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THE GLOBAL RING OF A SMOOTH PROJECTIVE SURFACE

SALVATORE GIUFFRIDA - RENATO MAGGIONI

Let X be a smooth projective variety over an algebraically closed �eld
k. We associate to X , in a functorial way, a multigraded k-algebra G(X),
called the global ring of X . We �nd some results when dim X = 2, and we
explicitly determine the global ring in two particular cases.

Introduction.

In some papers ([6], [7], [8]) about zero-dimensional subschemes of a
quadric surface Q ∼= P

1 × P
1, it turned out very useful to use the bigraded

ring �

a,b≥0

H 0(Q, OQ(a, b))

Working with this ring we saw that all the geometric properties of the quadric
and of its subschemes can be read in it. In this paper we generalize that
construction: to any smooth projective variety X we associate the multi-graded
ring

G(X ) =
�

[D]

H 0(X, OX (D))

which we call the global ring of X . In particular we shall consider the case
when X is a smooth projective surface. In the �rst section we give some general
results on the global ring of such surfaces. The main result is that two smooth
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projective surfaces are isomorphic if and only if their global rings are. The
following sections are devoted to determine the global rings of some particular
surfaces. In section two we consider the surface S obtained by blowing up the
projective plane in six generic points. Recalling of the usual embedding S �→ P

3

we call S a �smooth cubic surface�. G(S) is a 7-graded ring, and in the generic
case, i.e. when S has no Eckardt points, it is the quotient of a polynomial ring
having 27 variables with an ideal generated by 81 elements. In the last section
we consider a particular Mori quarticM, namely a Mori quartic whose Picard
group is generated by the classes of two curves, H and L . Here H is a very
ample divisor which embeds M in P

3 as a smooth quartic surface, and L is an
isolated curve such that L · H = 1. We show that G(M) is a bigraded ring
isomorphic to the quotient of a polynomial ring k[x , y1, y2, z1, z2, t] by an ideal
generated by two elements.

1. De�nitions and �rst results.

Let X be a smooth projective variety over an algebraically closed �eld k.
We can identify the three groups (see [9], II, 6):

Cl(X ) = group Div X of all Weil divisors, modulo the subgroup of principal
divisors;

CaCl(X) = group of all Cartier divisors, modulo the subgroup of principal
divisors;

Pic(X ) = group of isomorphism classes of the invertible sheaves on X .

For any element [D] ∈ Pic(X ) we can consider the k-vector space H 0(X,

OX (D)) which is different from zero only when D is an effective divisor; so
we can de�ne the following ring, which we call the global ring of X :

G(X ) =
�

[D]∈Pic(X )

H 0(X, OX (D))

where we have �xed one divisor for each linear equivalence class.
The ring product is given by the product of sections, i.e. by the sum of

divisors; hence if s ∈ H 0(X, OX (D)), s
� ∈ H 0(X, OX (D

�)) are two elements,
their product is an element in H 0(X, OX (D + D�)). In this sense we say
that G(X ) is a Pic(X )-graded algebra (or a multi-graded algebra). Note that
G(X ) is a domain since s �= 0, s � �= 0 implies that D and D� are effective
divisors, so D + D� is too. If X, Y are two smooth varieties, a multigraded ring
homomorphism

� : G(X ) → G(Y )
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is a couple (ϕ, f ) where

ϕ : Pic(X ) → Pic(Y )

is a group homomorphism, f = { f[D]} is a family of k-linear maps

f[D] : H
0(X, OX (D)) → H 0(Y, OY (D

�))

where for any divisor D ⊂ X, ϕ([D]) = [D�], D� ⊂ Y . The family f = { f[D]}
satis�es the following condition: for any two divisors D, E ⊂ X , calling
ϕ([D]) = [D�], ϕ([E]) = [E �], the following square is commutative

H 0(X, OX (D))⊗ H 0(X, OX (E)) ��

f[D]⊗ f[E]

��

H 0(X, OX (D + E))

f[D+E]

��

H 0(Y, OY (D
�))⊗ H 0(Y, OY (E

�)) �� H 0(Y, OY (D
� + E �))

So far we have de�ned a subcategory of the category of multi-graded algebras
over abelian groups. Indeed we have a contravariant functor from the category
of smooth projective varieties X and their morphisms to the category of multi-
graded algebras: to any morphism g : X → Y it corresponds a group
homomorphism γ : Pic(Y ) → Pic(X ) given by γ (L) = g∗

L, where g∗ is
the inverse image functor, and L is any invertible sheaf on Y . Moreover, the
natural morphism L �→ g∗g

∗
L induces the morphism:

HomY (OY , L)→ HomY (OY , g∗g
∗
L) ∼=

HomX (g
∗
OY , g∗

L) ∼= HomX (OX , g∗
L)

where we used standard properties of g∗ and g
∗ . Taking the direct sums of these

maps we obtain the algebra homomorphism � : G(Y ) → G(X ). So, starting
from g : X → Y , we have constructed the couple (γ, �) which is a multigraded
algebra homomorphism.

Let now H ⊂ X be a very ample divisor, and let h0(X, OX (H )) = n + 1;
thus we have a closed embedding i : X → P

n such that OX (H ) ∼= i∗OP(1). In
this case we can consider the subring of G(X ):

GH (X ) =
�

n

H 0(X, OX (nH ))

this is a Z-graded ring which completely de�nes X in the sense that X ∼=

Proj GH (X ) (see [9], II, n. 7).
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Denote by E ff X ⊂ Div X the semigroup of effective divisors. When
E ff X is �nitely generated then G(X ) is isomorphic to a quotient of a poly-
nomial ring with a �nite number of variables. In fact, assuming as variables
the generators of E ff X , say x1, x2, . . . , xn , taking each variable with its own
multi-degree, we have a surjection k[x1, x2, . . . , xn] → G(X ), hence

G(X ) ∼= k[x1, x2, . . . , xn]/I

for some homogeneous prime ideal I . Of course, here k[x1, x2, . . . , xn] has to
be considered as a Pic(X )-graded ring. If D is any effective divisor we shall
write G(X )[D] , k[x1, x2, . . . , xn][D] and I[D] for the homogeneous component
of the Pic(X )-grade of D in G(X ), k[x1, x2, . . . , xn] and I respectively.

Notice that even if Pic(X ) is �nitely generated, we may as well have
that E ff X is not. This happens, for instance, when X is the blow up of the
projective plane in nine (or more) suitable points: in this case Pic(X ) ∼= Z

10

but E ff X is not �nitely generated because X contains in�nitely many isolated
divisors (see [11]).

Example 1.1. Let X = P
n . Since Pic(Pn) ∼= Z and E ff P

n is generated by the
elements of H 0(Pn, OP(1)), we obtain for the global ring of P

n the Z-graded
ring

G(Pn) = k[x0, x1, . . . , xn].

A similar situation occurs for smooth projective varieties which have Pic(X ) ∼=

Z, generated by a very ample divisor H ; in this case OX (H ) gives a closed
immersion X �→ P

n and it turns out that G(X ) is isomorphic to the coordinate
ring of X as a subvariety of P

n . This happens in particular for surfaces which
have only complete intersections as divisors: for instance generic surfaces of P

3

having degree ≥ 4.

We point out that the global ring of a smooth variety X is a ring intrinsically
linked to the variety, and we think that it should be possible to study some
geometric properties of the variety using this ring. In particular, to every
effective divisor on X it corresponds a principal homogeneous ideal of G(X ),
i.e. to every subscheme of codimension one we can associate its polynomial
equation.

