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APPROXIMATION PROPERTIES OF CERTAIN MODIFIED
SZASZ-MIRAKYAN OPERATORS

LUCYNA REMPULSKA - ZBIGNIEW WALCZAK

We introduce certain modified Szasz - Mirakyan operators in exponen-
tial weighted spaces of functions of one variable. We give theorems on the
degree of approximation and the Voronovskaya type theorem.

1. Introduction.

1.1. Let ¢ > O be a fixed number,
(1 vy(x) :=e 7, xeRy:=[0,400),
and let C, be the space of all real-valued functions f continuous on R, for

which v, f is uniformly continuous and bounded on Ry and the norm is defined
by the formula

2 1fllg = 1FOllg == sup vg ()] f ()]

X€ERy

C, is called exponential weighted space ([1]).
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In the paper [1] were examined approximation properties of the Szasz-
Mirakyan operators

B Su(fix) =) @) fGk/n)., xeRouneN:={1.2..],
k=0

for functions f € C,, where
£k
“ or(t) := e‘fﬁ, t€ Ry, keNy:=NU{O0}.

In [1] was proved that S, is a positive linear operator from the space C, into C,
provided that » > g > 0 and n > ng, where ng is a fixed natural number such
that ng > ¢g/In(r/q). For example: the function 1/v,, ¢ > 0, belongs to C,, but
Sa(/vy; )¢ Cy forn e N.

1.2. Denote by B,, g > 0, the space of all real-valued functions f* defined on
Ry for which v, f is bounded function on Ry and the norm is given by (2).
Hence

®)) C, CB,CB, forr>gqg=>0.

In this paper we modify the operator S, given in (3). We introduce the operator
S.lf:ql,g > 0,n € N, which (see Lemma 1 and (5)) is a positive linear
operator from the space C, into C, .

Definition. Let g > 0 be a fixed number. For functions f € B, and n € N we
define operators

6)  Sulf:ql(x) = Su(fiq:0) =Y @u(nx)f(k/(n +q)). x€Ro,
k=0
where @i (-) is given in (4).

By elementary calculations we get from (6):

(N S.(1;g;x) =1,
®) Sa(t —x5q;x) = —qx/(n +q),

© Si((0 =275 g:x) = (4% + nx) /0 + )"
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(10) S, ((t — x)4; q; x) = (q4x4 + 6qznx3 + (3n — 4q)nx2 + nx)/(n + q)4,

for all x € Ry, n € N and for every fixed ¢ > 0. Moreover we have

(11) S,,(eqt; 7 x) — B
n+gq
S,,<t2eqt; q; x) — Leq/(wq){nxeq/(wq) + l}eq”x’
(n+ q)?
for x € Ry and n € N, where
(12) Gn 1= n<eq/(n+q) _ 1).

Next properties of S,[f; g] we shall give in Section 2. Main theorems will be
given in Section 3.

2. Lemmas.
Applying (11)—(12) and (2), we shall prove two main lemmas.

Lemma 1. Let g > 0 be a fixed number. Then

(13) ‘S,,[l/vq;q]”qfl, nen.
Moreover
(14) si[r:a]|, <1500

forevery f € B, andn e N.

The formulas (1)—(6) and the inequality (14) show that S,[f; ql,n€ N, is
a positive linear from the space B, into C,.
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Proof. Forn e N and g > 0 we have

o k
0<eq/(”+q)—1<Z( j_ ) "
n+gq n

k=1
which by (12) implies 0 < ¢, < ¢ for all n € N. From this and by (11) and (1)
we get

vq(x)S,,<1/vq(t); q; x) =i 9% <1 forxeRy,neN,

and by (2) follows (13).
For f € B, we get from (6) and by (2) and (13)

IS 2y < 1N [S:[1 vz ]| < s mew.

