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TOTALLY INERT SUBGROUPS OF THE RANK TWO
ABELIAN GROUP CONSTRUCTED BY ZASSENHAUS

L. SALCE

A subgroup H of an abelian group G is totally inert if, for every non-
zero endomorphism φ of G, H is commensurable with φ(H), that is,
H∩φ(H) has finite index in H and in φ(H). In this paper we provide nec-
essary and sufficient conditions for the existence of rank two subgroups
which fail to be totally inert of a particular torsion-free group of rank two
G such that its endomorphism ring End(G) equals Z[i], the ring of Gaus-
sian integers, obtained by a classical construction of Zassenhaus. The
results obtained here partially solve a problem raised in a recent paper
by Brendan Goldsmith and the author, where totally inert subgroups of
general abelian groups are investigated.

1. Introduction

All groups considered in this paper are abelian, so with the word ”group” we
always mean ”abelian group”. For unexplaind notions and terminology we refer
to the recent monograph by Fuchs [3].

Two subgroups H and K of a group G are commensurable, if H ∩K has
finite index in both H and K, equivalently, (H +K)/H and (H +K)/K are both
finite. The following notion was introduced in [6].
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Definition 1.1. A subgroup H of a group G is totally inert if H is commensu-
rable with φ(H) for all non-zero endomorphisms φ of G, that is, if H ∩ φ(H)
has finite index both in H and in φ(H).

The restriction in the above definition to non-zero endomorphisms is un-
avoidable, since, requiring that (H+φ(H))/φ(H) is finite also for φ = 0, would
force H to be finite, so giving rise to a trivial notion. This restriction does not
affect the condition that (H +φ(H))/H is finite, since for φ = 0 this condition
always trivially holds.

The notion of totally inert subgroup strengthens that of fully inert subgroup
H of a group G, which only requires that (H +φH)/H is finite for all endomor-
phisms φ of G. The notion of fully inert subgroups gave rise to a large num-
ber of papers investigating their structure and their applications. For instance,
fully inert subgroups of divisible and free groups, and fully inert submodules
of free and complete torsion-free Jp-modules, have been characterized in [1],
[2] and [8], respectively. Furthermore, in the three papers [7], [4] and [9], con-
cerning abelian p-groups, it was proved, respectively, that direct sums of cyclic
p-groups, torsion-complete p-groups and countably totally projective p-groups
share the property that all fully inert subgroups are commensurable with fully
invariant subgroups. The groups satisfying this property are called groups with
minimal full inertia and are studied in [5].

The investigation of totally inert subgroups of abelian groups started more
recently in the joint paper [4] with Goldsmith, where we proved, inter alia, that
all subgroups of torsion-free groups of rank one are totally inert, and, more gen-
erally, this property is shared by all torsion-free groups whose endomorphism
ring is a rational group. Furthermore, we studied the totally inert subgroups of a
torsion-free group G of rank two such that its endomorphism ring End(G) equals
Z[i], the ring of Gaussian integers. The group G is obtained as a particular case
of a construction performed almost fifty years ago in [10] by Zassenhaus, who
expressed his appreciation to A.L.S. Corner for rectifying and simplifying the
proof that was deep and very technical.

We proved in [4] that there are plenty of subgroups of rank two of G which
are totally inert and that all the subgroups of rank one are not totally inert. The
following problem remained open: does G contain subgroups of rank two which
fail to be totally inert?

This paper is devoted to investigate this problem.
In Section 2 we resume part of the Zassenhaus construction of a torsion-free

group G of finite rank equal to the rank of the additive group of an assigned
ring R, which is assumed to be free, such that the additive group of End(G)
is isomorphic to R. We adapt this construction to the case R = Z[i], the ring
of the Gaussian integers. In this particular case, the group G is the sum of
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infinitely many subgroups Gk (k ∈ N) of Q[i] containing Z[i] of the form Gk =
Z[i] + s

n ·Z[i], for some s ∈ Z[i] \Z and n ∈ Z depending on k, such that the
quotient groups Gk/Z[i] are finite of orders relatively prime in pairs.

In Section 3 we furnish our main result, Theorem 3.2, with the lemmas
needed for his proof. This theorem states, inter alia, that there exists a rank two
subgroup of G which fails to be totally inert if and only if there are infinitely
many k ∈ N such that the quotient groups Gk/Z[i] are not cyclic. It follows, in
particular, that this happens if there are infinitely many k such that the subgroups
Gk =Z[i]+ s

n ·Z[i] have the corresponding elements s and n which are coprime in
Z[i] (see Remark 3.3). However, the recognition whether the required conditions
are satisfied in the Zassenhaus construction seems to be a challenging task.

