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APPROXIMATION PROPERTIES OF CERTAIN MODIFIED

SZASZ-MIRAKYAN OPERATORS

LUCYNA REMPULSKA - ZBIGNIEWWALCZAK

We introduce certain modi�ed Szasz - Mirakyan operators in exponen-
tial weighted spaces of functions of one variable. We give theorems on the
degree of approximation and the Voronovskaya type theorem.

1. Introduction.

1.1. Let q > 0 be a �xed number,

(1) νq (x ) := e−qx , x ∈ R0 := [0, +∞),

and let Cq be the space of all real-valued functions f continuous on R0 for
which νq f is uniformly continuous and bounded on R0 and the norm is de�ned
by the formula

(2) � f �q ≡ � f (·)�q := sup
x∈R0

νq (x )| f (x )|.

Cq is called exponential weighted space ([1]).
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In the paper [1] were examined approximation properties of the Szasz-
Mirakyan operators

(3) Sn( f ; x ) :=

∞�

k=0

ϕk(nx ) f (k/n), x ∈ R0, n ∈ N := {1, 2, . . .},

for functions f ∈Cq , where

(4) ϕk(t) := e−t t
k

k!
, t ∈ R0, k ∈ N0 := N ∪ {0}.

In [1] was proved that Sn is a positive linear operator from the space Cq into Cr

provided that r > q > 0 and n > n0, where n0 is a �xed natural number such
that n0 > q/ln(r/q). For example: the function l/νq, q > 0, belongs to Cq , but
Sn(l/νq ; ·) /∈ Cq for n ∈ N .

1.2. Denote by Bq, q > 0, the space of all real-valued functions f de�ned on
R0 for which νq f is bounded function on R0 and the norm is given by (2).
Hence

(5) Cq ⊂ Bq ⊂ Br , for r > q > 0.

In this paper we modify the operator Sn given in (3). We introduce the operator
Sn[ f ; q], q > 0, n ∈ N , which (see Lemma 1 and (5)) is a positive linear
operator from the space Cq into Cq .

De�nition. Let q > 0 be a �xed number. For functions f ∈ Bq and n ∈ N we
de�ne operators

(6) Sn[ f ; q](x ) ≡ Sn( f ; q; x ) :=

∞�

k=0

ϕk(nx ) f (k/(n + q)), x ∈ R0,

where ϕk(·) is given in (4).

By elementary calculations we get from (6):

(7) Sn(1; q; x ) = 1,

(8) Sn(t − x; q; x ) = −qx/(n + q),

(9) Sn

�
(t − x )2; q; x

�
=

�
q2x 2 + nx

�
/(n + q)2,
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(10) Sn

�
(t − x )4; q; x

�
=

�
q4x 4 + 6q2nx 3 + (3n − 4q)nx 2 + nx

�
/(n + q)4,

for all x ∈ R0, n ∈ N and for every �xed q > 0. Moreover we have

(11) Sn

�
eqt ; q; x

�
= eqn x ,

Sn

�
teqt ; q; x

�
=

nx

n + q
eq/(n+q)eqn x ,

Sn

�
t2eqt ; q; x

�
=

nx

(n + q)2
eq/(n+q)

�
nxeq/(n+q) + 1

�
eqnx ,

for x ∈ R0 and n ∈ N , where

(12) qn := n
�
eq/(n+q) − 1

�
.

Next properties of Sn[ f ; q] we shall give in Section 2. Main theorems will be
given in Section 3.

2. Lemmas.

Applying (11)�(12) and (2), we shall prove two main lemmas.

Lemma 1. Let q > 0 be a �xed number. Then

(13)
�
�
�Sn

�
1/νq ; q

��
�
�
q

≤ 1, n ∈ N.

Moreover

(14)
�
�
�Sn

�
f ; q

��
�
�
q

≤ � f �q,

for every f ∈ Bq and n ∈ N.