In the sequel we shall consider the case when X is a smooth projective
surface, and we shall study the case when X is a �smooth cubic surface� S
(i.e. a surface isomorphic to the blow up of the projective plane at six generic
points), and a �Mori quartic� M of type (1,0) (i.e. a K3 surface M such that
Pic(M) ∼= Z

2 and Pic(M) is generated by the classes of H and of L , where
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H is very ample, such that h0(M, OM(H )) = 4, h0(M, OM(L)) = 1, H 2 = 4,
and L2 = −2, H · L = 1).

Before going on we �x our terminology and give some general results for
surfaces. Let X be a smooth projective surface over an algebraically closed �eld
k. For any divisor D ⊂ X , when no confusion can arise, we set for i = 0, 1, 2

Hi(D) = Hi(X, OX (D)) and hi (D) = dimk H
i(D)

We denote by K a canonical divisor on X . A curve C ⊂ X is an effective
divisor. We say that C is integral when it is linearly equivalent to an integral
curve. For any divisor D ⊂ X we call virtual dimension of D the number

vdim(D) =
1

2
D · (D − K )+ 1+ p

where p is the arithmetic genus of X . Notice that vdim(D) = h0(D) when
h1(D) = h2(D) = 0, as one sees applying the Riemann-Roch Theorem (R-R for
short). It is a simple computation to show that for any two divisors D, D� ⊂ X
we have

vdim(D + D�) = vdim(D) + vdim(D�)+ D · D� − 1− p.

We say that a curve C ⊂ X is isolated if h0(C) = 1. To any curve C ⊂ X
we can associate its Zariski decomposition (see [12], Theorem 7.7; see also [3],
n. 2):

C = N (C) + C

where N (C) is the negative component of C: it is the sum of integral curves,
each with its own multiplicity, having negative self-intersection. Thus N (C)
is sum of isolated curves ([3], Proposition 2.2). We denote by Fix (C) the
�xed component of the linear system corresponding to H 0(C), and by abuse
of notation we call it the �xed part of C . Since it is not known if every isolated
integral curve has negative self-intersection we can only say N (C) ⊂ Fix (C),
and in the cases we shall consider we have N (C) = Fix (C). More precisely,
on S and on M the isolated curves are �lines�. Now, since any line L ⊂ S has
self-intersection L2 = −1, and any rational integral curve C ⊂ M has self-
intersection C2 = −2, the assertion follows easily (see [2] n. 2 for curves on S,
and [3] n. 4 for curves on Mori quartics).

It is well known that there exists a unique pairing Pic(X ) × Pic(X ) → Z

giving the intersection multiplicity between divisors on X (see [9], V, Theorem
1.1). Now we want to show that this intersection multiplicity can be found,
once �xed a very ample divisor on X , starting from the global ring of X , just
using the dimensions of certain vector spaces which represent the homogeneous
components of this ring.
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Lemma 1.2. Let X be a smooth projective surface and let E ⊂ X be a
very ample divisor. Let G(X ) be the global ring of X . Then the intersection
multiplicity on X is determined by G(X ) and by E .

Proof. Let C, D ⊂ X be any two divisors. Denote by H ⊂ X a multiple of E
such that for any n ≥ 1 and for i = 1, 2 we have ([9], III, Theorem 5.3)

Hi(nH ) = 0, Hi(C + nH ) = 0, Hi(D + nH ) = 0, Hi(C + D + nH ) = 0

Then we have:

vdim(H + H ) = 2vdim(H )+ H 2 − 1− p

hence
H 2 = h0(2H )− 2h0(H )+ 1+ p

vdim(H + (C + H )) = vdim(H )+ vdim(C + H )+ H 2 + C · H − 1− p

hence

C · H = h0(C + 2H )− h0(H )− h0(C + H )− H 2 + 1+ p =

= h0(C + 2H )− h0(C + H )− h0(2H )+ h0(H )

and in the same way

D · H = h0(D + 2H )− h0(D + H )− h0(2H )+ h0(H )

Finally we can compute

vdim((C + H )+ (D + H )) = vdim(C + H )+ vdim(D + H )

+C · D + C · H + D · H + H 2 − 1− p

from which by a simple substitution of the previously found values of C ·H, D ·

H and H 2 we obtain

C · D = h0(C + D + 2H )− h0(C + 2H )− h0(D + 2H )+ h0(2H ).

�

Now we prove the main result of this section.

Theorem 1.3. Let X, Y be two smooth projective surfaces and let G(X ), G(Y )
be their global rings. Then X ∼= Y if and only if there exists a multigraded
isomorphism G(X ) ∼= G(Y ) between the two global rings.
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Proof. If X ∼= Y then G(X ) ∼= G(Y ) by general properties of functors.
Conversely, let G(X ) ∼= G(Y ) via the isomorphism� = (ϕ, f ), let D ⊂ X

be a very ample divisor and ϕ([D]) = [D�]. To the homogeneous component
H 0(D) ⊂ G(X ) it corresponds a homogeneous component of G(Y ) which is
determined by an effective divisor D� ⊂ Y .

Claim: D� is ample. By the Nakai-Moishezon criterion (see [9], V, Theorem
1.10) we need to show that D� · F � > 0 for any integral curve F � ⊂ Y . First
observe that D� is integral, since the section sD� in H 0(Y, Y (D

�)) is equal to
f[D] (sD), and D is integral. Moreover, D�2 > 0. Otherwise, if D�2 < 0
then D� should be an isolated curve, so that h0(D�) = 1, and D too should be
isolated; if D�2 = 0 then a point of Y cannot belong to two curves of H 0(D�),
so h0(D�) ≤ 2, i.e. at best D� might move in a pencil, hence h0(D) ≤ 2, a
contradiction because D is very ample.

Let now F � ⊂ Y, F � �= D� , be an integral curve, and let F ⊂ X be the
corresponding curve. Suppose that D� · F � = 0. Then F � imposes one condition
to h0(D�) because any curve linearly equivalent to D� and passing through a
point of F � must contain F � . This means that h0(D� − F �) = h0(D�) − 1; but
then h0(D − F) = h0(D)− 1, and this is impossible because D is very ample,
and a curve cannot impose only one condition to H 0(D) since H 0(D) separates
the points of X . Hence the claim is proved. Now, choosing an integer r such
that rD� ⊂ Y is very ample, we have the closed embeddings

X �→ P
n, Y �→ P

n

where n = h0(rD) − 1 = h0(rD�) − 1. The rings GrD(X ) = ⊕n≥0H
0(nrD),

GrD� (Y ) = ⊕n≥0H
0(nrD�) are two isomorphic Z-graded subrings of G(X ) and

G(Y ) respectively. Since X ∼= Proj GrD(X ) and Y ∼= Proj GrD� (Y ), we have
X ∼= Y . �

The simplest non-trivial surface to which we can apply the above results is
the smooth quadric surface Q ∼= P

1 × P
1. The global ring G(Q) has been used

in [6], [7] and [8] to study the zero-dimensional subschemes of Q. In a recent
paper [5] this ring has been essential in order to describe the structure of the Rao
module of certain curves of Q. There a curve C ⊂ Q is associated to a bigraded
polynomial which has been used to describe geometric properties of C .

2. The smooth cubic surface S.

Let S be a surface isomorphic (as a variety) to the blow up of P
2 in

six points, no three of them collinear and not all on a conic. It is well
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known that Pic(S) ∼= Z
7 and that one can choose, as usual, the free base

[L], [Ei ](i = 1, 2, . . . , 6), with intersection multiplicity given by L2 = 1;
L · Ei = 0; Ei · Ej = −δi j (i, j = 1, 2, . . . , 6). The reader can �nd in [2]
details and references for curves on such surfaces. In the sequel we shall refer
to this paper for notation and standard facts.