2. The torsion-free rank two group G with End(G) = Z[i] obtained in the
Zassenhaus construction

In order to find subgroups of rank two of G which fail to be totally inert, we must
enter deeply into the Zassenhaus construction of G. From now on, we consider
the construction adapted to the case R = Z[i], so G will always denote the rank
two group constructed by Zassenhaus, according to the following theorem.

Theorem 2.1. (Zassenhaus) There exists a Z[i]-submodule G of Q[i] satisfying
the following properties:

(1) Z[i]≤ G
(2) Z[i]G = G
(3) the only endomorphisms of G are the left multiplications by elements of

Z[i].

Items (2) and (3) of Theorem 2.1 imply that the endomorphism ring End(G)
of G is equal to Z[i]. Moreover, we have the proper inclusions Z[i] < G <
Q[i] (Q denotes the field of rational numbers), because the group isomorphism
Z[i]∼= Z⊕Z implies that End(Z[i])∼= M2(Z), the 2×2 matrix ring over Z, and
the group isomorphism Q[i]∼=Q⊕Q implies that End(Q[i])∼= M2(Q).

The group G is generated by countably many subgroups Gk of Q[i] (k ∈ N)
satisfying, for each k ∈ N, the following conditions:

(i) Z[i]< Gk

(ii) the orders of the quotient groups Gk/Z[i] are positive integers nk rela-
tively prime in pairs

(iii) Z[i]Gk = Gk

(iv) there is a group endomorphism σk of Q[i] such that σk(Z[i]) ≤ Z[i],
σk(1) = 0 and σk(Gk) is not contained in Gk.
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The subgroups Gk, in the notation of Zassenhaus, are of the form Z[i]+ s
n ·

Z[i], for some s ∈ Z[i]\Z and n ∈ Z depending on k.
The Zassenhaus proof is developed in two steps. First it is shown that, as-

suming the construction of the subgroups Gk to be accomplished, then the group
G = ∑k∈N Gk satisfies the condition of Theorem 2.1. Then the complicated tech-
nical part of the proof is the recursive construction of the subgroups Gk, with
the positive integers nk not well identified.

Let mk be the minimal positive integer such that mkGk ≤Z[i], i.e., AnnZ(Gk/Z[i])=
mkZ. As each mk divides nk, also the integers mk (k ∈ N) are relatively prime
in pairs. So G/Z[i] =

⊕
k Gk/Z[i] is a torsion group which is the direct sum of

countably many finite groups of orders relatively prime in pairs.
More information on the subgroups Gk are contained in the following propo-

sition.

Proposition 2.2. (1) Each subgroup Gk in the Zassenhaus construction satisfies
the equality Gk =

zk
mk

·Z[i] for an element zk = ak + ibk ∈ Z[i] and an integer
mk > 1 which is minimal such that mkGk ≤ Z[i].

(2) If ak = 0 or bk = 0, then Gk =
1

mk
·Z[i].

(3) If ak ̸= 0 ̸= bk, the integer a2
k + b2

k divides mkak and mkbk, it properly
divides m2

k , and ak and bk are coprime.

Proof. (1) As, by construction, each Gk is a Z[i]-submodule of Q[i] containing
Z[i], also mkGk is a Z[i]-submodule of Z[i], hence an ideal of Z[i]. Being Z[i] a
PID, we get that mkGk = zkZ[i] for some zk = ak+ ibk ∈Z[i], hence Gk =

zk
mk

·Z[i]
with zk

mk
∈Q[i].

(2) We may assume bk = 0, since ak = 0 implies that Gk =
ibk
mk

·Z[i] = bk
mk

·
Z[i], so we can deal this case as when bk = 0. From Gk =

ak
mk

·Z[i]> Z[i] we get
that 1 = ak

mk
·w for some w ∈Z[i]. Clearly w = mk

ak
∈Z[i]∩Q=Z implies ak = 1,

since (ak,mk) = 1.
(3) The inclusion Z[i]≤ Gk is equivalent to the equality 1 = zk

mk
·w for some

w ∈ Z[i]. Since w is the inverse of zk
mk

, w = mk
ak−ibk
a2

k+b2
k
∈ Z[i] amounts to say that

a2
k +b2

k divides mkak and mkbk. From (a2
k +b2

k)r = mkak and (a2
k +b2

k)s = mkbk
(r,s ∈ Z non-zero) it follows that (a2

k + b2
k)

