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ALMOST AUTOMORPHIC SOLUTIONS FOR
LOTKA-VOLTERRA SYSTEMS WITH DIFFUSION AND

TIME-DEPENDENT PARAMETERS

M.E. KPOUMIÉ - A.H.G. NSANGOU - A. ZOUINE

In this work we study the response for a class of Lotka-Volterra prey-
predator systems with diffusion and time-dependent parameters to a large
class of oscillatory type functions, namely the pseudo almost automorphic
type oscillations. To this end, using the exponential dichotomy approach
and a fixed point argument, we propose to analyze a class of nonau-
tonomous semilinear abstract evolution equation of the form (⋆)z′(h) =
A(h)z(h) + g(h,z(h)), h ∈ R, where A(h), h ∈ R is a family of closed
linear operators acting in a Banach space T , the nonlinear term g is µ-
pseudo-almost automorphic in a weak sense (Stepanov sense) with re-
spect to h and Lipschitzian in T with respect to the second variable.
Therefore, according to the results obtained for equation (⋆) we establish
the existence and uniqueness of µ-pseudo-almost automorphic solutions
in the strong sense (Bohr sense) to a nonautonomous system of reaction-
diffusion equations describing a Lotka-Volterra prey-predator model with
diffusion and time-dependent parameters in a generalized almost auto-
morphic environment.
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1. Introduction

As part of this work, we study the existence and uniqueness of a µ-pseudo-
almost automorphic solutions for the following semilinear evolution equation
:

z′(h) = A(h)z(h)+g(h,z(h)), h ∈ R, (1)

where (A(h),D(A(h))), h ∈ R is a family of closed linear operators that gener-
ates a strongly continuous evolution family (U(h,s))h≥s on a Banach space T .
The nonlinearity g : R×T → T satisfies some suitable conditions with respect to
the second variable and it’s µ-pseudo almost automorphic in Stepanov sense in
h for each z ∈ T . (U(h,s))h≥s is an exponential dichotomy on R. The topics in
the qualitative theory of ordinary or functional differential equations concerning
the existence and uniqueness of almost periodic, almost automorphic, pseudo-
almost periodic and pseudo-almost automorphic solutions is one of the most
attractive in the recent year due to thier applications in the physical sciences,
mathematical biology and control theory. Almost automorphic functions are a
natural generalization of almost-periodic functions in the sense of Bohr [7] and
they was first introduced in the literature by S. Bochner [8]. For more details
about almost automorphic functions and their applications, we refer to the books
by N’Guérékata [22], Diangana [14], and the work done by K. Khalil et al in
[16] where the authors gave an important overview about almost automorphic
functions and their applications to differential equations. In [18], K. Ezzinbi
and G.M. N’Guérékata studied the existence of almost automorphic solutions
for partial and neutral functional differential equations. They proved that the
existence of a bounded solution in R+ is enough to get an almost-automorphic
solution. Other important contributions to the theory of almost automorphic
functions include those from Zaki [26], N’Guérékata [22], and Shen and Yi
[24].

The concept of pseudo-almost automorphic which was introduced in the lit-
erature a few years ago by Xiao et al. [25], comes from the perturbation of an
almost automorphic fonction by an ergodic term. Since then, such a powerful
concept has generated several developments and extensions, see for instance
[13]. A little earlier, K. Ezzinbi et al. in [11] present µ−pseudo-almost auto-
morphic functions which is a new concept of pseudo-almost automorphic func-
tions. Later on, K. Khalil et al in [2] studied Eq (1.1), in the parabolic context,
that is when (A,D(A)) generates an analytic semigroup (W(h))h≥0 on a Banach
space T which has an exponential dichotomy on R and g is Stepanov almost
periodic of order 1≤ p < ∞ and Lipschitzian with respect to z. They proved the
existence and uniqueness of almost periodic solutions for equation (1.1). After
in [3] K. Khalil et al proved the existence and uniqueness of µ-pseudo-almost
automorphic solutions Eq. (1.1) by using exponential dichotomy assuming that
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g is just µ-pseudo-almost automorphic in Stepanov sense in h and Lipshitzian
with respect to the second variable. Recently, Alan Chàvez et al. [4] introduced
a new concept of almost automorphic functions in a compact space called Com-
pact Almost Automorphic Solutions to Poisson’s and Heat Equations.

Our purpose of this paper is to prove the existence of µ−pseudo-almost
automorphic solutions of Eq. 1. Our results is based on the the exponential
dichotomy approach and a fixed point argument. The organization of this work
is as follows. In Section 2, we shall give some definitions and theorems of
pseudo-almost automorphic functions. In Section 3, we shall study the existence
and uniqueness of µ-pseudo-almost automorphic solutions of Eq. 1. In Section
4, to illustrate our abstract results, we shall give an application.

2. Preliminaries

To prove our main results, some lemmas and definitions will be presented in this
section.

Let A(h) : D(A(h))⊂ T −→ T , h ∈ R be a family of closed linear operators
in a Banach space T . In general A(h), h ∈ R are time-dependent suitable dif-
ferential operators that corresponding to the following nonautonomous Cauchy
problem: {

z′(h) = A(h)z(h), h≥ s,
z(s) = x ∈ T.

A solution (mild) for equation 2 can be expressed as z(h) =U(h,s)x where
(U(h,s))h≥s is a two parameters family generated by (A(h))h∈R on T that called
strongly continuous evolution family, i.e., (U(h,s))h≥s ⊂ L(T ) such that:

(i) U(h,r)U(r,s) =U(h,s) and U(h,h) = I for all h≥ r ≥ s and h,r,s ∈ R.

(ii) The map (h,s)→U(h,s)x is continuous for all x ∈ T , h≥ s and h,s ∈ R,

see [17, 23] for more details. Unlike to semigroups, there is no general theory
for existence of a corresponding evolution family. However, we can rely on
several quite existence theorems corresponding on different contexts. In fact, in
the hyperbolic case, we refer to [23] and [1] for the parabolic case.

We recall the Acquistapace and Terreni, conditions which are very important
to solve problem (2) : Let (A(h),D(A(h))), h ∈ R be a family of linear closed
operators on a Banach space T that satisfies the following conditions: there exist
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constants ω ∈ R,θ ∈ (π

2 ,π),M > 0 and η ,ν ∈ (0,1] with η +ν > 1 such that
Σω,θ := {z ∈ C : z ̸= 0, | arg(z) |≤ θ} ⊂ ρ(A(h)−ω)

∥λR(λ ,A(h)−ω)∥L(T ) ≤ L,

(2)

∥(A(h)−ω)R(λ ,A(h)−ω)[R(ω,A(h))−R(ω,A(s))]∥L(T ) ≤
M|h− s|η

|λ |ν
(3)

for all h ≥ s, h,s ∈ R and λ ∈ Σω,θ . The domains D(A(h)) of the operators
A(h) may change with respect to h and do not required to be dense in T . The
interpolation spaces for the operators A(h), h ∈R. Let A be a sectorial operator,
i.e., A satisfy 2 instead of A(h) (it is well known that A generates an analytic
semigroup (HA(h))h≥0 on T ).