The surface S can be embedded in P
3 as a smooth cubic surface by means

of the divisor H = 3L −
6�

i=1

Ei which is of type (3; 1, 1, 1, 1, 1, 1) in Pic(S),

so we simply call S a smooth cubic surface. Observe that two surfaces S,
S� raising in this way are isomorphic if and only if there exist six skew lines
L1, L2, . . . , L6 ⊂ S and six skew lines L �

1, L
�
2, . . . , L �

6 ⊂ S� such that, denoting
by π : S → P

2 and π �: S� → P
2 the morphisms for which L1, L2, . . . , L6

and L �
1, L

�
2, . . . , L �

6 are the exceptional lines respectively, and Pi = π (Li ),
P �
i = π �(L �

i ) for i = 1, 2, . . . , 6, an isomorphism α : P
2 → P

2 exists such
that α(Pi) = P �

i .

If D ⊂ S is a divisor of type (a; b1, b2, b3, b4, b5, b6), we shall call degree

of D the number d = deg D = H · D = 3a −
6�

i=1

bi ; the genus of D is the

number g =
�
a−1
2

�
−

6�

i=1

�
bi
2

�
. A simple computation shows that the virtual

dimension of D is the number vdim(D) = d + g.

E ff S is �nitely generated (cf. [11], Theorem 1), hence the global ring of
S is generated as a k-algebra by the 27 curves of degree one (ibidem); we shall
call these generators �i j , er , gs , with i, j, r, s = 1, 2, . . . , 6, i < j : following
the notation used in [9] (see for instance V, Theorem 4.9) the 15 variables �i j
correspond to the lines Li j , the variables er correspond to the lines Er , and the
variables gs correspond to the lines Gs . Observe that if three of the 27 lines pass
through a same point P , i.e. if an �Eckardt point� there exists on S (see [1] and
[2], Appendix 1), then the corresponding variables are linearly dependent. We
will consider the general case, in which the surface S has no Eckardt points and
the 27 generators are linearly independent. Anyway the global ring of S can be
seen as a quotient of the ring k[�i j , er , gs] with i, j, r, s = 1, 2, . . . , 6, i < j ,
modulo a homogeneous ideal J . Note that by the de�nition of degree of divisors
on S, the ring G(S) has also a Z-grading in which all the indeterminates have
degree one. We will see (Theorem 2.5) that the ideal J is generated by elements
of degree two in this grading.

Recall that the conics are the only integral curves on S which move in a
pencil; to each of the 27 lines there corresponds a pencil of conics on S. Look,
for instance, at the conics of type (1; 1, 0, 0, 0, 0, 0). There are 5 monomials
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of this type, namely �1 j ej , j = 2, 3, . . . , 6; but of course only two of them
are linearly independent in the k-vector space they generate. So there are
three relations among them; one can see this explicitly, by taking the blow up
morphism π : S → P

2 such that π (Ei ) = Pi , i = 1, 2, . . . , 6. Denoting (with
some abuse of notation) by Li j the plane line passing through Pi and Pj , clearly
L14 = aL12 + bL13 for some a, b ∈ k, and looking at the total inverse image
of this line one gets: e1�14e4 = ae1�12e2 + be1�13e3; taking away the common
factor e1 one obtains one of the three relations. The same thing happens for all
the 27 pencils of conics of S: this can be seen using the Weyl group �E6� on the
con�guration of the 27 lines ([9], V, Ex. 4.11). So we get 81 elements of degree
two in the 27 variables we have chosen, which vanish on S: call I the ideal they
generate in the polynomial ring k[�i j , er , gs]. We shall see that I de�nes the
k-algebra G(S), i.e. that I = J . Note that the vector subspaces of k[�i j , er , gs]
and of G(S) having Z-degree 1 are isomorphic, so that we can identify k�i j and
H 0(Li j ), ker and H 0(Er ), kgs and H 0(Gs).

Recall that a curve on S, say D of type (a; b1, b2, b3, b4, b5, b6) with
b1 ≥ b2 ≥ . . . ≥ b6, is said to be of type (∗) if it is integral (i.e. linearly
equivalent to an integral curve): this happens exactly when D is zero, a line, a
conic, or, when deg D > 2, the following conditions hold:

1) a > 0, 2) b6 ≥ 0, 3) a − b1 − b2 ≥ 0,

4) 2a − b1 − b2 − . . . − b5 ≥ 0, 5) D2 = a2 −

6�

i=1

b2i > 0

Moreover a divisor D free from �xed components is composed with a pencil of
conics if and only if it satis�es conditions 1), 2), 3), 4) above, and D2 = 0.

In order to prove that I = J it will be enough to consider classes of curves
free from �xed components, i.e. composed with a pencil or of type (∗).

Proposition 2.1. Let D ⊂ S be an integral cubic curve. Suppose that in
k[�i j , er , gs] there exist n monomials belonging to H 0(D) and n > h0(D) = m.
Then the n − m relations among these monomials belong to I (the ideal
generated by the 81 conics).

Proof. First of all consider the curves D of type (1; 0, 0, 0, 0, 0, 0); in H 0(D)
there are 15 monomials, �i j ei ej , i, j = 1, 2, . . . , 6, i < j . Since h0(D) = 3 we
have 12 relations among them; we have to show that they are in I .

Calling �1, . . . , �6 the conics of type (1; 1, 0, 0, 0, 0, 0), . . . , (1; 0, 0, 0,
0, 0, 1), we can choose a base for each vector space H 0(�i ), i = 1, . . . , 6,
H 0(D) using respectively monomials in k[�i j , er , gs][�i ] , k[�i j , er , gs][D] and
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call them Bi (i = 1, . . . , 6), B. Now we can identify H 0(�i ) =< Bi >,
H 0(D) =< B > so we can write

k[�i j , er , gs][�i ] =< Bi > ⊕Ki , k[�i j , er , gs][D] =< B > ⊕K

Consider the following commutative diagram in which ϕ�, ϕ are the multiplica-
tion maps and the vertical maps are the projections onto the �rst component:

6�

i=1

�
< Bi > ⊕Ki

�
⊗ kei

ϕ �

��

(⊕p1i )⊗1

��

< B > ⊕K ��

p1

��

0

6�

i=1

H 0(�i )⊗ H 0(Ei )
ϕ

�� H 0(D) �� 0

An element
�
(Mi ⊗ ai Ei ) ∈ ker ϕ is image of

�
(mi , 0) ⊗ aiei ∈ ker ϕ� by

the above identi�cation, so there is a surjection ker ϕ� → ker ϕ . By the snake
lemma we get a surjection ker (⊕p1i ) ⊗ 1 → ker p1 so that any element in
ker p1 is generated by elements in ker (⊕p1i ) ⊂ I .

The above proof holds for all the other curves of degree 3 and genus 0
again by the action of the Weyl group.

Let now D be a curve of degree 3 and genus 1; they are all of type
(3;1,1,1,1,1,1) and there are 45 monomials in H 0(D), �fteen given by �i j �pq�rs
with {i, j, p, q, r, s} = {1, 2, 3, 4, 5, 6} and the remaining by �i j ei gj , �i j ej gi .

Call �i j = H − Li j the conics which are complementary with the 15 lines
�i j and choose a base for each vector space H 0(�i j ) (i = 1, . . . , 6, i < j ),
H 0(D) using respectively monomials in k[�i j , er , gs][�i j ] , k[�i j , er , gs][D] ; now,
using the same arguments as for rational cubics, one can construct a similar
diagram and conclude in the same way. �

Now we want to prove that relations of any degree behave exactly as those
of degree three, i.e. they are de�ned by polynomials in I ; we shall use induction
on the degree, but we need �rst some technical results.

