn−1)]

from which, for γ = 0, h = 1, we have
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Algorithm 44. For a given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ((1−θn)µ+θnµ))[g(1−θn)un +θnµn−1)−ρT ((1−θn)µn +θnµn−1)]

or equivalently

Algorithm 45. For a given µ0,µ1 ∈Ω(µ) compute µn+1 by the iterative scheme

yn = (1−θn)µn +θnµn−1

µn+1 = ΠΩ(yn)[g(yn)−ρT yn]

which is called the new inertial iterative method for solving the general quasi
variational inequality.

We discretize the second-order dynamical systems (72) using central finite
difference and backward difference schemes to have

γ
µn+1 −2µn +µn−1

h2 +
µn −µn−1

h
+µn+1 = ΠΩ(µn)[g(µn)−ρT (µn+1)],

where h is the step size.
Using this discrete form, we can suggest the following an iterative method

for solving the general quasi variational inequalities (4).

Algorithm 46. For given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)

[
g(µn)−ρT (µn+1)−

γµn+1 − (2γ −h)µn +(γ −h)µn−1

h2

]
.

Algorithm 46 is called the inertial proximal method for solving the quasi
variational inequalities and related optimization problems. This is a new pro-
posed method.
We note that, for γ = 0, Algorithm 46 reduces to the following iterative method
for solving quasi variational inequalities (4).

Algorithm 47. For given µ0,µ1 ∈Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)

[
g(µn)−ρT µn+1 −

µn −µn−1

h

]
, n = 0,1,2, . . . .

We again discretize the second-order dynamical systems (72) using central
difference scheme and forward difference scheme to suggest the following iner-
tial proximal method for solving (4).

Algorithm 48. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)

[
g(µn+1)−ρT (µn+1)−

(γ +h)µn+1 − (2γ +h)µn + γµn−1

h2

]
.
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Algorithm 48 is quite different from other inertial proximal methods for
solving the quasi variational inequalities.
If γ = 0, then Algorithm 48 collapses to:

Algorithm 49. For a given µ0 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = ΠΩ(µn)

[
g(µn+1)−ρT (µn+1)−

µn+1 −µn

h

]
.

Algorithm 48 is an proximal method for solving the quasi variational in-
equalities. Applying the technique and ideas of Noor and Noor [52], one can
study the convergence criteria of these Algorithms with some modifications and
adjustment. Such type of proximal methods were suggested by Noor[45] using
the fixed point problems. In brief, by suitable descritization of the second-order
dynamical systems (72), one can construct a wide class of explicit and implicit
method for solving quasi variational inequalities and their variant forms.

Remark 6.7. We would like to emphasize that the proposed Algorithms 4.1-4.3
and Algorithms 6.1-.6.3 are new ones and can be viewed as significant exten-
sions of the results obtained in [2,4,19, 23,24, 29, 52,53,57,70,77]. It is an
interesting problem to compare these methods numerically and explore their
applications in various branches of pure and applied sciences.

7. Applications and future research

In this section, we show that the general quasi variational inequality (4) re-
duces to the extended general variational inequalities, which were introduced
and studied by Noor [48].

In many applications, the convex-valued set Ω(µ) is of the form:

Ω(µ) = m(µ)+Ω, (75)

where Ω is a convex set and m is a point-to-point mapping.
Let µ ∈ Ω(µ) be a solution of the problem (4). Then, from Lemma 3.1, it

follows that µ ∈ Ω(µ) such that

µ = ΠΩ(µ)

[
g(µ)−ρT µ

]
. (76)

Combining (75) and (76), we obtain

µ = ΠΩ(η(µ)+Ω)

[
g(µ)−ρT µ

]
= m(µ)+ΠΩ

[
g(µ)−m(µ)−ρT u

]
.
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Consequently, we obtain

µ −m(µ) = ΠΩ

[
g(µ)−m(µ)−ρT u

]
,

that is,

G(µ) = ΠΩ

[
H(µ)−ρT u

]
,

where G(µ) = µ −m(µ) and H(µ) = g(µ)−m(µ).