Moreover, in the case of a constant domain, i.e., D := D(A(h)), h ∈ R, we
can replace assumption 3 with the following: There exist constants ω ∈R, L≥ 0
and 0 < µ ≤ 1 such that

∥(A(h)−A(s))R(ω,A(r))∥ ≤ L|h− s|µ for t,s,r ∈ R. (4)

A sufficient condition ensuring 4 is the following:

∥(ω−A(h))R(ω,A(s))− IT∥ ≤ L0|h− s|µ0 for h,s ∈ R (5)

for some ω ∈ R, L0 ≥ 0 and 0 < µ0 ≤ 1. For more details see [1].
An evolution family (U(h,s))s≤h on a Banach space T is called has an expo-
nential dichotomy (or hyperbolic) in R if there exists a family of projections
P(t) ∈ L(T ), h ∈ R, being strongly continuous with respect to h, and constants
δ ,M > 0 such that

(i) U(h,s)P(s) = P(h)U(h,s);

(ii) U(h,s) : Q(s)T → Q(h)T is invertible with the inverse Ũ(h,s);

(iii) ∥U(h,s)P(s)∥ ≤Me−δ (h−s) and ∥Ũ(h,s)Q(h)∥ ≤Me−δ (h−s)

for all h,s ∈ R with s≤ h, where, Q(h) = I−P(h).
Note that, exponential dichotomy is a classical concept in the study of long-

time behaviour of evolution equations. If P(h) = I for h∈R, then (U(h,s))s≤h is
exponential stable. For more details we refer [17]. Hence, for given a hyperbolic
evolution family (U(h,s))s≤h, we define its associated Green’s function by:

ϒ(h,s) =
{

U(h,s)P(s), h,s ∈ R,s≤ h
Ũ(h,s)Q(s), h,s ∈ R,s > h.



ALMOST AUTOMORPHIC SOLUTIONS FOR LOTKA-VOLTERRA SYSTEMS 209

2.1. µ-pseudo-almost automorphic functions

Notations : Let (T,∥ · ∥) be any Banach space. We denote by Lp
loc(R,T ) with

1≤ p < ∞, the space of functions g : R−→ T measurable such that(∫
[a,b]
∥g(s)∥pds

) 1
p

< ∞

for all a < b in R. BC(R,T ) equipped with the supremum norm is the Banach
space of bounded continuous functions from R into T . Let 1 ≤ p < ∞ and q
denotes its conjugate exponent defined by 1

p +
1
q = 1.

In the following, we give properties of µ-pseudo-almost automorphic func-
tions in the classical sense and in Stepanov sense.

Definition 2.1. (H. Bohr) [9] A continuous function g : R→ T is said to be
almost periodic if for every ε > 0, there exists lε > 0, such that for every a ∈R,
there exists τ ∈ [a,a+ lε ] satisfying:

∥g(h+ τ)−g(h)∥< ε for all h ∈ R.

The space of all such functions is denoted by AP(R,T ).

Definition 2.2. (S. Bochner) [6] A continuous function g : R→ T is called
almost automorphic if for every sequence (s′n)n≥0 of real numbers, there exists a
subsequence (sn)n≥0 ⊂ (s′n)n≥0 and a measurable function u : R→ T , such that

u(h) = lim
n→∞

g(h+ sn) and g(h) = lim
n→∞

u(h− sn) for all h ∈ R.

The space of all such functions is denoted by AA(R,T ).

Remark 2.3. An almost automorphic function may not be uniformly continu-

ous. Indeed, the real function g(h) = sin
(

1
2+ cos(h)+ cos(

√
2h)

)
for h ∈ R,

belongs to AA(R,R), but is not uniformly continuous. Hence, g does not be-
longs to AP(R,R).

Then, we have the following inclusions:

AP(R,T )⊂ AA(R,T )⊂ BC(R,T ).

Definition 2.4. A continuous function G : R×R→ T is said to be bi-almost
automorphic if for every sequence (s′n)n≥0 of real numbers, there exist a subse-
quence (sn)n≥0 ⊂ (s′n)n≥0 and a measurable function H : R→ T , such that

H(h,s) = lim
n→∞

G(h+sn,s+sn) and G(h,s) = lim
n→∞

H(h−sn,s−sn)for allh,s∈R.

The space of all such functions is denoted by bAA(R,T ).
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Example 2.5. [20] G(h,s) = sin(h)cos(s) is bi-almost automorphic function
from R×R to R as

G(h+2π,s+2π) = G(h,s), for all h,s ∈ R.

Definition 2.6. [15] Let 1 ≤ p < ∞. A function g ∈ Lp
loc(R,T ) is said to be

bounded in the sense of Stepanov if

sup
h∈R

(∫
[h,h+1]

∥g(s)∥pds
) 1

p

= sup
h∈R

(∫
[0,1]
∥g(h+ s)∥pds

) 1
p

< ∞.

The space of all such functions is denoted by BSp(R,XT ) and is provided
with the following norm:

∥g∥BSp := sup
h∈R

(∫
[h,h+1]

∥g(s)∥pds
) 1

p

= sup
h∈R
∥g(h+ ·)∥Lp([0,1],T ).

Then, the following inclusions hold:

BC(R,T )⊂ BSp(R,T )⊂ Lp
loc(R,T ). (6)

Now, we give the definition of almost automorphy in the sense of Stepanov.

Definition 2.7. [5] Let 1≤ p<∞. A function g∈ Lp
loc(R,T ) is said to be almost

automorphic in the sense of Stepanov (or Sp-almost automorphic), if for every
sequence (σn)n≥0 of real numbers, there exists a subsequence (sn)n≥0⊂ (σn)n≥0
and a measurable function u ∈ Lp

loc(R,T ), such that:

lim
n

(∫ h+1

h
∥g(s+ sn)−u(s)∥pds

) 1
p

= 0

and

lim
n

(∫ h+1

h
∥u(s− sn)−g(s)∥pds

) 1
p

= 0, h ∈ R.

The space of all such functions is denoted by AASp(R,T ).

Remark 2.8. [5]
(i) Every almost automorphic function is Sp-almost automorphic for 1≤ p < ∞.
(ii) For all 1≤ p1 ≤ p2 < ∞, if g is Sp2-almost automorphic, then g is Sp1-almost
automorphic.
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In this section we recall some properties of µ-ergodic and µ-pseudo-almost
automorphic functions. In the sequel, we denote by B(R) the Lebesgue σ -field
of R and byM the set of all positive measures µ onB(R) satisfying µ(R)=+∞

and µ([a,b])<+∞ for all a,b ∈ R with (a≤ b). We assume the following hy-
pothesis.

(M) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A})≤ β µ(A) whereA ∈ B(R) and A∩ I = /0.

Definition 2.9. [11] Let µ ∈M. A continuous bounded function g : R−→ T is
called µ-ergodic, if

lim
r→+∞

1
µ([−r,r])

∫
[−r,r]
∥g(h)∥dµ(h) = 0.

The space of all such functions is denoted by E(R,T,µ).

Example 2.10.
(1) In [27], the author defined an ergodic function as a µ-ergodic function in the
particular case where the measure µ is the Lebesgue measure.
(2) In [21], the authors considered the space of bounded continuous functions
g : R−→ T satisfying

lim
r→+∞

1
2r

∫
[−r,r]
∥g(h)∥dt = 0 and lim

N→+∞

1
2N +1

N

∑
n=−N

∥g(n)∥= 0.

This space coincides with the space of µ-ergodic functions where µ is defined
in B(R) by the sum µ(A) = µ1(A)+µ2(A) with µ1 is the Lebesgue measure on
(R,B(R)) and

µ2(A) =

{
card(A∩Z) if A∩Z is finite

∞ if A∩Z is infinite.

Definition 2.11. [11] Let µ ∈M. A continuous function g : R−→ T is said to
be µ-pseudo almost automorphic if g is written in the form:

g = u+ϕ,

where u ∈ AA(R,T ) and ϕ ∈ E(R,T,µ).
The space of all such functions is denoted by PAA(R,T,µ).

Now, we give the definition and the important properties of µ-Sp-pseudo-
almost automorphic functions.
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Definition 2.12. [15] Let µ ∈M. A function g ∈ BSp(R,T ) is said to be µ-
ergodic in the sense of Stepanov (or µ-Sp-ergodic) if

lim
r→+∞

1
µ([−r,r])

∫
[−r,r]

(∫
[h,h+1]

∥g(s)∥pds
) 1

p

dµ(h) = 0. (7)

The space of all such functions is denoted by E p(R,T,µ).