Thus the proof is completed. ]

Lemma 2. For every fixed ¢ > 0 and for all x € Ry and n € N we have

(15) b ()8 (t—x)z. ) <4e2q2x2+ 3x
98 v, (1) b T (n+q9? n+q

Proof. From (11)—(12) it follows that

2
n nx
S,,( r— x)%ed; ;x) =X ——e?/HD _ 1| 4 —— 2/t D L
(areta n+q (n+q)

for x € Ry and n € N. By the inequality ¢’ — 1 < te’ for ¢ > 0, we get

2 2
M o ) <ol [ ) e o (eq/<n+q> _ 1)2 -
n—+q - n+gq -

2 2.2
<M g _ 44
T (n+q)? (n+q)*
From the above and by (13) we easily obtain (15). [l

From (8)—(10) we obtain

Lemma 3. Assuming that q > 0 is a fixed number, we have

for ne N.

lim nS,(t —x;q;x) = —gx, lim nS,((t — x)%; q;x)=x,
n—o00 n—oo

lim 7%S,((t — x)*; q; x) = 3x2,

n—oo

for every x € Ry.
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3. Theorems.

3.1. First we shall give two theorems on point-convergence of the sequence
o0
(Su(f3q:9), -

Theorem 1. Suppose that f € B, with a fixed g > 0 and let xo € Ry be a point
of continuity of f. Then

(16) lim S,(f: ¢; x0) = f(x0).

Proof. From (6) we get
(17) Sa(f3q;0)= f(0), neN.

If xo > 0, then by (6) and (7) we have

Su(fs q: X0) = f(x0) = Y _ gu(nxo)(f (k/(n + @) — f(x0)), neN.
k=0
Choose ¢ > 0. By our assumptions there exists § = §(¢; x¢) > 0 such that
|f(k/(n+¢q)) — fxol <€/2 if |k/(n+q)—xo|l <3.
Denoting by Z; = (ke Ny : |k/(n + q) — xo| < 6},Zr, = {k e Ny :

lk/(n + q) — xo| > 8} we can write

vy (X0)|Sa(f 45 %0) = f(x0)| < ( S+ )vq(xo)<pk(nxo>|f(k/<n +q)—

keZ, keZ,

—f@El =)+,

and
£ — &
E < Ekgzo(pk(nxo)za, neN.

If k€ Zp, then 1 < 8§72(k/(n + q) — x0)*. Moreover for f € B, we have

£/ +a) = F0l < 11 (7 +¢7), ke No,neN.
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Hence

>, S 1087200 00) 3 gt/ + 7 )k + ) — x0)* =

keZ,

< ||f||q5_2{e‘”° Sy (e‘”(t —x0)% ¢; xO) + S, ((t — x0)%; q; xO)}-

Applying (9) and (15), we get

4e? + 1)g°x? 4x
szllfllq5_2<( a7 | ) e,

(n+ q)? n+gq

It is obvious that for fixed positive xo, § and || f ||, there exists ng € N such that
e
E < — for all n > ng.
22

Consequently,
(18) e Su(f: g5 x0) — f(x0)l <& for n > ny.

From (17) and (18) follows (16). O
Analogously as Theorem 1 we obtain

Theorem 2. Supposethat f € By, witha fixed g > 0 and let xo € Ry be a point
of continuity of f. Then assertion (16) is satisfied.

Theorems 1 and 2 imply
Corollary 1. If f € C, or f € Cyy with a fixed q > 0, then

(19) lim S,(f5¢;x) = f(x), x€&Ro.

3.2. Now we shall given two theorems on the degree of approximation. Let
w1(f; Cyq; -) and wy(f; Cy; -) be the modulus of continuity and the modulus of
smoothness of f €C,, g >0, 1i.e.,

01(f1 Cit)i= sup 1AL F Oy, n(f: Cpin)i= sup [AZF)]