Thus the problem (4) is equivalent to finding µ ∈ Ω, such that

⟨T µ +G(µ)−H(µ),H(ν)−G(µ)⟩ ≥ 0, ∀ν ∈ Ω. (77)

The inequality of the type (77) is called the extended general variational in-
equality, investigated by Noor [48]. Our results in this paper continue to hold
for extended general quasi variational inequalities (77) with suitable modifica-
tions and adjustment.

We would like to mention that some of the results obtained and presented
in this paper can be extended for more multi-valent general quasi variational
inequalities. To be more precise, let C(H) be a family of nonempty compact
subsets of H. Let T,V : H −→C(H) be the multi-valued operators. For a given
nonlinear bifunction N(., .) : H×H −→H and operators g,h : H −→H, consider
the problem of finding
u ∈ Ω(µ),w ∈ T (µ),y ∈V (µ) such that

⟨N(w,y)+h(µ)−g(ν),g(ν)−h(µ)⟩ ≥ 0, ∀ν ∈ Ω(µ), (78)

which is called the multivalued general quasi variational inequality. We would
like to mention that one can obtain various classes of general quasi variational
inequalities for appropriate and suitable choices of the bifunction N(., .), the
operators g,h, and convex-valued set Ω(µ).

Note that, if N(w,y) = T µ, h = I, then the problem (78) is equivalent to
find µ ∈ Ω(µ), such that

⟨Tu+µ −g(µ),g(ν)−u)⟩ ≥ 0 ∀ν ∈ Ω(µ),

which is also called the general quasi variational inequality and is different than
the problem (4).

Using Lemma 3.1, one can prove that the problem (78) is equivalent to
finding u ∈ Ω(u) such that

h(u) = ΠΩ(µ)[g(µ)−ρN(w,y)] (79)
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which can be written as

µ = µ −h(µ)+ΠΩ(µ)[g(µ)−ρN(w,y)].

Thus one can consider the mapping F associated with the problem (78) as

F(µ) = µ −h(µ)+ΠΩ(u)[g(µ)−ρN(w,y)],

which can be used to discuss the uniqueness of the solution of the problem (78).
From (78) and (79, it follows that the multivalued general quasi variational in-
equalities are equivalent to the fixed problems. Consequently, all results ob-
tained for the problem (4) continue to hold for the problem (78) with suitable
modifications and adjustments. The development of efficient implementable nu-
merical methods for solving the multivalued general quasi variational inequal-
ities and non optimization problems requires further efforts. Despite the re-
search activates, very few results are available. The development of efficient
implementable numerical methods for solving the general quasi variational in-
equalities and non optimizations problems requires further efforts.

Conclusion.

In this paper, we have introduced and studied some new classes of general quasi
variational inequalities for two arbitrary operators. By inter changing the roles
of these operators, one can obtain a number of new classes of quasi variational
inequalities and complementarity problems. It is shown that implicit obstacle
second order boundary value problems can be studied via the general quasi vari-
ational inequalities. Applying the projection technique, we have established the
equivalence between the fixed point problems and quasi variational inequalities.
This equivalence formulation is used to study the unique existence of solution.
Several hybrid multi-step iterative methods for solving the quasi variational in-
equalities are suggested applying the fixed point, the Wiener-Hopf equations
and dynamical systems. We have also consider the second order boundary
value problems associated with the general quasi variational inequalities. These
new methods include extragradient method, modified double projection meth-
ods and inertial type methods. Convergence analysis of the proposed method is
discussed under suitable weaker conditions. It is an open problem to compare
these proposed methods with other methods. We have shown that the general
quasi variational inequalities are equivalent to the extended general variational
inequalities with suitable conditions of the convex-valued set. Applications of
the fuzzy set theory, stochastic, quantum calculus, fractal, fractional and ran-
dom can be found in many branches of mathematical and engineering sciences
including artificial intelligence, computer science, control engineering, manage-
ment science, operations research and variational inequalities. One may explore
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these aspects of the general quasi variational inequality and its variant forms in
these areas. Using the ideas and techniques of this paper, one can explore the
applications of these methods for solving the complementarity problems and
related mathematical programming problems.
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