Remark 2.13. We obtain by relation (7) that,

g ∈ E p(R,T,µ) if and only if gb ∈ E(R,Lp([0,1] ,T ),µ).

Proposition 2.14. [15] Let µ ∈M. Then, for all 1 ≤ p < ∞, (E p(R,T,µ),∥ ·
∥BSp) is a Banach space.

Proposition 2.15. [15] Let µ ∈M satisfy (M). Then, the following hold:
(i) E p(R,T,µ) is translation invariant.
(ii) E(R,T,µ)⊂ E p(R,T,µ).

2.2. Uniformly µ-pseudo-almost automorphic functions

Definition 2.16. [5] Let 1≤ p<+∞ and g : R×T −→Y be a function such that
g(·,z) ∈ Lp

loc(R,Y ) for each z ∈ T. Then, g ∈ AASpU(R×T,Y ) if the following
hold:

(i) For each z ∈ T , g(·,z) ∈ AASp(R,Y ).

(ii) g is Sp-uniformly continuous with respect to the second argument on each
compact subset K in T , namely: for all ε > 0 there exists δK,ε such that
for all z1,z2 ∈ K, we have

∥z1− z2∥ ≤ δK,ε =⇒
(∫ h+1

h
∥g(s,z1)−g(s,z2)∥p

Y ds
) 1

p

≤ ε for all h ∈ R. (8)

Definition 2.17. Let µ ∈M. A function g : R× T −→ Y such that g(·,z) ∈
BSp(R,Y ) for each z ∈ T is said to be µ-Sp-ergodic in h with respect to z in T if
the following hold:

(i) For all z ∈ T, g(·,z) ∈ E p(R,Y,µ).

(ii) f is Sp-uniformly continuous with respect to the second argument on each
compact subset K in T .

Denote by E pU(R×T,Y,µ) the set of all such functions.
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Definition 2.18. [5] Let µ ∈ M and g : R× T −→ Y be such that g(·,z) ∈
BSp(R,Y ) for each z ∈ T . The function g is µ-Sp- pseudo-almost automorphic
if g is written as:

g = z+ϕ,

where z ∈ AASpU(R×T,Y ), and ϕ ∈ E pU(R×T,Y,µ).
The space of all such functions is denoted PAASpU(R,T,µ).

Theorem 2.19. [5] Let µ ∈M and f : R×T → Y . Assume that:

(i) g = z+ϕ ∈ PAASpU(R× T,Y,µ) with z ∈ AASpU(R× T,Y ) and ϕ ∈
E pU(R×T,Y,µ).

(ii) z = z1 + z2 ∈ PAA(R,T,µ), where z1 ∈ AA(R,T ) and z2 ∈ E p(R,T,µ).

(iii) For every bounded subset B⊂ T the set ∧ := {g(·,z) : z ∈ B} is bounded
in BSp(R,T ).
Then, g(·,z(·)) ∈ PAASp(R,Y,µ).

3. µ-pseudo-almost automorphic solutions of equation 1

In this section, we prove the existence and uniqueness of µ-pseudo-almost au-
tomorphic mild solutions to equation 1.

Definition 3.1. A mild solution for equation 1 is the continuous function z :
R−→ T that satisfies the following variation of constants formula:

z(h) =U(h,s)z(s)+
∫ h

s
U(h,r)g(r,z(r))dr for all h≥ s, h,s ∈ R. (9)

Where the function g is Lipschitzian in bounded sets with respect to the second
argument.

In the sequel, we assume that:

(H1) The family A(h), h ∈ R generates a strongly continuous evolution family
(U(h,s))h≥s.

(H2) The evolution family (U(h,s))h≥s has an exponential dichotomy on R,
with constants M ≥ 0 , δ > 0 and Green’s function Γ.

(H3) For each z ∈ T , Γ(h,s)z for h,s ∈ R is bi-almost automorphic.
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(H4) The function g is Lipschitzian in bounded sets with respect to the second
argument i.e., for all σ > 0 there exists a nonegative scalar function Lσ (·)
such that

∥g(h,z)−g(h,y)∥ ≤ Lσ (h)∥z− y∥, z,y ∈ B(0,σ), h ∈ R.

Remark 3.2. An explicit example of a strongly bi-almost automorphic Green
function i.e., hypothesis (H3), is given in Section 4. Sufficient conditions in-
suring hypothesis (H3) in the case where A(h) = δ (h)A+α(h)h ∈ R and A a
generator of a strongly continuous semigroup, provided that δ ,α ∈ AAS1(R)
with infh∈R δ (h)> 0, which is a weak condition, see Section 4.

In the interest of establishing our problem, we first study the following linear
inhomogeneous evolution equation associated to equation 1 :

z′(h) = A(h)z(h)+u(h) for all h ∈ R. (10)

where u : R→ T is locally integrable. We recall that a mild solution to equation
10 is a continuous function z : R→ T that is given by the following variation of
constant formula:

z(h) =U(h,s)z(s)+
∫ h

s
U(h,r)u(r)dr for all h≥ s : (11)

The following Lemma is needed.

Lemma 3.3. Let u ∈ BSp(R,T ) for 1 ≤ p < ∞. Assume that (H1)-(H2) hold.
Then equation 10 has a unique bounded mild solution given by :

z(h) =
∫

R
ϒ(h,s)u(s)ds, h ∈ R. (12)

Proof. Let us show first that the integral given in formula 12 is defined and
bounded on R. We know from the exponential dichotomy of (U(h,s))h≥s that

∫
R

ϒ(h,s)u(s)ds =
∫ h

−∞

U(h,σ)P(σ)u(σ)dσ −
∫

∞

h
Ũ(h,σ)Q(σ)u(σ)dσ
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for h ∈ R. Let p > 1. Using Hölder’s inequality, we have:∥∥∥∫
R

ϒ(h,s)u(s)ds
∥∥∥≤ ∫ h

−∞

∥U(h,s)P(s)u(s)∥ds+
∫

∞

h
∥Ũ(h,s)Q(s)u(s)∥ds

≤
∫ h

−∞

Me−δ (h−s)∥u(s)∥ds+
∫

∞

h
Me−δ (h−s)∥u(s)∥ds

≤ ∑
n≥1

∫ h−n+1

h−n
Me−δ (h−s)∥u(s)∥ds+ ∑

n≥1

∫ h+n

h+n−1
Me−δ (h−s)∥u(s)∥ds

≤M ∑
n≥1

(∫ h−n+1

h−n
e−qδ (h−s)ds

) 1
q
(∫ h−n+1

h−n
∥u(s)∥pds

) 1
p

+M ∑
n≥1

(∫ h+n

h+n−1
e−qδ (h−s)ds

) 1
q
(∫ h+n

h+n−1
∥u(s)∥pds

) 1
p

≤ 2M ∑
n≥1

e−δn

(
eδq−1

δq

) 1
q

∥u∥BSp

= 2M∥u∥BSp

(
eδq−1

δq

) 1
q 1

eδ −1
< ∞.

On the other hand, for p = 1, it follows that∥∥∥∫
R

ϒ(h,s)u(s)ds
∥∥∥≤ ∫ h

−∞

∥U(h,s)P(s)u(s)∥ds+
∫

∞

h
∥Ũ(h,s)Q(s)u(s)∥ds

≤ ∑
n≥1

∫ h−n+1

h−n
Me−δ (h−s)∥u(s)∥ds+ ∑

n≥1

∫ h+n

h+n−1
Me−δ (h−s)∥u(s)∥ds

≤ 2M ∑
n≥1

e−δn∥u∥BS1

= 2M
1

eδ −1
∥u∥BS1 < ∞.