Lemma 2.2. Let D ⊂ S be a curve; if there exists a conic � ⊂ S such that
H 1(D−�) = 0 then the cup product morphism H 0(D)⊗H 0(�) → H 0(D+�)
is surjective.

Proof. Applying R-R to D − � one gets:

h0(D−�) = vdim(D−�)+h1 (D−�)−h0(−D+�−H ) = d+g−D ·�−1
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where d, g are degree and genus of D . Here we used the hypothesis h1(D −

�) = 0, the formula for vdim(D − �) and the fact that −D − (H − �) is
not effective. Similarly, for the divisor D one has h0(D) = d + g + h1(D),
and since the conic � can give at most D · � + 1 conditions, one gets
h0(D)− h0(D − �) = h1(D)+ D · � + 1 ≤ D · � + 1 so that h1(D) = 0. The
same argument gives h0(D + �) = d + g + D · � + 1.

Now choose a base {D1, . . . , Dr } of H 0(D − �), a base {�1, �2} of
H 0(�), and extend {D1�1, . . . , Dr�1} to a base for H

0(D): {D1�1, . . . , Dr�1,

Dr+1, . . . , Dd+g}; now we can consider the following elements:

D1�
2
1, D2�

2
1, . . . , Dr�

2
1, Dr+1�1, . . . , Dd+g�1

Dr+1�2, . . . , Dd+g�2

One sees that they are independent elements of H 0(D + �), in number of
d + g + D · � + 1 and this is exactly the dimension of H 0(D + �). �

Lemma 2.3. If D ⊂ S is a curve of type (∗) with d = degD > 2 then D ·� > 0
for any conic � ⊂ S.

Proof. The assertion is trivial if D is a plane curve, i.e. if D is linearly
equivalent to H . Let � ⊂ S be any conic, and let L ⊂ S be the complementary
line, i.e. the line such that � + L is linearly equivalent to H . Assuming that
D · � ≤ 0 we have

d = D · H = D · (� + L) = D · � + D · L ≤ D · L

a contradiction, because D is not a plane curve so it cannot have a d -secant line.
�

Proposition 2.4. Let D ⊂ S be a curve free from �xed components having
degree d ≥ 5. Then there exists a conic � such that vdim(D − 2�) ≥ 0 (i.e.
d + g ≥ 2D · � + 2).

Proof. If D is composed with a pencil, D = r� (r > 2) the assertion is trivially
true. Hence we assume that D is of type (∗). Notice that vdim(D − 2�) =

vdim(D)−2D ·�−2 = g+d−2D ·�−2, where g is the genus of D. We use
induction on the degree d of D. For d = 5 the lemma can be directly proved
by considering all the curves of type (∗) on S of degree 5.

By a base change in Pic(S) we can assume that the conic � of type
(1; 1, 0, 0, 0, 0, 0) is a minimal secant for D, and that (a; b1, b2, b3, b4, b5, b6),
with b1 ≥ b2 ≥ . . . ≥ b6 ≥ 0, is the type of D after this base change (it is
enough to choose the line G1 as a maximal secant and G2, . . . ,G6 such that
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D · G1 ≥ D · G2 ≥ . . . ≥ D · G6). Hence, by the minimality of D · �, a direct
computation with the other two conics which might be minimal secants for D
gives:

a − b1 ≤ 2a − b1 − b2 − b3 − b4

a − b1 ≤ 3a − 2b1 − b2 − b3 − b4 − b5 − b6

The case when b1 = 0 gives no problem: d = 3a, D · � = a, g =

(1/2)(a − 1)(a − 2), hence (recall that a ≥ 2):

vdim(D − 2�) =
1

2
(a − 1)(a − 2)+ a − 2 ≥ 0

When b1 > 0 we consider three cases.
1st case. Suppose that

�
a > b1 + b2
2a > b1 + b2 + b3 + b4 + b5

Consider the curve D� of type (a; b1 + 1, b2, b3, b4, b5, b6) having degree
d � = d−1 and genus g� = g−b1. This curve is still free from �xed components,
hence by the inductive hypothesis, denoting by �� a conic minimal secant for
D�, we have

vdim(D� − 2��) = g� + d � − 2D� · �� − 2 ≥ 0

Now, since D� = D−E1, we have D
� ·�� ≤ D� ·� = D ·�−E1 ·� = D ·�−1

and D� · �� = D · �� ≥ D · � − E1 · ��, hence either D� · �� = D · � − 1
or D� · �� = D · � − 2. In the �rst case a simple substitution shows that
vdim(D − 2�) ≥ 0 because b1 > 0; the second case can take place only when
2a = b1 + b2 + b3 + b4 + b5 + b6. In this situation, recalling that d > 5,
we can have b1 < 3 only if D is of type: (6; 2, 2, 2, 2, 2, 2), and for this curve
vdim(D − 2�) = 0. If b1 ≥ 3 a simple substitution gives the result.

2nd case. Suppose that

�
a = b1 + b2
2a > b1 + b2 + b3 + b4 + b5

Notice that we only need to consider the case a > b1+b5. In fact, if a = b1+b5
then D is of type (a; b1, a − b1, a − b1, a − b1, a − b1, b6); since we know that
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a − b1 ≤ 3a − 2b1 − 4(a − b1) − b6, i.e. that 2a ≤ 3b1 − b6, we can directly
compute vdim(D − 2�):

vdim(D − 2�) = g − 3a + 5b1 − b6 − 2 ≥ g + 2b1 − a − 2 ≥ 0

because 2b1 > a + 1, as one can check.
Consider the curve D� obtained from D increasing by 1 the �rst bi

(i = 3, 4, 5) such that b1 + bi < a. First suppose i = 3, so that D� is the
curve of type (a; b1, b2, b3 + 1, b4, b5, b6) of degree d � = d − 1 and genus
g� = g − b3. If b3 > 0 we can repeat the same argument as in the �rst case
because either D� · �� = D · � or D� · �� = D · � − 1; if b3 = 0 we can
directly work on the curve D. In fact, assuming that b3 = 0, D is of type
(a; b1, a − b1, 0, 0, 0, 0) so that

vdim(D − 2�) = g + 2a − 2a + 2b1 − 2 = g + 2b1 − 2 ≥ 0

If i = 4 and b4 �= 0 we repeat the same argument, while when b4 = 0 again we
give a direct computation: in this case D is of type (a; b1, a−b1, a−b1, 0, 0, 0)
with b1 > 1 (otherwise a − b1 = 1 and a = 2: this leads to d = 3). Now a
direct computation gives

vdim(D − 2�) = g + a + b1 − 2a + 2b1 − 2 = g + 3b1 − a − 2 ≥ 0

Finally, if i = 5 we are reduced to the case b5 = 0, so D is of type
(a; b1, a − b1, a − b1, a − b1, 0, 0); again a direct computation gives

vdim(D − 2�) = g + 2(2b1 − a − 1)

Now, since a − b1 ≤ 2a − b1 − 3(a − b1) (� is a minimal secant of D ), we
have b1 ≥ 2a/3, hence

2b1 − a − 1 ≥
a

3
− 1 ≥ 0

because a ≥ 3 (if a ≤ 2 then d < 5).

3rd case. Suppose that 2a = b1+b2+b3+b4+b5. This can happen only when
b6 = 0. In fact, since a − b1 ≤ 3a − 2b1 − b2 − b3 − b4 − b5 − b6, we have
2a ≥ b1 + b2 + b3 + b4 + b5 + b6.

