
LE MATEMATICHE
Vol. LV (2000) � Fasc. I, pp. 161�168

A BGK TYPE APPROXIMATION FOR THE COLLISION

OPERATOR OF THE TRANSPORT EQUATION

FOR SEMICONDUCTORS

GIOVANNI MASCALI

In the attempt of obtaining macroscopic models which describe the �ow
of electrons through a semiconductor crystal, many authors start from the
Boltzmann transport equation, often using a generalized BGK type approxi-
mation for the collision operator. In this work, by means of this approxima-
tion, we shall show that it is possible to obtain a new drift-diffusion equation
valid in the high electric �eld regime.

1. Introduction and basic equations.

On a microscopic level, the electron transport in a semiconductor is mod-
eled by the Boltzmann transport equation (BTE), [1], [2]

(1)
∂F

∂ t
+ �v · ∇�x F −

q

m∗
�E(�x, t) · ∇�vF = Q(F) t > 0, �x ∈ �3, �v ∈ �3

where F(t, �x, �v) is the electron distribution function in the one-particle phase-
space (t, �x, �v), �v = 1

h
∇�k�(�k) is the electron group velocity, with �(�k) electron

energy in the conduction band, and �k the electron wave vector. We are using the
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parabolic band approximation and, for the sake of simplicity, supposing that the
conduction band is unique. q is the elementary charge, m∗ the electron effective
mass and Q the Boltzmann operator, which takes into account interactions of
electrons with lattice-defects and electron-electron short-range interactions.

�E(�x , t) is the electric �eld, sum of an external (applied to the crystal) and
an internal �eld produced by an ion background, having density C(�x ), and the
carriers, i. e. �E = −∇� with � electric potential satisfying the Poisson
equation

(2) ∇ · (�∇�) = q
��

Fd3v − C(�x )
�

� being the permittivity of the material.
The effort to solve this system directly by numerical methods seems to be a

formidable task also for the present computing resources. Moreover solutions of
kinetic equations contain, in many cases, a good deal of redundant information.
For these reasons, many �uid dynamical models for semiconductors have been
introduced in recent years.

One of the most used approaches for the derivation of these models starting
from the Boltzmann equation, is based on perturbation arguments, [1], [2],
which exploit the smallness of a dimensionless parameter, the scaled mean free
path, appearing in an appropriately scaled version of the Boltzmann equation.

For high electric �elds, a new convenient scaling seems to be that proposed
by Poupaud in 1992 [3].

In this work, using this scaling and the Chapman-Enskog expansion, we
will obtain an approximated drift-diffusion equation for the number density of
carriers

ρ(�x, t) = �F�,

henceforth the symbol � f (�v)� will denote the integral of any scalar or vector-
valued measurable function f = f (�v) over the 3-dimensional Lebesgue mea-
sure d3v, that is

� f � =

�

�3

f (�v) d3v,

all functions appearing in this paper are understood to be Lebesgue measurable
in all variables.

Moreover we will approximate the Boltzmann operator by means of a
generalized BGK collision operator, that is by means of an operator having the
form

(3) Q(F) = ν1(E − F) + (ν2 − ν1)(D − F) + (ν3 − ν2)(F − F)
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where νi = νi (�x , t) are strictly ordered mean relaxation rates:

0 < ν1 < ν2 < ν3.

Actually this is the third in a whole family of multiscale generalized BGK
operators. We have maintained only the terms which give a contribution when
one wants to derive a drift-diffusion equation.
In the above expression,

E =
ρ

�
( 2πθL

m∗ )3

exp
�

−
m∗

2θL
v2

�

is the lattice temperature Maxwellian, with θL lattice temperature and ρ = �F�.