Hence, 12 is well defined. Now, the fact that the mild solution of equation 10 is
given by 12 can proved as in [5, Theorem 4.2-(i)].

Theorem 3.4. Let 1≤ p < ∞ and u ∈ AASp(R,T ). Assume that (H1)-(H3) are
satisfied, then equation 10 has a unique mild solution z ∈ AA(R,T ) given by 12,
it means that.

z(h) =
∫

R
ϒ(h,s)u(s)ds, h ∈ R.

Proof. Let 1 ≤ p < ∞ and u ∈ AASp(R,T ). From Lemma 3.3 we infer that z
is the unique mild solution to equation 10 given by 12. Now, we show that
z ∈ AA(R,T ). Let k ∈ N. Then, for p > 1, we have
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∥zk(h)∥ ≤
∫ h−k+1

h−k
∥U(h,s)P(s)u(s)∥ds+

∫ h+k

h+k−1
∥Ũ(h,s)Q(s)u(s)∥ds

≤
∫ h−k+1

h−k
Me−δ (h−s)∥u(s)∥ds+

∫ h+k

h+k−1
Meδ (h−s)∥u(s)∥ds

≤M
(∫ h−k+1

h−k
e−qδ (h−s)ds

) 1
q
(∫ h−k+1

h−k
∥u(s)∥pds

) 1
p

+M
(∫ h+k

h+k−1
e−qδ (h−s)ds

) 1
q
(∫ h+k

h+k−1
∥u(s)∥pds

) 1
p

≤ 2M∥u∥BSp

(
eδq−1

δq

) 1
q

e−δk for all h ∈ R.

By the same way, for p = 1, we have

∥zk(h)∥ ≤
∫ h−k+1

h−k
∥U(h,s)P(s)u(s)∥ds+

∫ h+k

t+k−1
∥Ũ(h,s)Q(s)u(s)∥ds

≤ 2M∥u∥BS1

(
eδq−1

δq

) 1
q

e−δk for all h ∈ R.

Since ∑
k≥1

e−δk =
e−δ

1− e−δ
<∞, it follows from Weierstrass theorem that the serie

∑
k≥1

zk(h) is uniformly convergent on R. Then, we define

z(h) = ∑
k≥1

zk(h) for all h ∈ R.
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In fact, let n ∈ N. Then, for p > 1, we have

∥z(h)−
n

∑
k=1

zk(h)∥=
∥∥∥∫

R
ϒ(h,s)u(s)ds−

n

∑
k=1

∫ h−k+1

h−k
U(h,s)P(s)u(s)ds

+
n

∑
k=1

∫ h+k

h+k−1
Ũ(h,s)Q(s)u(s)ds

∥∥∥
≤ ∥ ∑

k≥n+1

∫ h−k+1

h−k
U(h,s)P(s)u(s)ds∥+∥ ∑

k≥n+1

∫ h+k

h+k−1
Ũ(h,s)Q(s)u(s)ds∥

≤ ∑
k≥n+1

∫ h−k+1

h−k
∥U(h,s)P(s)u(s)∥ds+ ∑

k≥n+1

∫ h+k

h+k−1
∥Ũ(h,s)Q(s)u(s)∥ds

≤ ∑
k≥n+1

∫ h−k+1

h−k
Me−δ (h−s)∥u(s)∥ds+ ∑

k≥n+1

∫ h+k

h+k−1
Meδ (h−s)∥u(s)∥ds

≤M ∑
k≥n+1

(∫ h−k+1

h−k
e−qδ (h−s)ds

) 1
q
(∫ h−k+1

h−k
∥u(s)∥pds

) 1
p

+M ∑
k≥n+1

(∫ h+k

h+k−1
e−qδ (h−s)ds

) 1
q
(∫ h+k

h+k−1
∥u(s)∥pds

) 1
p

≤ 2M

(
eδq−1

δq

) 1
q

∥u∥BSp ∑
k≥n+1

e−δk→ 0 as n→ ∞

uniformly in h ∈ R.
In otherwise, for p = 1, we obtain that

∥z(h)−
n

∑
k=1

uk(h)∥=
∥∥∥∫

R
ϒ(h,s)u(s)ds−

n

∑
k=1

∫ h−k+1

h−k
U(h,s)P(s)u(s)ds

+
n

∑
k=1

∫ h+k

h+k−1
Ũ(h,s)Q(s)u(s)ds

∥∥∥
≤ 2M∥u∥BS1 ∑

k≥n+1
e−δk→ 0 as n→ ∞

uniformly in h ∈ R.
To conclude, it suffices to prove that for all k ∈ N, zk belongs to AA(R,T ).
Let (s′n) be a sequence of real numbers, u ∈ AASp(R,T ) and ϒ is bi-almost
automorphic, then there exist a subsequence (sn)⊂ (s′n) a measurable functions
ũ and ϒ̃ such that for all h, s ∈ R,

lim
n→∞

(∫ h+1

h
∥u(s+ sn)− ũ(s)∥pds

) 1
p

= 0
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and

lim
n→∞

(∫ h+1

h
∥ũ(s− sn)−u(s)∥pds

) 1
p

= 0.

And for each z ∈ T ,

lim
n→∞
∥ϒ(h+ sn,s+ sn)z− ϒ̃(h,s)z∥= 0

and

lim
n→∞
∥ϒ̃(h− sn,s− sn)z−ϒ(h,s)z∥= 0.

Let zk(h) = Φk(h)−Ψk(h), where

Φk(h) =
∫ h−k+1

h−k
ϒ(h,s)u(s)ds and Φk(h) =

∫ h+k

h+k−1
ϒ(h,s)u(s)ds.

Thus, we define the measurable function by

z̃k(h) =
∫ h−k+1

h−k
ϒ̃(h,s)ũ(s)ds−

∫ h+k

h+k−1
ϒ̃(h,s)ũ(s)ds

= Φ̃k(h)− Ψ̃k(h),

where

Φ̃k(h) :=
∫ h−k+1

h−k
ϒ̃(h,s)ũ(s)ds and Ψ̃k(h) :=

∫ h+k

h+k−1
ϒ̃(h,s)ũ(s)ds,h ∈ R.
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Therefore, for p > 1, we have

∥Φk(h+ sn)− Φ̃k(h)∥

≤ ∥
∫ h+sn−k+1

h+sn−k
ϒ(h+ sn,s)u(s)ds−

∫ h−k+1

h−k
ϒ̃(h,s)ũ(s)ds∥

≤ ∥
∫ k

k−1
ϒ(h+ sn,h+ sn− s)u(h+ sn− s)ds−

∫ k

k−1
ϒ̃(h,h− s)ũ(h− s)ds∥

≤
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)u(h+ sn− s)− ϒ̃(h,h− s)ũ(h− s)∥ds

≤
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)u(h+ sn− s)−ϒ(h+ sn,h+ sn− s)ũ(h− s)∥ds

+
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ds

≤
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s) [u(h+ sn− s)− ũ(h− s)]∥ds

+
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ds

≤M
(∫ k

k−1
e−qδ sds

) 1
q
(∫ k

k−1
∥u(h+ sn− s)− ũ(h− s)∥pds

) 1
p

+
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ds

= I1 + I2,

where

I1 := M
(∫ k

k−1
e−qδ sds

) 1
q
(∫ k

k−1
∥u(h+ sn− s)− ũ(h− s)∥pds

) 1
p

and

I2 :=
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ds.