The formulas (1)�(6) and the inequality (14) show that Sn[ f ; q], n ∈ N, is
a positive linear from the space Bq into Cq .
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Proof. For n ∈ N and q > 0 we have

0 < eq/(n+q) − 1 <

∞�

k=1

�
q

n + q

�k

=
q

n
,

which by (12) implies 0 < qn < q for all n ∈ N . From this and by (11) and (1)
we get

νq (x )Sn

�
1/νq (t); q; x

�
= eqn−q)x ≤ 1 for x ∈ R0, n ∈ N,

and by (2) follows (13).
For f ∈ Bq we get from (6) and by (2) and (13)

�Sn[ f : q]�q ≤ � f �q

�
�
�Sn

�
1/νq ; q

��
�
�
q

≤ � f �q, n ∈ N.

Thus the proof is completed. �

Lemma 2. For every �xed q > 0 and for all x ∈ R0 and n ∈ N we have

(15) νq (x )Sn

�
(t − x )2

νq (t)
; q; x

�

≤
4e2q2x 2

(n + q)2
+

3x

n + q
.

Proof. From (11)�(12) it follows that

Sn

�
(t − x )2eqt ; q; x

�
=

�

x 2

�
n

n + q
eq/(n+q) − 1

�2

+
nx

(n + q)2
eq/(n+q)

�

eqnx ,

for x ∈ R0 and n ∈ N . By the inequality et − 1 ≤ tet for t ≥ 0, we get
�

n

n + q
eq/(n+q) − 1

�2

≤ 2

��
n

n + q
− 1

�2

e2q/(n+q) +
�
eq/(n+q) − 1

�2
�

≤

≤
4q2

(n + q)2
e2q/(n+q) <

4e2q2

(n + q)2
for n ∈ N.

From the above and by (13) we easily obtain (15). �

From (8)�(10) we obtain

Lemma 3. Assuming that q > 0 is a �xed number, we have

lim
n→∞

nSn(t − x; q; x ) = −qx , lim
n→∞

nSn((t − x )2; q; x ) = x ,

lim
n→∞

n2Sn((t − x )4; q; x ) = 3x 2,

for every x ∈ R0.
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3. Theorems.

3.1. First we shall give two theorems on point-convergence of the sequence�
Sn( f ; q; ·)

�∞
1
.

Theorem 1. Suppose that f ∈ Bq with a �xed q > 0 and let x0 ∈ R0 be a point
of continuity of f . Then

(16) lim
n→∞

Sn( f ; q; x0) = f (x0).

Proof. From (6) we get

(17) Sn( f ; q; 0) = f (0), n ∈ N.

If x0 > 0, then by (6) and (7) we have

Sn( f ; q; x0)− f (x0) =

∞�

k=0

ϕk(nx0)
�
f
�
k/(n + q)

�
− f (x0)

�
, n ∈ N.

Choose ε > 0. By our assumptions there exists δ = δ(ε; x0) > 0 such that

| f (k/(n + q)) − f (x0| < ε/2 if |k/(n + q)− x0| < δ.

Denoting by Z1 = {k ∈ N0 : |k/(n + q) − x0| < δ}, Z2 = {k ∈ N0 :
|k/(n + q)− x0| ≥ δ} we can write

νq (x0)|Sn( f ; q; x0)− f (x0)| ≤

�
�

k∈Z1

+
�

k∈Z2

�

νq (x0)ϕk(nx0)| f (k/(n + q))−

− f (x0)| :=
�

1
+

�

2

and
�

1
<

ε

2

∞�

k=0

ϕk(nx0) =
ε

2
, n ∈ N.

If k ∈ Z2, then 1 ≤ δ−2(k/(n + q)− x0)
2. Moreover for f ∈ Bq we have

| f (k/(n + q)) − f (x0)| ≤ � f �q

�
eqk/(n+q) + eqx0

�
, k ∈ N0, n ∈ N.
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Hence

�

2
≤ � f �qδ

−2νq (x0)
�

k∈Z2

ϕk(nx0

�
eqk/(n+q) + eqx0

�
(k/(n + q)− x0)

2 ≤

≤ � f �qδ
−2

�
eqx0 Sn

�
eqt (t − x0)

2; q; x0

�
+ Sn

�
(t − x0)

2; q; x0

��
.

Applying (9) and (15), we get

�

2
≤ � f �qδ

−2

�
(4e2 + 1)q2x 20
(n + q)2

+
4x0

n + q

�

, n ∈ N.