2(r2 + s2) = m2
k(a

2
k + b2

k), therefore
(a2

k + b2
k)(r

2 + s2) = m2
k , where r2 + s2 > 1. Finally, assume that there exists

a prime p such that ph is its maximal power dividing both ak and bk, for an
exponent h ≥ 1. Then pha′ = ak and phb′ = bk, therefore p2h(a

′2
k +b

′2
k ) divides

mk pha′k; furthermore, since p cannot divide mk, ph divides a′k, and similarly ph

divides b′k, absurd. Consequently no prime p divides both ak and bk, which are
coprime.
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We provide a particular example of a subgroup Gk containing Z[i], which
needs the following result, to be used also in the next section.

Lemma 2.1. Let w = z
m , with z = a+ ib ∈ Z[i], AnnZ(w+Z[i]) = mZ, and

wZ[i]≥ Z[i]. Then the quotient group wZ[i]/Z[i] has cardinality m2

a2+b2 .

Proof. We have the isomorphism

wZ[i]/Z[i]∼= (wZ[i]/mwZ[i])/(Z[i]/mwZ[i]). (∗)

Since wZ[i]/mwZ[i] ∼= Z[i]/mZ[i], the numerator of the right term in (*) has
cardinality m2. So we must prove that the cardinality of Z[i]/(a+ ib)Z[i] is
(a2 +b2). In the exact sequence

0 → (a+ ib)Z[i]/(a2 +b2)Z[i]→ Z[i]/(a2 +b2)Z[i]→ Z[i]/(a+ ib)Z[i]→ 0

the first non-zero term is isomorphic to the last non-zero term, because a2+b2 =
(a+ ib)(a− ib) and Z[i]/(a− ib)Z[i]∼=Z[i]/(a+ ib)Z[i] via the isomorphism in-
duced by the conjugation. Thus the cardinality of the central term, which equals
(a2 +b2)2, equals also the square of the cardinality of Z[i]/(a+ ib)Z[i]. Conse-
quently the denominator of the right term in (*) equals (a2+b2), as desired.

Example 2.3. Let Gk =
zk
mk

·Z[i] be a subgroup of Q[i] containing Z[i], where
zk = ak + ibk ∈ Z[i], ak ̸= 0 ̸= bk and mk is a positive integer minimal such that
mkGk ≤ Z[i]. Assume that mk = pk is a prime integer; then the following facts
hold:

(1) pk = a2
k +b2

k , so pk is congruent to 1 modulo 4;
(2) Gk/Z[i] is isomorphic to the simple cyclic group Z(pk), so every sub-

group Hk ≤ Gk containing Z[i] is equal either to Gk or to Z[i].
To check (1), since (a2

k +b2
k)r = pkak and (a2

k +b2
k)s = pkbk, pk must divide

a2
k +b2

k , otherwise r = pkr′ and s = pks′ would imply that (a2
k +b2

k)r
′ = ak and

(a2
k + b2

k)s
′ = bk, that are evidently absurd. Henceforth, a2

k + b2
k = pkh for an

h ∈ N. Thus rh = ak and sh = bk, and since ak and bk are coprime, h = 1,
proving fact (1).

To check (2), observe that the order of Gk/Z[i], by Lemma 2.1, is equal to
p2

k
pk

= pk, thus Gk/Z[i]∼= Z(pk).

3. Rank two subgroups of G which fail to be totally inert

Our main result, next Theorem 3.2, provides two equivalent conditions for the
existence of a rank two subgroup not totally inert of the rank two group G such
that End(G) = Z[i], obtained with the Zassenhaus construction. The two condi-
tions concern the elements generating the subgroups Gk/Z[i] and the structure
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of these subgroups, that cannot be cyclic. The next example provides a sub-
group Gk of Q[i] such that the factor group Gk/Z[i] is not cyclic, differently
from Example 2.3.

Example 3.1. Let Gk = 1
mk

·Z[i] (1 < mk ∈ Z) be a subgroup of Q[i]. Then
Gk/Z[i]∼= Z[i]/mkZ[i]∼= Z(mk)⊕Z(mk) (Z(mk) denotes the cyclic group of or-
der mk). The above isomorphism is crucial to obtain a non totally inert subgroup
of rank two of G, as proved in the next Theorem 3.2.