As u ∈ AASp(R,T ), I1→ 0, as n→ ∞ for all h ∈ R. From (H3) and since

∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ ≤Me−δ s∥ũ(h− s)∥
+∥ϒ̃(h,h− s)ũ(h− s)∥,

it follows in view of the dominated convergence Theorem, that I2→ 0 as n→∞

for all h ∈ R. Hence

lim
n→∞
∥Φk(h+ sn)− Φ̃k(h)∥= 0 for all t ∈ R.
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We can show in a similar way that

lim
n→∞
∥Φ̃k(h− sn)−Φk(h)∥= 0 for all h ∈ R.

Moreover, by the same way, for p = 1, we obtain that

∥Φk(h+ sn)−Φ̃k(h)∥

≤
∥∥∥∫ h+sn−k+1

h+sn−k
ϒ(h+ sn,s)u(s)ds−

∫ h−k+1

h−k
ϒ̃(h,s)ũ(s)ds

∥∥∥
≤M

∫ k

k−1
∥u(h+ sn− s)− ũ(h− s)∥ds

+
∫ k

k−1
∥ϒ(h+ sn,h+ sn− s)ũ(h− s)− ϒ̃(h,h− s)ũ(h− s)∥ds

= J1 + I2,

where

J1 := M
∫ k

k−1
∥u(h+ sn− s)− ũ(h− s)∥ds

Then, the result follows from the fact that u ∈ AAS1(R,T ). This proves that
Φk ∈ AA(R,T ) for each k ∈ R. By the same way, we prove the result for Ψk.
We recall that the serie ∑

k≥1
uk(h) is uniformly convergent on R, which implies

that z ∈ AA(R,T ).

Theorem 3.5. Let µ ∈ M satisfy (M). Assume that (H1)-(H3) are satisfied
and that u ∈ PAASp(R,T,µ). Then equation 10 has a unique mild solution
z ∈ PAA(R,T,µ) given by,

z(h) =
∫

R
ϒ(h,s)u(s)ds, h ∈ R.

Proof. Let u = ũ+ϕ ∈ PAASp(R,T,µ), where ũ ∈ AASp(R,T )
and ϕ ∈ E p(R,T,µ). Thus, z has a unique decomposition

z = z1 + z2

where, for all h ∈ R, we have

z1(h) =
∫

R
ϒ(h,s)u(s)ds,

and

z2(h) =
∫

R
(h,s)ϕ(s)ds

:= za
2(h)+ zl

2(h),
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where

za
2(h) :=

∫ h

−∞

U(h,s)P(s)ϕ(s)ds and zl
2(h) :=−

∫
∞

h
Ũ(t,s)Q(s)ϕ(s)ds.

Using Theorem 3.4, we obtain that u1 ∈ AA(R,T ). Let us prove that z2 ∈
E(R,T,µ). It suffices to show that za

2,z
l
2 ∈ E(R,T,µ). Let r > 0 and p > 1,

then

1
µ([−r,r])

∫ r

−r
∥za

2(h)∥dµ(h)

≤ 1
µ([−r,r])

∫ r

−r

∫ h

−∞

∥U(h,s)P(s)ϕ(s)∥dsdµ(h)

≤ M
µ([−r,r])

∫ r

−r

∫ h

−∞

e−δ (h−s)∥ϕ(s)∥dsdµ(h)

≤ M
µ([−r,r])

∫ r

−r

(∫ h

−∞

e
−δ

2 q(h−s)ds
) 1

q
(∫ h

−∞

e
−δ

2 p(h−s)∥ϕ(s)∥pds
) 1

p

dµ(h)

≤ M
µ([−r,r])

(
2

qδ

) 1
q
∫ r

−r

(
∑
k≥1

∫ h+1

h
e
−δ

2 p(h−s+k)∥ϕ(s− k)∥pds

) 1
p

dµ(h)

≤
( M

µ([−r,r])

) 1
q+

1
p
( 2

qδ

) 1
q
∫ r

−r

(
∑
k≥1

∫ h+1

h
e
−δ

2 p(h−s+k)∥ϕ(s− k)∥pds
) 1

p
dµ(h)

≤ L

(
∑
k≥1

e
−δ

2 pk 1
µ([−r,r])

∫ r

−r

∫ t+1

h
∥ϕ(s− k)∥pdsdµ(h)

) 1
p

where L =
M

µ([−r,r])
1
q

(
2

qδ

) 1
q

.

As E p(R,T,µ) is invariant by translation and by ϕ ∈ E p(R,T,µ), we have

lim
r→∞

1
µ([−r,r])

∫ r

−r

∫ h+1

h
∥ϕ(s− k)∥pdsdµ(h) = 0 for all k ≥ 1.

Since,(
∑
k≥1

e
−δ

2 pk 1
µ([−r,r])

∫ r

−r

∫ h+1

t
∥ϕ(s− k)∥pdsdµ(h)

) 1
p

≤ ∑
k≥1

e
−δ

2 pk∥ϕ∥BSp ,

and by the dominated convergence Theorem, we obtain that

lim
r→∞

1
µ([−r,r])

∫ r

−r
∥za

2(h)∥dµ(h) = 0. (13)
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Now, for p = 1, it follows by the argument that

1
µ([−r,r])

∫ r

−r
∥za

2(h)∥dµ(h)≤ 1
µ([−r,r])

∫ r

−r

∫ h

−∞

∥U(h,s)P(s)ϕ(s)∥dsdµ(h)

≤ M
µ([−r,r])

∫ r

−r

∫ h

−∞

e−δ (h−s)∥ϕ(s)∥dsdµ(h)

≤M ∑
k≥1

e−δ pk 1
µ([−r,r])

∫ r

−r

∫ h+1

h
∥ϕ(s− k)∥dsdµ(h)→ 0 as r→ ∞.

Arguing as above, we show that

lim
r→∞

1
µ([−r,r])

∫ r

−r
∥zl

2(h)∥dµ(h) = 0. (14)

From (13) and (14), we have

lim
r→∞

1
µ([−r,r])

∫ r

−r
∥z2(h)∥dµ(h) = 0.

Hence, z ∈ E(R,T,µ).

In the sequel we prove the existence and uniqueness of µ-pseudo-almost
automorphic solutions to the semilinear equation 1.

Theorem 3.6. Let p≥ 1 and µ ∈M satisfy (M). Asumme that (H1)-(H4) hold
and g ∈ PAASpU(R×T,µ) with Lσ ∈ BSp(R,T ). If there exist σ > 0 such that,

σ > min

{(
2M
(

2
qδ

) 1
q
(

1

1− e−
δ

2

) 1
p
)
,

(
2M

1− e−δ

)}−1

∥g(·,0)∥∞ > 0,

(15)
and

∥Lρ∥BSp ≤min
{(

2M
( 2

qδ

) 1
q
( 1

1− e−
δ

2

) 1
p
)
,
( 2M

1− e−δ

)}−1
−σ

−1∥g(·,0)∥∞.

(16)
Then, equation 1 has a unique mild solution u∈PAA(R,T,µ) with 0≤ u(h)≤σ

for all h ∈ R.