Now, from the inequality a − b1 ≤ 2a − b1 − b2 − b3 − b4 = b5, we see
that a = b1+b5, so D is of type (a; b1, a−b1, a−b1, a−b1, a−b1, 0). Hence
b1 = 2a/3, with a = 3n, n ≥ 2, and a direct computation gives

vdim(D − 2�) = g +
a

3
− 2 ≥ 0. �
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Theorem 2.5. Let C ⊂ S be a curve of type (∗), having degree d ≥ 4. If C has
not one of the following types (n > 1):

(a) (n; 0, 0, 0, 0, 0, 0);
(b) (2n; n, n, n, 0, 0, 0);
(c) (3n; 2n, n, n, n, n, 0);
(d) (4n; 2n, 2n, 2n, n, n, n);
(e) (5n; 2n, 2n, 2n, 2n, 2n, 2n);
(f) (3; 1, 1, 1, 1, 1, 0), (4; 2, 2, 1, 1, 1, 1), (5; 2, 2, 2, 2, 2, 1);
(g) (6; 2, 2, 2, 2, 2, 2)

then there exists a conic � ⊂ S such that the cup product morphism

H 0(C − �)⊗ H 0(�)→ H 0(C)

is surjective.

Proof. If C − 2� is not effective for any conic �, then 0 = vdim(C − 2�)+
h1(C − 2�) and Proposition 2.4 implies h1(C − 2�) = vdim(C − 2�) = 0.
Moreover vdim(C − 2�) = d + g − 2C · � − 2 = 0, so d + g = 2C · � + 2
and one has vdim(C − �) = d + g − C · � − 1 = C · � + 1 > 0 by Lemma
2.3. Hence C −� is effective and H 1(C −2�) = 0: the result follows applying
Lemma 2.2.

If C − 2� is effective for some conic �, then C − � is too; now we want
to discard those divisors such that H 1(C − 2�) �= 0; of course we shall �nd the
types listed in the theorem.

We will choose � such that C · � is minimum; according with the
various types of conics one sees that this minimum can be attained by �1 =

(1; 1, 0, 0, 0, 0, 0), �2 = (2; 1, 1, 1, 1, 0, 0), �3 = (3; 2, 1, 1, 1, 1, 1), since, as
usual, we consider divisors C of type (a; b1, b2, b3, b4, b5, b6) with b1 ≥ b2 ≥

. . . ≥ b6. We have three cases.

I) �1 is a minimal secant, i.e. C · �3 ≥ C · �1 and C · �2 ≥ C · �1. In
this case C − 2�1 is of type (a − 2; b1 − 2, b2, b3, b4, b5, b6), so the following
inequalities must be satis�ed:

(I∗)






2a ≥

6�

i=1

bi

a ≥ b2 + b3 + b4

E1 is a double �xed line of C − 2�1 if and only if b1 = 0, i.e. if
C has the type of (a). L23 is a double �xed line of C − 2�1 if and only
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if a = b2 + b3. In this case by (I∗) we must have b4 = 0; moreover
a ≥ b1 + b2 ≥ b1 + b3 ≥ b2 + b3 = a implies that C has the type of (b).

G6 is a double �xed line of C − 2�1 if and only if 2a = b1 + b2 + b3 +

b4 + b5 ≤ b1 + b5 + a, so a = b1 + b5 and b2 = b3 = b4 = b5. C must have
the type of (c).

G1 is a double �xed line for C − 2�1 if and only if 2a − 2 = b2 + b3 +

. . . + b6; using (I∗) one sees that b1 ≤ 2 and considering all the possibilities
one proves that C must have one of the following types: (6; 2, 2, 2, 2, 2, 2),
(4; 2, 2, 1, 1, 1, 1), (3; 1, 1, 1, 1, 1, 0) and these are listed in ( f ), (g).

II) �3 is a minimal secant, i.e. C ·�1 ≥ C · �3 and C · �2 ≥ C · �3. In this
case C − 2�3 is of type (a − 6; b1 − 4, b2 − 2, b3 − 2, b4 − 2, b5 − 2, b6 − 2)
and the following inequalities must hold:

(I I∗)






2a ≤

6�

i=1

bi

a ≤ b1 + b5 + b6

E1 is a double �xed line for C − 2�3 if and only if b1 = 2. By (I I∗)
one gets a ≤ 6 and one can check that the only possibilities are curves of type
(4; 2, 2, 1, 1, 1, 1), (5; 2, 2, 2, 2, 2, 1), (6; 2, 2, 2, 2, 2, 2) which are listed in ( f )
and (g).

E6 is a double �xed line of C − 2�3 if and only if b6 = 0; (I I∗) gives
a = b1 + b5, thus b2 = b3 = b4 = b5 and after some computation one �nds
again (c). Moreover, one can see that bi = 0 for i = 2, 3, 4, 5, implies that C
is not of type (∗), so that no line Ei , i = 2, . . . , 5, can be a double �xed line for
C − 2�3.

L23 is a double �xed line of C − 2�3 if and only if a = b2 + b3; again
(I I∗) gives b1 = b2 = b3 = a/2; hence b5 + b6 ≥ a/2. Now, we have
2a ≥ b1+b2+b3+b4+b5 ≥ b1+b2+b3+b4+b6 ≥ b1+b2+b3+b5+b6,
and since b1 + b2 + b3 = 3a/2, one gets b4 = b5 = b6 = a/4; we obtain (d).

G1 is a double �xed line of C −2�3 if and only if 2a = b2+b3+ . . .+b6.
Now, 2a = b2 + b3 + b4 + b5 + b6 ≤ b1 + b3 + b4 + b5 + b6 ≤ . . . ≤

b1+ b2+ b3 + b4+ b5 ≤ 2a, hence we have b1 = b2 = b3 = b4 = b5 = b6 and
we obtain a curve of type (e).

III) �2 is a minimal secant, i.e. C · �1 ≥ C · �2 and C · �3 ≥ C · �2. In
this case C − 2�2 is of type (a − 4; b1 − 2, b2 − 2, b3 − 2, b4 − 2, b5, b6) with
the inequalities

(I I I∗)

�
a ≤ b2 + b3 + b4

a ≥ b1 + b5 + b6
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E4 is a double �xed line of C − 2�2 if and only if b4 = 0. By (I I I∗)
one gets a = b2 + b3 and b4 = b5 = b6; we again obtain (b). If G1 would
be a double �xed line of C − 2�2, then 2a = b2 + . . . + b6, which implies
b2 = . . . = b6 and this contradicts (I I I∗). Analogous computations show that
G2 is a double �xed line of C − 2�2 if and only if C = b(3; 2, 1, 1, 1, 1, 1), i.e.
C is not of type (∗); for G3 one �nds C = a(1; 1, 1, 0, 0, 0, 0), a contradiction.
G4 is a double �xed line of C −2�2 if and only if 2a = b1+b2 +b3 +b5 +b6 .
Since 2a = b1+b2+b3+b5+b6 ≤ b1+b2+b3+b4+b6 ≤ b1+b2+b3+b4+b5
one gets b6 = b5 = b4 =: b. By (I I I∗) b1 + 2b ≤ a ≤ b2 + b3 + b
whence 2a = b1 + b2 + b3 + 2b ≤ a + b2 + b3, so a ≤ b2 + b3 and
a = b2 + b3 ≤ b1 + b3 ≤ b1 + b2 ≤ a. Hence b1 = b2 = b3 =: b; a = 2b
and 2a = 3b+ 2b = 4b so that 2b = b. C must be of type b(4; 2, 2, 2, 1, 1, 1),
which is (d).