The proof of Theorem 3.2 is based on several lemmas, which use the follow-
ing notation. Let G = ∑k∈N Gk be the group obtained by the Zassenhaus con-
struction applied to Z[i], where Gk =

ak+ibk
mk

·Z[i] for all k ∈ N, with ak,bk,mk ∈
Z (mk ̸= 0) without a common divisor ̸= 1.

The first lemma proves the equivalence of (2) and (3) in Theorem 3.2. It
makes use of the well known fact that a finite group whose order is the minimal
positive integer annihilating it is cyclic.

Lemma 3.1. The following conditions are equivalent:
(i) a2

k+b2
k

mk
∈ Z;

(ii) a2
k +b2

k = mk;
(iii) Gk/Z[i] is isomorphic to Z(mk), the cyclic group of order mk.

Proof. (i) ⇒ (ii) From Proposition 2.2 we know that (a2
k + b2

k)r = mkak and
(a2

k + b2
k)s = mkbk for some r,s ∈ Z, hence the equality a2

k + b2
k = mkt for an

element t ∈ Z is equivalent to the two equalities ak = tr and bk = ts. But
(ak,bk) = 1, therefore t = 1 and a2

k +b2
k = mk.

(ii) ⇒ (i) is obvious.
(ii) ⇒ (iii) From Lemma 2.1 we know that the order of Gk/Z[i] is equal to

m2
k

a2
k+b2

k
, hence from (a2

k + b2
k) = mk it follows that this order equals mk. As mkZ

is the annihilator ideal of the group Gk/Z[i], it follows that this group is cyclic,
isomorphic to Z(mk).

(iii) ⇒ (ii) If Gk/Z[i]∼= Z(mk), then m2
k

a2
k+b2

k
= mk, hence (a2

k +b2
k) = mk.

The next lemma is the main tool in proving (1) ⇒ (2) of Theorem 3.2.

Lemma 3.2. Let H be a subgroup of G containing Z[i] such that H/Z[i] =⊕
k∈N Hk/Z[i], where Z[i]≤ Hk ≤ Gk for all k. If iHk ≤ Hk for almost all k ∈N,

then H is commensurable with a fully invariant subgroup of G, hence H is totally
inert.

Proof. Let us note that iHk ≤Hk is equivalent to iHk =Hk and that H =∑k∈N Hk.
Let iHk ≤ Hk for k ∈ E1 ⊆ N, where E2 = N\E1 is finite. Then

H = ∑
k∈E1

Hk + ∑
k∈E2

Hk
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therefore
H/ ∑

k∈E1

Hk ∼= (H/Z[i])/( ∑
k∈E1

Hk/Z[i])

is isomorphic to a quotient of the finite group ∑k∈E2 Hk/Z[i], hence H is com-
mensurable with ∑k∈E1 Hk, which is fully invariant, because

i ∑
k∈E1

Hk = ∑
k∈E1

iHk ≤ ∑
k∈E1

Hk

and by [4, Lemma 4.2], so we are done in view of [4, Proposition 2.1].

The proof of (2) ⇒ (1) of Theorem 3.2 needs the following three lemmas.

Lemma 3.3. Let Gk =
ak+ibk

mk
·Z[i] be such that qk =

a2
k+b2

k
mk

∈Q\Z. Then qk ∈Gk
and AnnZ[i](qk +Z[i]) = mk ·Z[i].

Proof. Our hypotheses ensure that AnnZ(qk +Z[i]) ·Z[i] = mk ·Z[i]. From qk =
a2

k+b2
k

mk
= ak+ibk

mk
· (ak − ibk) it follows that qk ∈ Gk. Since the inclusion

AnnZ[i](qk +Z[i])≥ mk ·Z[i]

always holds, we must verify the opposite inclusion. So, assume that (x +
iy)qk ∈ Z[i] (x,y ∈ Z). Then xqk,yqk ∈ Z imply that x,y ∈ AnnZ(qk +Z[i]),
hence x+ iy ∈ mk ·Z[i].

Lemma 3.4. Let x ∈Q[i]\Z[i] with AnnZ(x+Z[i]) = rZ. If AnnZ[i](x+Z[i]) =
rZ[i], then

(xZ+Z[i])/Z[i]
⋂

(ixZ+Z[i])/Z[i] = 0.