Proof. Consider the set Ξ PAA
σ := {v ∈ PAA(R,T ) : suph∈R ∥u(h)∥ ≤ σ} and de-

fine the map Z : Ξ PAA
σ −→ PAA(R,T ) by

Zu(h) =
∫

R
G(h,s)g(s,u(s))ds, h ∈ R.
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First, we show that ZΞ PAA
σ ⊂ Ξ PAA

σ . Indeed, let u ∈ Ξ PAA
σ . Then, by assumptions

on g, we obtain that

∥Zu(h)∥α

≤
∫

R
∥G(h,s)g(s,u(s))∥αds

≤ M
∫ h

−∞

e−δ (h−s)∥g(s,u(s))−g(s,0)∥ds+M
∫ h

−∞

e−δ (h−s)∥g(s,0)∥ds

+ M
∫ +∞

t
e−δ (s−h)∥g(s,u(s))−g(s,0)∥ds+M

∫ +∞

h
e−δ (s−h)∥g(s,0)∥ds

≤ σM
∫ h

−∞

e−δ (h−s) [Lσ (s)+σ
−1∥g(s,0)∥

]
ds

+ σM
∫ +∞

h
e−δ (s−h) [Lσ (s)+σ

−1∥g(s,0)∥
]

ds

≤ σM
(∫ h

−∞

e−q δ

2 (h−s)ds
) 1

q
(

∑
k≥1

∫ h−k+1

h−k
e−p δ

2 (h−s) [|Lσ (s)|p +σ
−p∥g(s,0)∥p]ds

) 1
p

+ σM
(∫ +∞

h
e−q δ

2 (s−h)ds
) 1

q
(

∑
k≥1

∫ h+k

h+k−1
e−p δ

2 (s−h) [|Lσ (s)|p +σ
−p∥g(s,0)∥p]ds

) 1
p

≤ σ

M
(

2
qδ

) 1
q
(

∑
k≥1

∫ h−k+1

h−k
e−

δ

2 p(h−s)ds

) 1
p

+M
(

2
qδ

) 1
q
(

∑
k≥1

∫ h+k

h+k−1
e−

δ

2 p(s−h)ds

) 1
p


×
[
∥Lσ∥BSp +ρ

−1∥g(·,0)∥BSp
]

≤ 2M∥Lσ∥BSp

(
2

qδ

) 1
q
(

1

1− e−
pδ

2

) 1
p [
∥Lσ∥BSp +σ

−1∥g(·,0)∥BSp
]

≤ σ , h ∈ R.

Hence, ZΞ PAA
σ ⊂ Ξ PAA

σ . Therefore, let u, v ∈ Ξ PAA
σ . Then, one has :

(Zz)(h) =
∫ h

−∞

U(h,s)P(s)g(s,z(s))ds−
∫

∞

h
Ũ(h,s)Q(s)g(s,z(s))ds

= (Zaz)(h)+(Zlz)(h) for all h ∈ R,

where

(Zaz)(h) =
∫ h

−∞

U(h,s)P(s)g(s,z(s))ds and (Zaz)(h)

=−
∫

∞

h
Ũ(h,s)Q(s)g(s,z(s))ds,h ∈ R.
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By the composition Theorem 2.19, it is clear that g(·,z(·)) ∈ PAASp(R,Y,µ).
Moreover, for p > 1, we have

∥(Zaz)(h)− (Zav)(h)∥ ≤
∫ h

−∞

∥U(h,s)P(s)g(s,z(s))−U(h,s)P(s)g(s,v(s))∥ds

≤M
∫ h

−∞

e−δ (h−s)∥g(s,z(s))−g(s,v(s))∥ds

≤M
(∫ h

−∞

e−
δ

2 q(h−s)ds
) 1

q
(∫ h

−∞

e−
δ

2 p(h−s)∥g(s,z(s))−g(s,v(s))∥pds
) 1

p

≤M
(

2
qδ

) 1
q
(

∑
k≥1

∫ h−k+1

h−k
e−

δ

2 p(h−s)Lp
g(s)∥z(s)− v(s)∥pds

) 1
p

≤M
(

2
qδ

) 1
q
(

∑
k≥1

∫ h−k+1

h−k
e−

δ

2 p(h−s)Lp
g(s)ds

) 1
p

∥z− v∥∞

≤M∥Lg∥BSp

(
2

qδ

) 1
q
(

1

1− e−
pδ

2

) 1
p

∥z− v∥∞

Arguing as above, we have also

∥(Zlz)(h)− (Zlv)(h)∥ ≤
∫

∞

h
∥Ũ(h,s)Q(s)g(s,z(s))−Ũ(h,s)Q(s)g(s,v(s))∥ds

≤M
∫

∞

h
e−δ (h−s)∥g(s,z(s))−g(s,v(s))∥ds

≤M
(

2
qδ

) 1
q
(

∑
k≥1

∫ h+k

h+k−1
e−

δ

2 p(s−h)Lp
g(s)ds

) 1
p

∥z− v∥∞

≤M∥Lσ∥BSp

(
2

qδ

) 1
q
(

1

1− e−
pδ

2

) 1
p

∥z− v∥∞.

Now, for p = 1, we obtain that

∥(Zaz)(h)− (Zav)(h)∥ ≤
∫ h

−∞

∥U(h,s)P(s)g(s,z(s))−U(h,s)P(s)g(s,v(s))∥ds

≤M
∫ h

−∞

e−δ (h−s)∥g(s,z(s))−g(s,v(s))∥ds

≤M ∑
k≥1

e−δk
∫ h−k+1

h−k
Lg(s)ds∥z− v∥∞

≤M∥Lσ∥BS1

(
1

1− e−δ

)
∥z− v∥∞
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and that

∥(Zlz)(h)− (Zlv)(h)∥ ≤
∫

∞

h
∥Ũ(h,s)Q(s)g(s,z(s))−Ũ(h,s)Q(s)g(s,v(s))∥ds

≤M∥Lσ∥BS1

(
1

1− e−δ

)
∥z− v∥∞.

Consequently, we have

∥(Zz)(h)− (Zv)(h)∥ ≤C∥z− v∥∞

where C = ∥Lσ∥BSp min
[(

2M
(

2
qδ

) 1
q
(

1

1−e−
pδ

2

) 1
p
)
,
(

2M
1−e−δ

)]
.

Therefore, by Banach fixed point Theorem, Z has a unique fixed point z ∈ Ξ PAA
σ

such that Zz = z. This proves the result.

4. Application

For illustration, we propose to study the following dynamics of a two-species
competition Lotka-Volterra type model with diffusion which is a combinaison
of the models in [19].

∂

∂ t
u(t,ξ ) = d1(t)∆u(t,ξ )+a(t)u(t,ξ )− c1(t)

v(t,ξ )u(t,ξ )
1+ v(t,ξ )

+ k1(t,ξ ),

t ∈ R,ξ ∈Ω,

∂

∂ t
v(t,ξ ) = d2(t)∆v(t,ξ )−b(t)v(t,ξ )+ c2(t)

u(t,ξ )v(t,ξ )
1+ |u(t,ξ )|

+ k2(t,ξ ),

t ∈ R,ξ ∈Ω,

u(t,ξ )|∂Ω = 0; v(t,ξ )|∂Ω = 0, t ∈ R,ξ ∈ ∂Ω

(17)
where,
• u(t,ξ ) and v(t,ξ ) are respectively the local densities of the preys and the
predators at time t and at location ξ .

• Ω⊂RN (N ≥ 1) is an open bounded domain with Lipschitz type boundary
∂Ω.

• ∆ :=
n

∑
k=1

∂ 2

∂ξ 2
i

is the Laplace operator on Ω, di ∈ Cµ(R,R+), 0 < µ ≤ 1

(µ = 1), i= 1,2, are eventually the diffusion terms preys and the predators
respectively, such that 0 < d0

i := inft∈R(di)≤ d1
i := |di|∞ < ∞.
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• a, b ∈ L1
loc(R,R+) correspond to the growth and the death terms u(t,ξ )

and terms v(t,ξ ) respectively in the absence of interaction, of the popula-
tions.

• gi : R×R×R×RN −→ R are the nonlinear terms defined by

g1(t,u(t,ξ ),v(t,ξ ),∇v(t,ξ )) = a(t)u(t,ξ )− c1(t)
v(t,ξ )u(t,ξ )

1+ v(t,ξ )

and

g2(t,u(t,ξ ),v(t,ξ ),∇u(t,ξ )) = c2(t)
u(t,ξ )v(t,ξ )
1+ |∇u(t,ξ )|

where ci ∈ L1
loc(R,R+) for i = 1,2 are the growth and the death terms,

due to interactions, of the preys and the predators respectively.