It is obvious that for �xed positive x0, δ and � f �q there exists n0 ∈ N such that

�

2
<

ε

2
for all n > n0.

Consequently,

(18) e−qx0 |Sn( f ; q; x0)− f (x0)| < ε for n > n0.

From (17) and (18) follows (16). �

Analogously as Theorem 1 we obtain

Theorem 2. Suppose that f ∈ B2q with a �xed q > 0 and let x0 ∈ R0 be a point
of continuity of f . Then assertion (16) is satis�ed.

Theorems 1 and 2 imply

Corollary 1. If f ∈Cq or f ∈C2q with a �xed q > 0, then

(19) lim
n→∞

Sn( f ; q; x ) = f (x ), x ∈ R0.

3.2. Now we shall given two theorems on the degree of approximation. Let
ω1( f ;Cq ; ·) and ω2( f ;Cq ; ·) be the modulus of continuity and the modulus of
smoothness of f ∈Cq , q > 0, i.e.,

ω1( f ;Cq ; t) := sup
0≤h≤t

��h f (·)�q, ω2( f ;Cq ; t) := sup
0≤h≤t

�
�
��2

h f (·)
�
�
�
q
,

for t ≥ 0, where

�h f (x ) := f (x + h)− f (x ), �2
h f (x ) := f (x )− 2 f (x + h)+ f (x + 2h)
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for x , h ∈ R0. Let for �xed m ∈ N and q > 0

Cm
q =

�
f ∈Cq : f

(k) ∈Cq , k = 1, 2, . . . ,m
�
,

and let

(20) ψ(x ) := (1+ x 2)−1, x ∈ R0,

(21) λn,q :=

�
1+ q

n + q

�1/2

, n ∈ N, q > 0.

Theorem 3. Suppose that f ∈C2q with a �xed q > 0. Then

(22) �{Sn[ f ; q]− f }��q ≤
q

n + q

�
�
� f �

�
�
�
q

+
�
4e2 + 1

��
�
� f ��

�
�
�
q
λ2n,q

for all n ∈ N.

Proof. Let x ∈ R0 be a �xed point. Then for f ∈C2q and t ∈ R0 we can write

f (t) = f (x )+ f �(x )(t − x )+

� t

x

� s

x

f ��(u) duds,

which implies

f (t) = f (x )+ f �(x )(t − x )+

� t

x

(t − u) f ��(u)du.

From this and by (7) we deduce that

Sn( f (t); q; x ) = f (x )+ f �(x )Sn(t − x; q; x )+ Sn

� � t

x

(t −u) f ��(u) du; q; x

�

,

n ∈ N .

But by (1) and (2),
�
�
�
�
�

� t

x

(t − u) f ��(u) du

�
�
�
�
�
≤

�
�
� f ��

�
�
�
q

�
1

νq (t)
+

1

νq (x )

�

(t − x )2.

From the above and by (9) and (15) it follows that

νq (x )|Sn( f (t); q; x )− f (x )| ≤
�
�
� f �

�
�
�
q
|Sn(t − x; q; x )|+

+
�
�
� f ��

�
�
�
q

�

νq (x )Sn

�
(t − x )2

νq(t)
; q; x

�

+ Sn

�
(t − x )2; q; x

�
�

≤

≤
�
�
� f �

�
�
�
q

qx

n + q
+

�
�
� f ��

�
�
�
q

��
4e2 + 1

�
q2x 2

(n + q)2
+

4x

n + q

�

for n ∈ N , which by (2) and (20) and (21) yields (22). �
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Theorem 4. Assume that f ∈Cq with a �xed q > 0. Then

(23) �{Sn[ f ; q]− f }��q ≤
M1

√
n + q

ω1( f ;Cq ; λn,q )+

+ (11+ 36e2)ω2( f ;Cq ; λn,q )

for all n ∈ N, where M1 =
�
5q/

√
1+ q

�
exp

�
q + q2 and λn,q is de�ned by

(21).