Proof. Assume that ax − bix ∈ Z[i] for some a,b ∈ Z. We must prove that
ax ∈ Z[i]. From the above assumption we get that x(a − ib) ∈ Z[i], so a −
ib ∈ AnnZ[i](x +Z[i]) and the hypothesis implies that a − ib ∈ rZ[i]. There-
fore a− ib = rz for some z ∈ Z[i], hence a ∈ rZ and consequently ax ∈ Z[i], as
desired.

Lemma 3.5. If there exist elements xk ∈ Gk \Z[i] with AnnZ(xk +Z[i]) = rkZ
such that AnnZ[i](xk +Z[i]) = rkZ[i] for all k belonging to an infinite subset E
of N, then the subgroup M = ∑k∈E xkZ is not totally inert in G.

Proof. We have the following equalities:

(M+ iM+Z[i])/Z[i] =
⊕
k∈E

[(xkZ+Z[i])/Z[i]⊕ (ixkZ+Z[i])/Z[i]]

where the sum in the square parenthesis is direct, by Lemma 3.4. Assume,
by way of contradiction, that M is totally inert, so (M + iM)/M is finite (or,
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equivalently, (M + iM)/iM is finite). Then also (M + iM +Z[i])/(M +Z[i]) is
finite. But

(M+ iM+Z[i])/(M+Z[i])∼= [(M+ iM+Z[i])/Z[i]]/[(M+Z[i])/Z[i]]∼=
∼=

⊕
k∈E

(ixkZ+Z[i])/Z[i])

and the last direct sum is an infinite group. So we reach the desired contradic-
tion.

We have now all the tools to prove our main result.

Theorem 3.2. Let G = ∑k∈N Gk be the group obtained by the Zassenhaus con-
struction applied to Z[i], where Gk =

ak+ibk
mk

·Z[i] for all k ∈ N, with ak,bk,mk ∈
Z (mk ̸= 0) without a common divisor ̸= 1. The following conditions are equiv-
alent:

(1) there exists a subgroup M of rank two of G which fails to be totally inert;
(2) there are infinitely many k ∈ N such that (a2

k +b2
k) ̸= mk;

(3) there are infinitely many k ∈N such that the quotient groups Gk/Z[i] are
not cyclic;

Proof. (1) ⇒ (2). Assume, by way of contradiction, that (a2
k +b2

k) = mk for al-
most all k ∈N. By Lemma 3.1, Gk/Z[i]∼=Z(mk) for almost all k ∈N, therefore,
setting wk =

ak+ibk
mk

, Gk/Z[i] = (wkZ+Z[i])/Z[i]. Then iwk ∈ wkZ+Z[i]. This
implies that for every x ∈ Gk \Z[i], since x+Z[i] = nwk +Z[i] for some integer
n, ix+Z[i] = niwk +Z[i]≤ nwk +Z[i] = x+Z[i]. Therefore, for every subgroup
H of G containing Z[i] such that H/Z[i] =

⊕
k∈N Hk/Z[i], iHk ≤ Hk for almost

all k ∈ N, Thus the hypothesis of Lemma 3.2 is satisfied, so every subgroup H
of G is totally inert, This gives the desired contradiction.

(2) ⇒ (1). The hypotheses of Lemma 3.5 with xk = qk =
a2

k+b2
k

mk
are satisfied,

in view of Lemma 3.3 and Lemma 3.1, for infinitely many k ∈ N. Hence the
subgroup M = ∑k∈E qkZ is not totally inert in G.

(2) ⇔ (3) follows immediately from Lemma 3.1.

Remark 3.3. (1) If ak = 0 or bk = 0, then, in view of Proposition 2.2 (2), we
may assume ak = 1 and bk = 0, thus certainly (a2

k + b2
k) ̸= mk. In fact, in this

case Gk/Z[i]∼= Z(mk)⊕Z(mk) is not cyclic.
(2) If a subgroups Gk of Q[i] is of the form Gk = Z[i]+ s

n ·Z[i] (s ∈ Z[i]\Z,
n ∈ Z) and s is coprime with n in Z[i], then nZ[i]+ sZ[i] = Z[i] is equivalent to
Gk =

1
n ·Z[i], so Gk/Z[i] is not cyclic, as required by Theorem 3.2.

The conclusion is that the following question remains open: does the group
G constructed by Zassenhaus such that End(G) = Z[i] satisfy the equivalent
conditions of Theorem 3.2?
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