L45 is a double �xed line of C − 2�2 if and only if a = b4 + b5 and this
implies b1 = b2 = b3 = b4 = b5 =: b, so that a = 2b and this is a contradiction
with C of type (∗). Finally L56 is a double �xed line of C − 2�2 if and only if
a = b5 + b6 + 2. (I I I∗) implies b1 ≤ 2 . By checking all the possibilities one
�nds that C must be of type (a) or ( f ) or (g). �

Recall that for any pencil of conics on S there are 5 degree two monomials
of that type in the 27 variables; one can use two of them to express the remaining
three. In this way we have found 81 degree two elements in k[�i j , er , gs] which
vanish in G (S).

Theorem 2.6. The ideal I of k[�i j , er , gs] generated by the 81 above elements
de�nes the ring G(S), i.e. I = J , so that G(S) ∼= k[�i j , er , gs]/I .

Proof. We must prove that I = J . Fix a curve D ⊂ S free from �xed
components. Suppose that D is composed with a pencil of conics, D = r�.
We know that H 0(�) =< x , y >, x , y a base, hence H 0(r�) has base
xr , xr−1y, . . . , yr . In H 0(�) we have �ve monomials of k[�i j , er , gs], so there
are three generators of I in H 0(�). H 0(r�) has dimension r + 1 and contains�
4+r
4

�
monomials of k[�i j , er , gs], so in J there are

�
4+r
4

�
− (r +1) relations. The

same number of independent relations can be constructed starting by the three
relations of H 0(�) belonging to I .

If D is of type (∗) and deg D = 3 then the result follows from Proposition
2.1, so suppose that deg D ≥ 4 and that for D Theorem 2.5 holds. Hence there
exists a conic � such that H 0(D−�)⊗ H 0(�) → H 0(D) is surjective. Choose
a base for each vector space H 0(D − �), H 0(�), H 0(D) using respectively
monomials in k[�i j , er , gs][D−�] , k[�i j , er , gs][�] , k[�i j , er , gs][D] , and call them
B1, B2, B3. Now we can identify H 0(D − �) =< B1 >, H 0(�) =< B2 >,
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H 0(D) =< B3 > so we can write

k[�i j , er , gs][D−�] =< B1 > ⊕K1,

k[�i j , er , gs][�] =< B2 > ⊕K2,

k[�i j , er , gs][D] =< B3 > ⊕K3

Consider the commutative diagram

(< B1 > ⊕K1)⊗ (< B2 > ⊕K2)
ϕ �

��

p⊗p�

��

< B3 > ⊕K3 ��

p��

��

0

H 0(D − �)⊗ H 0(�)
ϕ

�� H 0(D) �� 0

where ϕ, ϕ� are given by multiplication, the vertical maps are the projections
onto the �rst component. Now an element

�
Mi ⊗ �i ∈ ker ϕ is image of�

(mi , 0) ⊗ (γi , 0) ∈ ker ϕ� by the above identi�cations. Hence there exists
a surjection ker ϕ� → ker ϕ . Using the snake lemma we get a surjection
ker p ⊗ p� → ker p�� so that every element in ker p�� is generated by elements
in ker p� ⊂ I .

We have to prove now the theorem for the curves of types (a) − (g) listed
in Theorem 2.5. As to the multiples of rational cubics (types (a) − (e)), we
can consider the cubic � ⊂ S of type (1; 0, . . . , 0) and observe that the map
H 0((n − 1)�)⊗ H 0(�) → H 0(n�) is surjective. Since by Proposition 2.1 we
know that I[�] = J[�] one can construct as above a commutative diagram which
gives the result.

For the quartics of genus 1 listed in ( f ), consider for instance the quar-
tic � of type (3; 1, 1, 1, 1, 1, 0). Denoting by �1, . . . , �5 the conics of
type (1; 1, . . . , 0), . . . , (1; 0, . . . , 1, 0) and by ��

1, . . . , ��
5 the conics of type

(2; 0, 1, 1, 1, 1, 0), . . . , (2; 1, 1, 1, 1, 0, 0) one has the surjection

5�

i=1

H 0(�i )⊗ H 0(��
i ) → H 0(�)

Now the same commutative diagram as above can be constructed and the result
follows.

Finally, for the curves listed in (g), the surjection H 0(H ) ⊗ H 0(H ) →

H 0(2H ) allows to conclude as above. �
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3. The Mori quartic.

In this section we assume char k = 0. Let M be a K3 surface, i.e. a
smooth surface having trivial canonical sheaf and zero irregularity. We assume
that M has a very ample divisor, H , such that h0(H ) = 4 and H 2 = 4.
Moreover we assume that Pic(M) ∼= Z

2 is generated by the classes of H and
L , where L is an integral curve such that H · L = 1 and L2 = −2. If for any
divisor D ⊂ M we call degree of D the number deg D = H · D, then we can
say that L is a line since it has degree one and genus zero. All these properties
can be summarized by saying that M is a Mori quartic of type (1,0) (see [10]
for the Mori�s construction, [3] and [4] for more properties of such surfaces).
In fact, M can be embedded in P

3 as a quartic surface and in this embedding
the generators of Pic(M) are the class of a plane section H and the class of the
line L , i.e. the class of an integral curve of degree 1 and genus 0. Here we want
to describe the global ring G(M) of M. We start by giving a description of the
curves (i.e. of the effective divisors) onM. Recalling that L is the only isolated
curve ofM (see [4], Proposition 4.3), any divisor D ⊂ M is linearly equivalent
to aH + bL , with a, b ∈ Z. In this case we say that D is of type (a, b), so D
has degree deg D = 4a + b, and genus g = 2a2 + ab− b2 + 1. Now, applying
the algorithm explained in [2], Remark 3.3, it is easy to see that the curves ofM
are the following:

(1) curves of type (a, −b) with a ≥ b ≥ 0;
(2) curves of type (a, b) with a, b ≥ 0.

The curves (1) always are integral, except for a = b: in this case they
are composed with a pencil. Namely bH − bL is the union of b curves, each
linearly equivalent to H − L hence of degree three and genus one, belonging to
the same pencil.

The curves (2) are integral only when a ≥ 2b. If a < 2b then the Zariski
decomposition of these curves is

aH + bL = (b − �
a

2
�)L + (aH + �

a

2
�L)

where �−� means the integer part. In this case (b− �a/2�)L is the �xed part of
aH + bL , and this means that any curve linearly equivalent to aH + bL must
contain the line L with multiplicity b − �a/2�. aH + �a/2�L is the moving
part of this curve. If C ⊂ M is a curve, we can easily compute the dimensions
hi (C) (i = 0, 1, 2) in the following way (see [3], n. 3 and n. 4). For curves (1)
we have

h0(aH − bL) =

�
2a2 − b2 − ab + 2 = vdim(aH − bL) if b < a
b + 1 if b = a
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For curves (2) we consider their Zariski decomposition: C = x L + (yH + zL)
with x , y, z ≥ 0; then h0(C) = h0(yH + zL) = 2y2 − z2 + yz + 2 =

vdim(yH + zL). Moreover, a simple application of R-R shows that for curves
(2) we have

h1(x L) = x 2−1; h1(x L+(yH+zL)) = x 2−x L ·(yL+zH ) = x 2−xy+2x z

For curves (1) we have H 1(aH − bL) �= 0 only when a = b, i.e. when the
curve is composed with a pencil, and h1(bH − bL) = b− 1. Of course, for any
non-zero curve C ⊂ M we have H 2(C) = 0. Recall that E ff M denotes the
semigroup of effective divisors of M. We want to show that E ff M is �nitely
generated.