Proof. As in [1] we shall use the Stieklov function fh of f ∈Cq :

fh (x ) :=
4

h2

� h/2

0

� h/2

0

�
2 f (x+s+t)− f (x+2(s+t))

�
dsdt, x ∈ R0, h > 0.

From this we get

f �
h (x ) =

1

h2

� h/2

0

�
8�h/2 f (x + s)− 2�h f (x + 2s)

�
ds,

f ��
h (x ) = h−2

�
8�2

h/2 f (x )− �2
h f (x )

�
,

and consequently fh ∈C2q if f ∈Cq . Moreover, for h > 0, we have

(24) � fh − f �q ≤ ω2( f ;Cq ; h),

(25)
�
�
� f �

h

�
�
�
q

≤ 5eqhh−1ω1( f ;Cq ; h),

(26)
�
�
� f ��

h

�
�
�
q

≤ 9h−2ω2( f ;Cq ; h),

Hence we can write

(27) �{Sn[ f ; q]− f }��q ≤ �{Sn[ f − fh ; q]− f }��q +

+ �{Sn[ fh ; q]− fh }��q + �{ fh − f }��q

for n ∈ N, h > 0. By (20), (14) and (24), we get

(28) �{Sn[ f − fh ; q]}��q ≤ � f − fh�q ≤ ω2( f ;Cq ; h),
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for n ∈ N and h > 0. Applying Theorem 3 and (25) and (26), we get

(29) �{Sn[ fh ; q]− fh }��q ≤
q

n + q

�
�
� f �

h

�
�
�
q
+

�
4e2 + 1

��
�
� f ��

h

�
�
�
q
λ2n,q ≤

≤
5qeqh

h(n + q)
ω1( f ;Cqh)+ 9(4e2 + 1)h−2λ2n,qω2( f ;Cqh)

for n ∈ N and h > 0. Collecting (24), (28) and (29), we obtain from (27)

�{Sn[ f ; q]− f }��q ≤
5qeqh

h(n + q)
ω1

�
f ;Cq ; h

�
+

+
�
2+ 9

�
4e2 + 1

�
h−2λ2n,q

�
ω2

�
f ;Cq ; h

�

for all n ∈ N and h > 0. Now setting h = λn,q , for �xed n ∈ N and q > 0, we
obtain (23). �

Theorem 4 implies the following

Corollary 2. If f ∈Cq , q > 0, then

lim
n→∞

{Sn( f ; q; x )− f (x )} = 0

uniformly on every interval
�
x1, x2

�
, x2 > x1 ≥ 0.

Corollary 3. If f ∈ Cq with a �xed q > 0 and if ω2( f ;Cq ; t) = O(tα) for a
�xed 0 < α ≤ 2, then there exists positive constant M2(q, α), depending only
on q and α, such that

�{Sn[ f ; q]− f }��q ≤ M2(q, α) · (n + q)−α/2

for all n ∈ N.

3.3. Applying Lemma 3 and Theorem 2, we shall prove the Voronovskaya type
theorem.

Theorem 5. Let f ∈C2q with a �xed q > 0. Then

(30) lim
n→∞

n{Sn( f ; q; x )− f (x )} = −qx f �(x )+
x

2
f ��(x )

for every x ∈ R0.
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Proof. By (17) follows (30) for x = 0. Choosing x > 0, we have by the Taylor
formula for f ∈C2q :

f (t) = f (x )+ f �(x )(t − x )+
1

2
f ��(x )(t − x )2 + ε1(t; x )(t − x )2, t ∈ R0,

where ε1(t) ≡ ε1(t; x ) is a function belonging to Cq and ε1(x ) = 0. From this
and by (7) we get

Sn( f ; q; x ) = f (x )+ f �(x )Sn(t − x; q; x )+

+
1

2
f ��(x )Sn((t − x )2; q; x )+ Sn

�
ε1(t)(t − x )2; q; x

�
,

which by Lemma 3 yields

(31) lim
n→∞

n{Sn( f ; q; x )− f (x )} = −qx f �(x )+
x

2
f ��(x )+

+ lim
n→∞

nSn

�
ε1(t)(t − x )2; q; x

�
.