4.1. Concerning the abstract formulation

We consider the following Banach space X :=C0(Ω)×C0(Ω), equipped

with the given norm : ∥
(

ϕ

ψ

)
∥= ∥ϕ∥∞+∥ψ∥∞, where C0(Ω) is the space

of continuous functions ϕ : Ω←→ R such that ϕ|∂Ω = 0. We define the
closed linear operators (A(t),D(A(t))), t ∈ R, by A(t) :=

(
d1(t)∆ 0

0 d2(t)∆−b(t)

)
,

D(A(t)) =C2
0(Ω)×C2

0(Ω) := D
(18)

where C2
0(Ω) :=

{
ϕ ∈C0(Ω)∩H1

0 (Ω) : ∆ϕ ∈C0(Ω)
}

. See [19].

Therefore, the nonlinear term f : R×X −→ X is defined by

f (t,
(

ϕ

ψ

)
)(ξ ) =

(
g1(t,ϕ(ξ ),ψ(ξ ),∇ψ(ξ ))
g2(t,ϕ(ξ ),ψ(ξ ),ϕ(ξ ))

)
.

Hence, 17 takes the eventually abstract form equation 1:

u′(t) = A(t)u(t)+ f (t,u(t)), t ∈ R.
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4.2. Main results

For prove the existence and uniqueness of almost automorphic solutions to 1, we
consider the main hypotheses (H1)-(H4). We also prove that (A(t),D(A(t))), t ∈
R satisfy hypotheses (H1)-(H3). The operators A1(t) = d1(t)∆ and A2(t) =
d2(t)∆ are defined. The operator A0 := −∆ on C0(Ω) is defined in [12], is
sectorial with constant M ≥ 1 and angle of sectoriality θ ∈ (π

2 ,π) such that

∥λR(−λ ,A0)∥L(X) ≤M for all λ ∈ Σ0,θ . (19)

Then, using 19 and by assumptions on di , we claim that

∥λR(−λ ,Ai(t))∥= ∥
λ

di(t)
R(− λ

di(t)
,A0)∥ ≤M for all t ∈ R.

Then, for each t ∈ R, Ai(t) generates a bounded analytic semigroup (T i
t (τ))τ≥0

(with uniform bound M with respect to t and the same angle θ ) on C0(Ω) such
that

∥ T i
t (τ) ∥≤Me−d0

i λ1τ for τ ≥ 0, (20)

where λ1 := min{λ : λ ∈ σ(A0)}> 0 and σ(A0) is the spectrum of −∆ in
H1

0 (Ω) and M = eλ1|Ω|2/N(4π)−1
, see [10] for more details. Moreover,

sup
t,s∈R
∥Ai(t)Ai(s)−1∥= sup

t,s∈R

di(t)
di(s)

< ∞.

Furthermore, by

∥Ai(t)Ai(s)−1− IX∥= di(s)−1 |di(t)−di(s)| ≤ (d0
i )
−1 |di(t)−di(s)| ≤ Li|t− s|µ

where Li := L0,i(d0
i )
−1 with L0,i is the Hölder constants of di. Hence, by 5

one has, for each i = 1,2, (Ai(t))t∈R generates an evolution family (Ui(t,s))t≥s

on C0(Ω). We have, by 20, the semigroups (T i
t (τ))τ≥0 are hyperbolic with

projections P(t) = IX and Q(t) = 0, t ∈ R with

∥τAi(t)T i
t (τ)x∥ ≤Me−d0

i λ1τ for τ > 0.

So by taking φi(σ) := Me−d0
i λ1σ χσ>0 we obtain that Li∥φi∥1 := LiM(d0

i λ1)
−1.

Then, the condition LiM(d0
i λ1)

−1 < 1 yields that any evolution family Ui(t,s)
for t ≥ s, is hyperbolic with the same projection I0 and exponent δi satisfying

0 < δi < (d0
i λ1−LiM)/2M,
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and the associated Green functions Gi(t,s) =Ui(t,s), t ≥ s. Thus, the family of

matrix-valued operators
(

A1(t) 0
0 A2(t)

)
t∈R

generates the hyperbolic evolution

family(
V (t,s) =

(
U1(t,s) 0

0 U2(t,s)

))
t≥s

with projections
(

P(t) =
(

I0 0
0 I0

))
for t ∈R and exponent δ = min{δ1;δ2}. Moreover, by rescaling, we obtain that
the following hyperbolic evolution family generates by (A(t))t∈R(

U(t,s) =
(

U1(t,s) 0
0 e−

∫ t
s b(σ)dσU2(t,s)

))
t≥s

with projections
(

P(t) =
(

I0 0
0 I0

))
t∈R

and exponent

δ0 = min
(

igδ1;δ2 + |b|BS1
)
.

Hence, hypotheses (H1) and (H2) hold with Green function G(t,s) := U(t,s),
t ≥ s provided that LiM(d0

i λ
−2
1 )< 1. We need the following preliminary result

to check hypothesis (H3).

Lemma 4.1. ∀ i= 1,2, if Ai(·)∈AA(R,L(C2
0(Ω),C0(Ω))). Then, the associated

evolution family Ui(·, ·) is bi-almost automorphic.

Proof. Assume that ∀i = 1,2 ; Ai = ∈ AA(R,R). Then, for every sequence
(αk)k≥0 of real numbers, there exists a subsequence (sk)k≥0 ⊂ (αk)k≥0 such that lim

k→+∞

∥Ai(t + sk)−Ai(t)∥L(C2
0(Ω),C0(Ω)) = 0

lim
k→+∞

∥Ai(t− sk)−Ai(t)∥L(C2
0(Ω),C0(Ω)) = 0,

(21)

for all t ∈ R. For each i = 1,2 fixed and t,τ ∈ R, one has:

Ai(t)−1−Ai(t + τ)−1 = Ai(t + τ)−1(Ai(t + τ)−Ai(t))Ai(t)−1. (22)

It suffices to show that A−1
i (·) ∈ AA(R,L(C0(Ω))). Let ϕ ∈C0(Ω), one has:

∥Ai(t + sk)
−1

ϕ−Ai(t)−1
ϕ∥

= ∥Ai(t + sk)
−1(Ai(t + sk)−Ai(t))Ai(t)−1

ϕ∥
≤ ∥Ai(t + sk)

−1∥L(C0(Ω))∥Ai(t + sk)−Ai(t)∥L(C2
0(Ω),C0(Ω))∥Ai(t)−1

ϕ∥C2
0(Ω).

By 21 hence
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lim
k→+∞

∥Ai(t + sk)
−1

ϕ−Ai(t)−1
ϕ∥= 0

Arguing as above, we obtain that

lim
k→+∞

∥Ai(t− sk)
−1

ϕ−Ai(t)−1
ϕ∥= 0

Therefore, we have the following main result.

Proposition 4.2. Let di ∈ AA(R), i = 1,2 and b ∈ AAS1(R,R+). Then, for each(
ϕ

ψ

)
∈ X, the Green function G(·, ·)

(
ϕ

ψ

)
is bi-almost automorphic. Hence,

hypothesis (H3) is satisfied.