Theorem 3.1. Let M be a Mori quartic of type (1,0). Then E ff M is generated
by the following elements: 1 section of H 0(L), 2 sections of H 0(H − L), 2
sections of H 0(H ), 1 section of H 0(2H+L). In particular, E ff M is generated
in degree ≤ 9.

Proof. Let us choose the generators of E ff M among the curves ofM of low
degree.
d = 1 We have only one curve, L , of type (0, 1). Let x ∈ H 0(L).
d = 2 We have only 2 times L , and the corresponding section is x 2. In the
sequel we shall omit such curves.
d = 3 We have only curves of type (1, −1). Let y1, y2 ∈ H 0(H − L).
d = 4 We have only curves of type (1, 0). Let z1, z2 ∈ H 0(H ) such that
xy1, xy2, z1, z2 are a base of H

0(H ).
d = 5 We have only curves of type (1, 1). All these curves have L as �xed
part, hence every section of H 0(H+L) is obtainedmultiplyingby x the sections
of H 0(H ).
d = 6 We have curves of types (1, 2) and (2, −2). For the �rst curves we
repeat the same argument as for (1, 1); for the second observe that any section
of H 0(2H − 2L) is given by a quadratic form of y1, y2.
d = 7 Disregarding curves of type (1, 3) (for which we can repeat the same
argument as before), we have only curves of type (2, −1). For these curves
observe that the cup-product morphism

H 0(H − L)⊗ H 0(H )→ H 0(2H − L)

is surjective (see [4], Theorem 2.2) because H 1(−L) ∼= H 1(L) = 0 and
H 1(H − L) = 0. Hence the sections xy1y2, xy

2
1, xy

2
2, y1z1, y2z1, y1z2, y2z2

give a base of H 0(2H − L).
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d = 8 Disregarding curves of type (1,4), we have only curves of type (2,0).
Here again Theorem 2.2 of [4] shows that there is the surjection

H 0(H )⊗ H 0(H )→ H 0(2H )

d = 9 Essentially we have the curves of type (2,1). h0(2H + L) = 11, but
one can check that no cup-product surjects on H 0(2H + L). Using the previous
generators we can construct only 10 sections of H 0(2H + L): the sections of
h0(2H ) each multiplied by x ; so, in order to have a base of h0(2H + L), we
need a new section t ∈ H 0(2H + L) corresponding to a curve not containing L
as a component.

Now the result follows by the following claim.

Claim: E ff M is generated by x , y1, y2, z1, z2, t .
By induction on the degree. We only need to consider a curve C of degree

≥ 10 free from �xed components. First we consider curves of type (a, −b),
with a > 0, 0 ≤ b ≤ a. If b = 0 then a ≥ 3: in this case, again by Theorem
2.2 of [4], we have the surjection

H 0((a − 1)H )⊗ H 0(H ) → H 0(aH )

If a = b then any curve of type (b, −b) is the union of b curves of the same
pencil, so the conclusion follows trivially. Consider now 0 < b < a. We want
to show that the cup product

ϕ : H 0((a − 1)H − (b − 1)L)⊗ H 0(H − L) → H 0(aH − bL)

is surjective. Here we have:

h0(aH − bL) = 2a2 − b2 − ab + 2, h0((a − 1)H − (b − 1)L) =

= 2a2 − b2 − ab + 2− 3a + 3b = s

Consider H 0((a − 2)H − (b − 2)L): this space has dimension r = 2a2 − b2 −

ab + 2 − 6a + 6b (even in the �degenerate case� a = 3, b = 1, as a simple
computation shows). Let {α1, α2, . . . , αr } be a base of H

0((a−2)H −(b−2)L),
and let {y1, y2} be a base of H

0(H − L). Consider now the following base of
H 0((a − 1)H − (b − 1)L):

α1 y1, α2y1, . . . , αr y1, βr+1, . . . , βs
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and notice that no element of the vector space spanned by βr+1, . . . , βs can
contain y1 as a component. Now it is easy to see that the following s+ (s−r) =

h0(aH − bL) elements of Im ϕ are independent:

α1y
2
1 , α2y

2
1 , . . . , αr y

2
1, βr+1 y1, . . . , βs y1,

βr+1 y2, . . . , βs y2

Now consider curves of type (a, b), with a ≥ 2b ≥ 0. The case b = 0
has already been considered, so we assume b > 0. First we consider curves for
which a > 2b. In this case, again by Theorem 2.2 of [4], we have the surjection

H 0((a − 1)H + bL)⊗ H 0(H ) → H 0(aH + bL)

because H 1((a−1)H +bL) = 0, and H 1((a−2)H +bL) = 0: the �rst equality
is trivial, and the second is not trivial only when a − 1 = 2b. In this case the
Zariski decomposition of (2b − 1)H + bL is

(2b − 1)H + bL = L + ((2b − 1)H + (b − 1)L)

and one can check that the assertion is true because L·((2b−1)H+(b−1)L) = 1
(apply the formula for h1). Finally, suppose a = 2b, i.e. consider curves of type
(2b, b), with b > 1. We have just seen that the cup-product morphism

ψ : H 0((2b − 1)H + (b − 1)L)⊗ H 0(H ) → H 0(2bH + (b − 1)L)

is surjective. In this way, multiplying by x a base of Im ψ , we obtain
h0(2bH + (b−1)L) = 9b2+1 independent elements of H 0(2bH +bL). Since
h0(2bH +bL) = 9b2+2, we only need one more section which is independent
from the previous ones. This section is given by t b . �

A consequence of the above theorem is that the global ring of M is the
bigraded ring

G(M) = k[x , y1, y2, z1, z2, t]/I

where I is a bihomogeneous ideal. Now we look for the relations among the
variables x , y1, y2, z1, z2, t , in G(M), i.e. for the generators of I . Notice that,
as in the previous section, the de�nition of degree of a divisor on M gives a
Z-grading to G(M); in this grading our variables have degree 1, 3, 3, 4, 4, 9
respectively.

Going on in writing explicitly the monomials for curves in M of low
degree, as done in the proof of Theorem 3.1, we �nd two relations in degree



154 SALVATORE GIUFFRIDA - RENATO MAGGIONI

12, among the monomials of type (3,0). In fact h0(3H ) = 20, while we �nd the
following 22 monomials

x 3y31, x
3y21 y2, x

3y1y
2
2 , x

3y32 ;

x 2y21 z1, x
2y1y2z1, x

2y22 z1, x
2y21 z2, x

2y1y2z2, x
2y22 z2;

xy1z
2
1, xy2z

2
1, xy1z1z2, xy2z1z2, xy1z

2
2, xy2z

2
2;

z31, z
2
1z2, z1z

2
2, z

3
2;

y1t, y2t .

Now, the 20 monomials of the �rst four rows are independent because they are
the only 20 different monomials in the image of the cup-product

H 0(2H )⊗ H 0(H )→ H 0(3H )

which is surjective. Thismeans that both y1t and y2t must be linear combination
of the previous monomials. So we obtain two generators of I :

σ1 = y1t − F1 where F1 = F1(x , y1, y2, z1, z2),

σ2 = y2t − F2 where F2 = F2(x , y1, y2, z1, z2).