By the Hölder inequality we have
�
�
�Sn

�
ε1(t)(t − x )2; q; x

��
�
� ≤

�
Sn

�
ε21(t); q; x

��1/2�
Sn

�
(t − x )4; q; x

��1/2
,

for n ∈ N . Since ε21 ∈C2q , we get by Theorem 2

lim
n→∞

Sn

�
ε21(t); q; x

�
= ε21(x ) = 0.

From this and by Lemma 3 we deduce that

lim
n→∞

nSn

�
ε1(t)(t − x )2; q; x

�
= 0

and from (31) follows (30). �

3.4. Now we shall give some properties of derivatives (Sn[ f ; q])
(r), r ∈ N .

Theorem 6. Suppose that f ∈ Bq with a �xed q > 0. Then Sn[ f ; q] ∈C∞
q for

every �xed r ∈ N and n ∈ N

(32)
�
�
�(Sn[ f ; q])

(r)
�
�
�
q

≤ nr
�
�
��r

1/(n+q) f (·)
�
�
�
q
,

where

(33) �r
h f (x ) :=

r�

k=0

�
r

k

�

(−1)r−k f (x + kh).
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Proof. From (6) we derive the formula

d

dx
Sn( f (t); q; x ) = −nSn( f (t); q; x )+ nSn( f (t + 1/(n + q)); q; x ) =

= nSn(�1/(n+q) f (t); q; x )

and next for every r ∈ N we have

(34)
dr

dxr
Sn( f (t); q; x ) = nr Sn

�
�r
1/(n+q) f (t); q; x

�
, x ∈ R0, n ∈ N,

where �r
h f (·) is de�ned by (33). Applying Lemma 1, we immediately obtain

(32) from (34). �

Corollary 4. Assuming as in Theorem 6, we obtain from (32) and (33) and (2)

�
�
�(Sn[ f ; q])

(r)
�
�
�
q

≤
�
1+ eq/(n+q)

�r

nr� f �q,

for n, r ∈ N.

Formulas (7) and (34) imply the following

Corollary 5. Let f ∈Cq , q > 0. Then

(a) if f is a increasing (decreasing) function on R0, then Sn( f ; q; ·), n ∈ N, is
also increasing (decreasing) on R0;

(b) if f is a convex (concave) function on R0 , then Sn( f ; q; ·), n ∈ N, is also
convex (concave) on R0 .

Finally we shall prove analogy of Theorem 1 for �rst derivate.

Theorem 7. Suppose that f ∈ Bq, q > 0, and for given x0 > 0 there exists
f �(x0). Then

(35) lim
n→∞

(Sn[ f ; q])
�(x0) = f �(x0).

Proof. By assumptions on f we have

(36) f (t) = f (x0)+ f �(x0)(t − x0)+ ε2(t; x0)(t − x0),

for t ∈ R0, where ε2 is function continuous at x0 and ε2 ∈ Bq .
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From (6) it follows that

(37) (Sn[ f ; q])
�(x ) = −nSn( f (t); q; x )+

n + q

x
Sn(t f (t); q; x ) =

= qSn( f (t); q; x )+
n + q

x
Sn((t − x ) f (t); q; x ),

for x > 0 and n ∈ N . By (36) and (37) we get

(38) (Sn[ f ; q])
�(x0) = f (x0)

�
n + q

x0
Sn(t − x0; q; x0)+ q

�

+

+ f �(x0)

�
n + q

x0
Sn((t − x0)

2; q; x0) + qSn(t − x0; q; x0)

�

+

+ qSn(ε2(t)(t − x0); q; x0 +
n + q

x0
Sn(ε2(t)(t − x0)

2; q; x0).

Properties of ε2 and Theorem 2 imply that

(39) lim
n→∞

Sn(ε2(t)(t − x0); q; x0) = 0.

Arguing analogously as in the proof of Theorem 5, we get

(40) lim
n→∞

nSn(ε2(t)(t − x0)
2; q; x0) = 0.

Applying (8), (9), (39) and (40), we obtain (35) from (38). �
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40 (1978), pp. 319�333.

[2] R.A. De Vore - G. G. Lorentz, Constructive Approximation, Springer-Verlag,
Berlin, 1993.

Institute of Mathematics,
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