D =
ρ

�
( 2πθL

m∗ )3

exp
�

−
m∗

2θL
(�v − �u)2

�

is a displaced lattice temperature Maxwellian with ρ �u = ��vF�, �u being the
electron average velocity.
And

F =
ρ

�
( 2πθ

m∗ )3
exp

�
−

m∗

2θ
(�v − �u)2

�

is a displaced Maxwellian with ρ θ
m∗ = 2

3

�
� 1

2
v2F�− 1

2
ρu2

�
, θ being the electron

temperature different from θL .
As a consequence of this choice, the following properties hold

1. �E − F� = 0

2. �
�

1
�v

�
(D − F)� = 0

3. �

�
1
�v
v2

�

(F − F)� = 0

4. �Q(F)� = 0

5. ��vQ(F)� = −ν1��v F� = −ν1 ρ �u

The fourth property expressing the conservation of the electron number density.
The approximation (3) for the Boltzmann operator was introduced in the

framework of gas dynamics with the aim of facilitating the closure of the
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hierarchies of systems of moment equations which can be obtained starting from
generic classical kinetic theories (see [4] and references therein ).

This approximation is motivated by the fact that some of the essential
properties (of conservation, dissipation, and symmetry) of the original operator
remain valid for the BGK one, using which it is also possible to recover the
correct Navier-Stokes �uid dynamic approximation.
Here, we will use it to �nd a drift-diffusion equation for the density ρ .

2. A drift-diffusion equation in the high electric �eld limit.

As said, we will use the same scaling of the BTE as Poupaud.
Let us introduce the scaled variables

t � =
t

t0
; �x � =

�x

l0
; �v� =

�v

vth
.

where t0 is a reference time, l0 a reference length and vth =
�

θL

m∗ the thermal

velocity. Furthermore let τr be the characteristic relaxation time, then we can
de�ne a scaled collision term Qs by

Qs = τr Q.

The length lr = vthτr is a mean free path and α = lr
l0

a scaled version of this
mean free path.
Let us also de�ne the thermal voltage Uth and a scaled external �eld �E �

ex by

Uth =
m∗v2

th

q
�E �

ex =
�Eex

E0
ex

.

where E0
ex is an external reference �eld.

Then the BTE reads

τr

t0

∂F

∂ t �
+

lr

lo
�v� · ∇ �x � F −

E0
inlr

Uth

�E �
in · ∇�v� F −

E0
exlr

Uth

�E �
ex · ∇�v� F = Qs(F).

where E0
in is an internal reference �eld.

If we assume

t0 =
τr

α
E0

ex =
Uth

lr

E0
in

E0
ex

= α
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and drop primes in order to simplify notation, we obtain the following scaled
version of the BTE

(4)
∂F

∂ t
+ �v · ∇�x F − �Ein · ∇�vF =

1

α
[ν1(E − F) + (ν2 − ν1)(D − F)

+(ν3 − ν2)(F − F) + �Eex · ∇�vF].

If we consider the Chapman-Enskog expansion of this equation in the mean free
path parameter α, we will have

(5) F =
�

n≥0

αnF (n) with �F� = �F (0)� and �F (n)� = 0 for n ≥ 1.

Our aim is to derive a �rst order correct drift-diffusion equation for the density
ρ , so we will start from the mass conservation equation

(6)
∂�F�

∂ t
+ ∇�x · ��vF� = 0.

Substituting into it the Chapman-Enskog expansion of F , we will obtain at the
�rst order in α

(7)
∂�F (0)�

∂ t
+ ∇�x · ��vF (0)� + α∇�x · ��vF (1)� = 0.

Therefore we need to calculate

��vF (0)� and ��v F (1)�.

Considering the leading order term in the Chapman-Enskog expansion, we have,
substituting (5) into (4),

(8) − �Eex · ∇�vF
(0) = Q(F (0)).

from which

��v Q(F (0))� = −��v
�

�Eex · ∇�v F (0)
�
� = ρ �Eex .