Proof. Since di ∈ AA(R,R+), it follows that Ai(·) ∈ AA(R,L(C2
0(Ω),C0(Ω)))

for i = 1,2. Then, by Lemma 4.1, we obtain that Ui(·, ·) are bi-almost auto-
morphic. Using the definitions of almost automorphic solutions we show that

e
−

∫ ·
·

b(σ)dσ
U2(·, ·) is bi-almost automorphic. Let (σn)n be any sequence of

real numbers, since b ∈ AAS1(R), we can find a subsequence (τn)n ⊂ (σn)n and
functions b̃ and Ũ2(·, ·) by definitions of almost automorphic solutions, for b and

U2(·, ·) respectively. Define the function e
−

∫ ·
·

b̃(σ)dσ
Ũ2(·, ·). Then, we obtain

that

∥e
−

∫ t+τn

s+τn

b(σ)dσ

U2(t + τn,s+ τn)− e
−

∫ t

s
b̃(σ)dσ

Ũ2(t,s)∥

≤ e
−

∫ t

s
b̃(σ)dσ

∥U2(t + τn,s+ τn)∥

∣∣∣∣∣∣∣e
−

∫ t

s

[
b(σ + τn)− b̃(σ)

]
dσ
−1

∣∣∣∣∣∣∣
+ e

−

∫ t

s
b̃(σ)dσ

∥U2(t + τn,s+ τn)−Ũ2(t,s)∥

≤ Me|b̃|BS1 (t−s)

∣∣∣∣∣∣∣e
−

∫ t

s

[
b(σ + τn)− b̃(σ)

]
dσ
−1

∣∣∣∣∣∣∣
+ e|b̃|BS1 (t−s)∥U2(t + τn,s+ τn)−Ũ2(t,s)∥.
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Thus, one has ∥U2(t + τn,s+ τn)−Ũ2(t,s)∥→ 0 as n→ ∞ and

e
−

∫ t

s

[
b(σ + τn)− b̃(σ)

]
dσ
≤ e

[t]

∑
k=[s]

∫ k+1

k
|b(σ + τn)− b̃(σ)|dσ

≤Cesupk
∫ k+1

k |b(σ+τn)−b̃(σ)|dσ(t−s)→ 1 as n→ ∞,

uniformly in t,s ∈ R, t ≥ s. Thus,

∥∥∥∥∥e
−

∫ t+τn

s+τn

b(σ)dσ

U2(t + τn,s+ τn)− e
−

∫ t

s
b̃(σ)dσ

Ũ2(t,s)

∥∥∥∥∥→ 0 as n→ ∞,

uniformly in t,s ∈ R, t ≥ s. Hence e
−

∫ ·
·

b(σ)dσ
U2(·, ·) is bi-almost auto-

morphic. Consequently, if we consider G̃(·, ·) =
(

Ũ1(·, ·) 0
0 e−

∫ ·
· b̃(σ)dσŨ2(·, ·)

)
.

Hence, for
(

ϕ

ψ

)
∈ X , we obtain

∥G(t + τn,s+ τn)

(
ϕ

ψ

)
− G̃(t,s)

(
ϕ

ψ

)
∥ ≤ ∥U1(t + τn,s+ τn)−Ũ1(t,s)∥∥ϕ∥∞

+ ∥e
−

∫ t+τn

s+τn

b(σ)dσ

U2(t + τn,s+ τn)− e
−

∫ t

s
b̃(σ)dσ

Ũ2(t,s)∥∥ψ∥∞→ 0 as n→ ∞,

uniformly in t,s ∈ R, t ≥ s. The result is proved.

Proposition 4.3. The function f satisfies (H4) with

Lρ(t) = a(t)+ c1(t)+(c1(t)+ c2(t))ρ, t ∈ R.

Proof. Let
(

ϕ1
ψ1

)
,

(
ϕ2
ψ2

)
∈ X and ρ > 0 be such that

∥∥∥(ϕ1
ψ1

)∥∥∥, ∥∥∥(ϕ2
ψ2

)∥∥∥≤ ρ .

Then, for g2 we have:
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|g2(t,ϕ1(ξ ),ψ1(ξ ))−g2(t,ϕ2(ξ ),ψ2(ξ )|

= c2(t)
∣∣∣ϕ1(ξ )ψ1(ξ )

1+ |ϕ1(ξ )|
− ϕ2(ξ )ψ2(ξ )

1+ |ϕ2(ξ )|

∣∣∣
= c2(t)

∣∣∣[ϕ1(ξ )ψ1(ξ )−ϕ2(ξ )ψ2(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)

]
+
[

ϕ1(ξ )ψ1(ξ )|ϕ2(ξ )|ϕ2(ξ )ψ2(ξ )|ϕ1(ξ )|
(1+ |ϕ1(ξ )|)(1+ |ϕ2(ξ )|)

]∣∣∣
= c2(t)

∣∣∣ ψ2(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)
(ϕ1(ξ )−ϕ2(ξ ))

+
ϕ1(ξ )

(1+ |ϕ2(ξ )|)((1+ |ϕ1(ξ )|))
(ψ1(ξ )−ψ2(ξ ))

+
ϕ1(ξ )ψ1(ξ )

(1+ |ϕ1(ξ )|)(1+ |ϕ2(ξ )|)
(|ϕ2(ξ )|− |ϕ1(ξ )|)

+
|ϕ1(ξ )|(ϕ1(ξ )ψ1(ξ )−ϕ2(ξ )ψ2(ξ ))

(1+ |ϕ1(ξ )|)(1+ |ϕ2(ξ )|)

∣∣∣
= c2(t)

∣∣∣ ψ2(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)
(ϕ1(ξ )−ϕ2(ξ ))

+
ϕ1(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)
(ψ1(ξ )−ψ2(ξ ))

+
ϕ1(ξ )ψ1(ξ )

(1+ |ϕ1(ξ )|)(1+ |ϕ2(ξ )|)
(|ϕ2(ξ )|− |ϕ1(ξ )|)

∣∣∣
= c2(t)

∣∣∣ ψ2(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)
(ϕ1(ξ )−ϕ2(ξ ))

+
ϕ1(ξ )ψ1(ξ )

(1+ |ϕ2(ξ )|)(1+ |ϕ1(ξ )|)
(|ϕ1(ξ )−ϕ2(ξ )|)

+
ϕ1(ξ )

(1+ |ϕ1(ξ )|)(1+ |ϕ2(ξ )|)
(ψ1(ξ )−ψ2(ξ ))

∣∣∣
≤ c2(t)(ρ2 +ρ)(|ϕ1−ϕ2|)+ c2(t)ρ(|ψ1−ψ2|)
≤ c2(t)(ρ2 +ρ)(|ϕ1−ϕ2|+ |ψ1−ψ2|)

≤ c2(t)(ρ2 +ρ)
∥∥∥(ϕ1

ψ1

)
−
(

ϕ2
ψ2

)∥∥∥, ξ ∈Ω, t ∈ R.

Arguing as above, we have that

|g1(t,ϕ1(ξ ),ψ1(ξ ),∇ϕ1(ξ ))−g1(t,ϕ2(ξ ),ψ2(ξ ),∇ϕ2(ξ ))|

≤ (a(t)+ c1(t)(ρ +1))∥
(

ϕ1
ψ1

)
−
(

ϕ2
ψ2

)
∥,
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for ξ ∈Ω, t ∈ R. Then, we have that∥∥∥ f (t,
(

ϕ1
ψ1

)
)− f (t,

(
ϕ2
ψ2

)
)
∥∥∥≤ (a(t)+ c1(t)+(c1(t)+ c2(t))ρ + c2(t)ρ2)
×
∥∥∥(ϕ1

ψ1

)
−
(

ϕ2
ψ2

)∥∥∥
for every t ∈ R. Therefore, f satisfies (H4) with Lρ(t) = a(t)+ c1(t)+(c1(t)+
c2(t))ρ + c2(t)ρ2.

By Theorem 3.6, we deduce the following result.

Theorem 4.4. Under the above assumptions, if Lρ is small enough, then equa-
tion 17 has a unique µ-pseudo almost automorphic solution.
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