9
0<h<t 0<h<t q

for ¢t > 0, where

Apf@) = fx+h)— f(x), Apf(x):= f(x)—2f(x+h)+ f(x +2h)
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for x, h € Ry. Let for fixed me N and g > 0
cr={rec,: fYec k=1,2..,m,

and let
(20) Y(x):=(1+x)"", xeR,,
14 1/>
q

21 Ang = , €N, 0.
1) " (n+q> neN,q >
Theorem 3. Suppose that f € C; with a fixed g > 0. Then

. _ q / 2 )H " 2
) WSLfa) = AVl = |+ (s )] 2

forallneN.
Proof. Let x € Ry be a fixed point. Then for f € C; and r € Ry we can write

f@O) = fx)+ f/o@ —X)+/ / f"(w)duds,
which implies
f@) = fx)+ f(x)t —x) +/ (t —u) f"(w)du.
From this and by (7) we deduce that
Su(f@); ;%) = f)+ f/(xX)S(t — x; q;x)+Sn(f (t —u) f"(u) du; q;x),

neN.
But by (1) and (2),

=|

! 1 1

(t —u)f"(u)du ! + (t —x)%
~/x f f ‘I(Vq(t) Vq(x)>
From the above and by (9) and (15) it follows that

Y OISHF0: g3 %) = @) < | 1

(t — x)?
q{w(ﬂ&(m; q; x) + Sn((t —x)% g x)} <

4e? + l)qzx2

/ X " ( 4x

< 7| Z+]s —
gn+q q (n+q) n+gq

for n € N, which by (2) and (20) and (21) yields (22). [l

[S.(t — x5 q; x)|+
q

A
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Theorem 4. Assume that f € C, with a fixed g > 0. Then

M
(23) IS.Lf5 g1 — FY¥l, < ﬁm(ﬁ Cyi hng) +

+ (11 4 36e*)wr(f; Cy Ang)

foralln e N, where My = <5q/«/1 + q) expv/q +q*> and X, is defined by
21).

Proof. As in [1] we shall use the Stieklov function f, of f € C,:

4 /2 ph/2
fn(x) = h_2/ / [2f(x+s+t)—f(x+2(s+t))] dsdt, xe Ry, h>0.
0 0

From this we get
1 h/>
fh’(x): h_2/ [SAh/zf(x+s)—2Ahf(x+2s)} ds,
0

100 =17 [8ALpf () = AL £,
and consequently f;, € qu if f € C,. Moreover, for h > 0, we have

(24) fn = fllg = @2(f5 Cgs h),

(25) |

fil <35e"n i (f; Cys b,

q

1"

26) |

<9 2wy(f; Cys h),
q
Hence we can write
(27) 1{SaLf5q]l = fIV¥g < I{SalS — fur q) — fIWIl, +

+ I1{Sulfns g1 = S} llg + 1/ — I,
forne N, h > 0. By (20), (14) and (24), we get

(28) I{SaLf = fus a3Wllg < ILf = fullg = @2(f5 Cgi h),
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for n € N and h > 0. Applying Theorem 3 and (25) and (26), we get

q
n+gq

2
A<
ng —
q q

(29) ”{Sn[fh;Q]_fh}qJ”q =

|5

1 (4e2 + 1) ” A
q

qh
- S5qe
h(n +q)
for n € N and h > 0. Collecting (24), (28) and (29), we obtain from (27)

wi(f: Cqh) + 9(4e® + Dh A} jan(f; Cyh)

1S.0F5 a1 — 1], < hfj—f}’q)wl (FiCosh)+
+{2+9(4e +1)n22 Joa (£: Cpi )

forall n€ N and h > 0. Now setting h = A, 4, for fixed n € N and g > 0, we
obtain (23). U

Theorem 4 implies the following

Corollary 2. If f €Cy,q > 0, then
1im (5,3 ¢: %) — f(@)} =0
uniformly on every interval [xl, xz], X, >x1>0.
Corollary 3. If f € C, with a fixed q > 0 and if w,(f; Cy;t) = O(t%) fora

fixed 0 < a < 2, then there exists positive constant M»(q, o), depending only
on q and «, such that

1SaLf3 g1 — fIWl, < Ma(q, &) - (n + q) ™"

forallne N.