Combining this last result with property 5, we �nd

(9) ρ �uF (0) ≡ ��v F (0)� = −ρν1
�Eex .
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Now, considering the �rst order correction to the Chapman-Enskog expansion
gives us

∂F (0)

∂ t
+ �v · ∇�x (F (0)) − �Ein · ∇�vF

(0) = Q (1)(F) + �Eex · ∇�vF
(1)

where Q (1)(F) denotes the �rst order term in the expansion of Q.
Multiplicating this equation by �v, integrating over the �v-space and elim-

inating the time derivative of ρ from the resulting equation by using the mass
conservation law at the leading order, we obtain

(10) ρ
∂ �uF (0)

∂ t
− �uF (0)[∇�x · (ρ �uF (0) )] + ∇�x · ��v ⊗ �v F (0)� + ρ �Ein = ��v Q(1)(F)�

⊗ denoting the usual tensor product .
From property 5, we have

(11) ��vQ (1)(F)� = −ν1��v F (1)�.

Then, from (10) we can derive ��v F (1)� once we calculate

��v ⊗ �v F (0)�.

To begin with, we notice that the following results stem from the de�nitions of
E, D and F :

��v ⊗ �v
�
E − F (0)

�
� = ρ Î − ��v ⊗ �v F (0)�

��v ⊗ �v
�
D

(0) − F (0)
�
� = ρ Î + ρ (�uF (0) ⊗ �uF (0) ) − ��v ⊗ �v F (0)�

��v ⊗ �v
�
F

(0) − F (0)
�
� = ρ(�uF (0) ⊗ �uF (0) )T F − �(�v ⊗ �v)T F F (0)�

where Î is the identity matrix of �3 and TF indicates the traceless part of a
symmetric tensor.
From these it immediately follows that

��v ⊗ �v Q(F (0))� = −ν1ρ(�uF (0) ⊗ �uF (0) ) + ν2 Î
�
ρ

�
1 +

1

3
u2

F (0)

�
−

1

3
�v2 F (0)�

�
+

+ν3

�
ρ(�uF (0) ⊗ �uF (0) )T F − �(�v ⊗ �v)T F F (0)�

�
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On the other hand, from (8) we also have

��v ⊗ �v Q(F (0))� = −
2ρ

ν1

�Eex ⊗ �Eex

Combining the last two expressions and using (9) we eventually �nd

(12) ��v ⊗ �v F (0)� = ρ

�� 1

ν2
1

+
1

ν1ν3

�
�Eex ⊗ �Eex +

1

3

� 1

ν1ν2
−

1

ν1ν3

�
E2

ex Î + Î
�

Substituting (9), (11) and (12) into (10) gives

(13) ��vF (1)� = −
1

ν2
1

�
∇�x ·

� ρ

ν1

�Eex

��
�Eex −

1

ν1

∇�x ·
�
ρ

�� 1

ν2
1

+
1

ν1ν3

�
·

· �Eex ⊗ �Eex +
1

3

� 1

ν1ν2
−

1

ν1ν3

�
E2

ex Î + Î
��

−
1

ν1
ρ �Ein +

1

ν1
ρ

∂

∂ t

� 1

ν1

�Eex

�
.

Now we are in condition to obtain our drift-diffusion equation.
In fact inserting (9) and (13) into (7) we have

∂ρ

∂ t
− ∇�x ·

� ρ

ν1

�Eex

�
+ α∇�x ·

�
−

1

ν2
1

�
∇�x ·

� ρ

ν1

�Eex

��
�Eex −

1

ν1
∇�x ·

�
ρ

�� 1

ν2
1

+
1

ν1ν3

�
�Eex ⊗ �Eex +

1

3

� 1

ν1ν2
−

1

ν1ν3

�
E2

ex Î + Î
��

+

−
1

ν1

ρ �Ein +
1

ν1

ρ
∂

∂ t

� 1

ν1

�Eex

��
= 0.

We underline that this drift-diffusion equation has been derived without solving
(8). If we consider the stationary homogeneous case, the current density will be
given by

�j = −
�
��v F (0)� + α��v F (1)�

�
=

� 1

ν1

ρ �Eex + α

� 1

ν1

ρ �Ein

��
.

which is in accordance with the more general expression

�u = −
q

ν1 m∗
�E

which directly results from taking the moment of the BTE corresponding to �v
and from property 5. From this we notice that, as known, models derived by
using the BGK approximation of the collision operator cannot predict a velocity
saturation at large electric �elds unless we let the coef�cient ν1 depend on �x
through the electric �eld.
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