A direct computation shows that there are no new relations among mono-
mials of degree 13 and 14. The same happens in degree 15, but we want to
analyse this case in detail because we meet an interesting situation in bidegree
(4, −1): we have h0(4H −L) = 29, while we �nd the following 30 monomials:

x 3y41, x
3y31 y2, x

3y21 y
2
2 , x

3y1y
3
2 , x

3y42 ;

x 2y31 z1, x
2y21 y2z1, x

2y1y
2
2z1, x

2y32 z1, x
2y31 z2, x

2y21 y2z2, x
2y1y

2
2 z2, x

2y32 z2;

xy21z
2
1, xy1y2z

2
1, xy

2
2z
2
1, xy

2
1z1z2, xy1y2z1z2, xy

2
2z1z2, xy

2
1z
2
2, xy1y2z

2
2, xy

2
2z
2
2;

y1z
3
1, y2z

3
1, y1z

2
1z2, y2z

2
1z2, y1z1z

2
2, y2z1z

2
2, y1z

3
2, y2z

3
2.

Here we excluded monomials containing the variable t because of the
relations σ1 and σ2. Moreover we have in the ideal (σ1, σ2) the element
σ = y2σ1 − y1σ2 = y1F2 − y2F1. This is an element of type (4, −1) not
containing t , and it is non-zero since otherwise yi would divide Fi (i = 1, 2),
hence the variable t would be expressed by means of the other variables. In
particular, we have no new relation in degree 15. Notice that any element of the
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ideal (σ1, σ2) not containing t must be a multiple of σ : in fact σ is the resultant
of σ1, σ2 with respect to the variable t .

We want to show that the two elements σ1 and σ2 generate I . To this end
we shall prove that

R = k[x , y1, y2, z1, z2, t]/(σ1, σ2) ∼= G(M)

Thus, denoting by R(a,b) the bihomogeneous components of type (a, b) of R,
we need to show that for any couple (a, b) we have

h0(a, b) = dimk R(a,b)

Of course we are interested only in couples (a, b) such that aH + bL is
effective. Moreover, we can only consider couples such that (a − 3)H + bL
is effective (recall that σ1 and σ2 are of type (3, 0)): in the other cases a direct
check gives the result.

We need a technical lemma.

Lemma 3.2. For any integer n > 0 we have

n + (n − 1)2+ . . . + 2(n − 1)+ n =

�
n + 2

3

�

Proof. By induction on n. It is a simple exercise. �

Theorem 3.3. Let M be a Mori quartic of type (1, 0). Then the global ring of
M is the bigraded ring

G(M) = k[x , y1, y2, z1, z2, t]/(σ1, σ2)

where σ1, σ2 are the elements determined above.

Proof. Following the previously exposed argument, we need to determine the
dimensions of R(a,b) for any couple (a, b) such that (a − 3)H + bL is effective.
Of course it is enough to consider only couples (a, b) such that aH +bL is free
from �xed components. For any such bidegree we want to count the number of
monomials of R in the variables x , y1, y2, z1, z2, t having bidegree (a, b). Since
R(a,b) is a quotient of k[x , y1, y2, z1, z2, t](a,b), we have to take account of the
relations in (σ1, σ2)(a,b).

Notice that we have the isomorphism of k-vector spaces

R ∼= S ⊕
�

n>0

S �t n
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where S = k[x , y1, y2, z1, z2]/(σ ) and S � = k[x , z1, z2]. In fact any monomial
of R containing yr11 y

r2
2 t

s can be decomposed in a sum of elements of S (and
nothing else if r1+r2 ≥ s) plus elements of

�
n>0 S

�t n . Moreover, S �/(σ ) = S �.
We consider separately the curves of type (1) and (2) listed at the beginning

of this section.

1st case. Curves of bidegree (a, −b), with a − 3 ≥ b > 0. Notice that all such
elements are in S(a,−b): this immediately follows recalling the bidegrees of the
variables. Hence we need to determine dimk S(a,−b).

In the following tables we list on the left side all the possible types of the
factors of the monomials of type (a, −b) and on the right their number.

type of monomials # of monomials

(0, a − b) (a, −a) a + 1
(0, a − b − 1) (a − 1, −a + 1) (1, 0) a · 2
. . . . . . . . . . . .

(0, 1) (b + 1, −b − 1) (a − b − 1, 0) (b + 2) · (a − b)
(b, −b) (a − b, 0) (b + 1) · (a − b + 1)

Notice that in counting the monomials of type (r, 0) we have used only the
variables z1, z2 , so that we have r + 1 monomials. Summing all we obtain

(b + 1)
�
(a − b + 1)+ (a − b)+ . . . + 2+ 1

�
+

�
(a − b)+ 2(a − b − 1)+ . . .

+(a − b − 1)2+ (a − b)
�
=

= (b+1)

�
a − b + 2

2

�

+

�
a − b + 2

3

�

=
(a − b + 2)(a − b + 1)(a + 2b + 3)

6

where we have used Lemma 3.2.
Now, in order to compute dimk S(a,−b) we need to compute the dimension

of (σ )(a,−b) , i.e. the number of monomials in k[x , y1, y2, z1, z2] of type (a −

4, −b + 1) because σ is of type (4,-1).

type of monomials # of monomials

(0, a − b − 3) (a − 4, −a + 4) a − 3
(0, a − b − 4) (a − 5, −a + 5) (1, 0) (a − 4) · 2
. . . . . . . . . . . .

(0, 1) (b, −b) (a − b − 4, 0) (b + 1) · (a − b − 3)
(b − 1, −b + 1) (a − b − 3, 0) b · (a − b − 2)
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so that the same computation as before gives

b

�
a − b − 1

2

�

+

�
a − b − 1

3

�

=
(a − b − 1)(a − b − 2)(a + 2b − 3)

6

Hence we have

dimk S(a,−b) =
(a − b + 2)(a − b + 1)(a + 2b + 3)

6
−

−
(a − b − 1)(a − b − 2)(a + 2b − 3)

6
=

= 2a2 − b2 − ab + 2 = h0(aH − bL)

2nd case. Curves of bidegree (a, b) with a, b ≥ 0. Of course we can assume that
a ≥ 2b; in fact, otherwise every section of H 0(aH + bL) contains the factor x
the right number of times.

As before we determine the number of monomials of type (a, b), but in this
case we separately count monomials of S(a,b) and monomials of (⊕n>0S

�t n)(a,b) .
For the �rst ones we start counting their number in k[x , y1, y2, z1, z2].

type of monomials # of monomials

(0, a + b) (a, −a) a + 1
(0, a + b − 1) (a − 1, −a + 1) (1, 0) a · 2
. . . . . . . . . . . .

(0, b + 1) (1, −1) (a − 1, 0) 2 · a
(0, b) (a, 0) a + 1

�
a + 3

3

�

Then, to complete the computation, we need the number of monomials
having degree (a − 4, b+ 1) in k[x , y1, y2, z1, z2] since these give the elements
of (σ )(a,b):

type of monomials # of monomials

(0, a + b − 3) (a − 4, −a + 4) a − 3
(0, a + b − 4) (a − 5, −a + 5) (1, 0) (a − 4) · 2
. . . . . . . . . . . .
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(0, b + 2) (1, −1) (a − 5, 0) 2 · (a − 4)
(0, b + 1) (a − 4, 0) a − 3

�
a − 1

3

�

Finally, we compute dimk (⊕n>0S
�t n)(a,b).

type of monomials # of monomials

(0, b − 1) (2, 1) (a − 2, 0) a − 1
(0, b − 2) (4, 2) (a − 4, 0) a − 3
. . . . . . . . . . . .

(0, 1) (2b − 2, b − 1) (a − 2b + 2, 0) a − 2b + 3
(2b, b) (a − 2b, 0) a − 2b + 1

b(a − b)

Hence summing all we have

dimk R(a,b) =

�
a + 3

3

�

+b(a−b)−

�
a − 1

3

�

= a2−b2+ab+2 = h0(aH+bL)

�
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