3.3. Applying Lemma 3 and Theorem 2, we shall prove the Voronovskaya type
theorem.

Theorem 5. Let f € C; with a fixed q > 0. Then

(30) lim (8,02 q: %) = () = =qxf () + 3 17(0)

for every x € Ry.
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Proof. By (17) follows (30) for x = 0. Choosing x > 0, we have by the Taylor
formula for f € C;:

1
f@O=f)+ f1 =x)+ 3£ () = x)* + e1(t; X)(t — x)*, t € Ry,

where ¢(t) = ¢(¢; x) is a function belonging to C, and ¢;(x) = 0. From this
and by (7) we get

Sa(frq;x) = f)+ f/(xX)Su(t — x: g5 %) +
1

SIS = 20% g0 + S, (810 —1)% g x).
which by Lemma 3 yields
G lim alS,(£:4: %) — [} = —qxf () + 5100 +

+ lim nS,,(el(t)(t — g x).
By the Holder inequality we have
1/2 1/>

Si(a100 =0 5 x)| = {su(30r a5 x) | s =0t g x) )

for n € N. Since 8% € Cy4, we get by Theorem 2

lim S,,(3(0: g: x) = &2(x) = 0.
n—oo

From this and by Lemma 3 we deduce that
lim nS,,(sl(t)(t — g x) —0
n—oo

and from (31) follows (30). O

3.4. Now we shall give some properties of derivatives (S,[ f; )", r € N.

Theorem 6. Suppose that f € B, with a fixed g > 0. Then S,[f; q] € C° for
every fixedr e N and n e N

(32) [CAVERDG e RN YMBYIC]
where
(33) AL f(x) = Z (;)(—1)’_"]‘()6 + kh).

k=0
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Proof. From (6) we derive the formula

d
ES,I(f(t); q; x) = —nS,(f(t); q; x) + nS,(ft +1/(n + q)); q; x) =

= nSy(A1/nrq) f(0); q; X)

and next for every r € N we have

dr
G4 =S g0 = nrsn(A?/<n+q>f ) ¢ x), X €Rp,neN,

where A} f(-) is defined by (33). Applying Lemma 1, we immediately obtain
(32) from (34). O

Corollary 4. Assuming as in Theorem 6, we obtain from (32) and (33) and (2)

[Sitfia)®| = (1) £

forn,reN.
Formulas (7) and (34) imply the following

Corollary S. Let f €C,;,q > 0. Then

(a) if f is a increasing (decreasing) function on Ry, then S,(f; q;-),n €N, is
also increasing (decreasing) on Ry,

(b) if f is a convex (concave) function on Ry, then S,(f; q;-),n € N, is also
convex (concave) on Ry.

Finally we shall prove analogy of Theorem 1 for first derivate.

Theorem 7. Suppose that f € B,,q > 0, and for given xo > 0 there exists
f'(x0). Then

(35) 1im (SuL£5 91/ (x0) = f'(x0).

Proof. By assumptions on f we have

(36) F@) = f(xo) + f'(xo)(t — x0) + &2(t; x0)(t — o),

for t € Ry, where ¢ is function continuous at xo and &; € B,,.
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From (6) it follows that

_|_
(37 Sulf3:qD)'(x) = —nS,(f(1); q; x) + nx—an(tf(t); q;x)=

n—+
= gS,(F(1): g3 ) + —L8,((t =) f(1): g3 ).
for x > 0 and n € N. By (36) and (37) we get

38)  (Sulf:q)) (o) = f(xo){ %Sn(r o1 q: x0) + q} n

n+q
X0

+f’(xO){ Sau((t — x0)%; g3 Xo0) + qSu(t —xO;q;xo)} +

PGS ()t — xo): g x0).

+ g S, (e2(t)(t — x0); q; X0 + .
0

Properties of &, and Theorem 2 imply that

(39) lim S, (e2(1)(7 — x0); g3 X0) = 0.
Arguing analogously as in the proof of Theorem 5, we get
(40) lim nS,(e2(1)(r — x0)%; g3 X0) = 0.

Applying (8), (9), (39) and (40), we obtain (35) from (38). [l
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