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RENORMALIZED SOLUTIONS FOR SOME NON-COERCIVE
QUASILINEAR ELLIPTIC PROBLEMS IN
MUSIELAK-ORLICZ SPACES

H. HIIAJ - M. SASY

In this paper, we study the existence of renormalized solutions for the
following non-coercive quasilinear elliptic problem

{—div (a(x,u,Vu))+ g(x,u) = f—div (¢ (u)) in Q,
u=0 on dQ,

in the Musielak-Orlicz-Sobolev space W Ly (Q), where —div a(x,u, Vi)
is a degenerate Leary Lions operator and g(x,u) is a Carathéodory func-
tion that satisfies the sign condition with ¢(-) € C°(R,RN) and f € L' (Q).
The Musielak-Orlicz function ¢(x,?) is regular and does not necessarily
satisfying the A, —condition.

1. Introduction

Let Q be a bounded open subset of RN, (N >2). In [12], Boccardo et al. have
studied the existence and regularity of renormalized solutions for the following
nonlinear problem

{—div (a(x,u,Vu)) +g(x,u) = f—div(o(u))  inQ,

1
u=20 on 0Q, )
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in the Sobolev spaces Wol’p (Q), where —div (a(x,u,Vu)) is a Leray-Lions op-
erator and the lower order term g(x,u) is a Carathéodory function that verifies
some conditions, with f € W17 (Q) and ¢ € CO(R,RN). In the case of ¢ =0
and f € L (Q), Rakotoson in [26] has proved the existence and uniqueness of
solutions for the problem (1). We refer the reader to [3] and [17] for more de-
tails.
The concept of renormalized solution was originally introduced by DiPerna and
Lions in [16], in their study of the Boltzmann equation, and was later adapted
by Boccardo et al. in [13] for some elliptic problems with L! data.

In the Orlicz Sobolev spaces framework. Aharouch et al. have studied in
[5] the existence of renormalized solutions for the elliptic equations (1), where
—diva(x,u,Vu) is a Leray-Lions operator and f € L!(Q). Kozhevnikova has
proved in [22] the existence of entropy and renormalized solutions for the fol-
lowing quasilinear elliptic problem

—div(a(x,Vu))+g(x,u) = f in Q, )
u=20 on dQ,

in the Musielak-Orlicz Sobolev space W, Ly (Q), where f € L'(Q) and g(x,u)
is a Carathéodory function that verifies some conditions, with the Musielak-
Orlicz function ¢ satisfies the log-Holder condition. For more results, we refer
the reader to [8], [9], [15], [18] and [24].

In the present paper, we study the existence of renormalized solutions for
the following non-coercive quasilinear elliptic problem

— div (a(x,u, Vi) + g(ou) = f—div(0(u)) O, "
u=20 on dQ,
where Au = — div (a(x,u, Vu)) is a degenerate Leray-Lions operator acting from

D(A) C Wy Ly(Q) into WL (L), the perturbing function g(x, u) satisfying the
sign condition, with ¢(-) € C°(R,RY) and f € L'(Q). The Musielak-Orlicz
function @(x,¢) satisfies the fundamental regularity conditions and its conjugate
function @(x,t) satisfies the Ap-condition.

This paper is organized as follows: In section 2 we present some defini-
tions and results related to Musielak-Orlicz Sobolev spaces. In section 3 we
present the essential assumptions under which our non-coercive elliptic problem
has at least one renormalized solution in the Musielak-Orlicz Sobolev spaces
A Ly(Q). In section 4 we present some technical lemmas required to establish
our main result. The last section focuses on the proof of the main theorem.
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2. Preliminary

Let Q be an open domain in RY(N > 2), and let ¢(x,t) : Q x R —— R" be a
function such that:

(i) The function ¢(x,-) is an N-function, i.e. convex, continuous, strictly
increasing with ¢(x,0) =0, ess in(f2 ¢(x,t) > 0 for any ¢ > 0 and such that
xe

lim sup M =0 and liminf M = oo, 4

=0, I 1—eoxeQ f

(if) The function ¢(-,t) is measurable for any ¢ > 0.

A function ¢(x,t) which satisfies the conditions (i) and (ii) is called a Musielak-
Orlicz function.

If a Musielak-Orlicz function doesn’t depend on x (i.e. @(x,7) = ¢(¢)), then
this function is called an Orlicz function.

The Musielak-Orlicz function ¢(x,) complementary to (or conjugate of) @(x,7)
is defined by

Q(x,1) =sup{st —@(x,s)} ae.inQ, 5)

s>0
and we have the Fenchel-Young’s inequality

st < @(x,s)+@(x,t) foranys,t>0 andae. x€cQ. (6)

A Musielak-Orlicz function ¢(x,7) increases essentially more slowly than a
Musielak-Orlicz function y(x,) and we write Y << @, if for every positive con-

stant ¢ we have
t
lim sup< r(x.1) > =
I=%5cQ (P(X, Ct)

A Musielak-Orlicz function @(x,7) satisfies the Ay —condition, if there exist k >
0 and a nonnegative function A(-) € L'(Q) such that

o(x,2t) <ko(x,t)+h(x) foranyz>0 anda.e.x€ Q.

A Musielak-Orlicz function ¢(x,¢) is called locally integrable if for each r > 0
the function @ (-,t) belongs to L, (), and is called integrable if for each > 0
the function @(-,#) belongs to L' (Q).

We consider the following fundamental regularity assumptions on the Musielak-
Orlicz function @(x,1?).

(M) There exists a function ¢ : [0,1] x [0,00) — [0,00) such that ¢(-,s) and
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¢ (r,-) are nondecreasing functions, and for all s > 0 and all x,y € Q with
x—y| < 1 such that

9(x,5) < @(Ix—y|.5)@(ys), with limsup¢ (e,ce™) <C,

=0t

for any constant ¢ > 0 and for some real constant C > 0.
(M3) The Musielak-Orlicz function @(x,7) is said to satisfy the Y-condition on
a segment [a, b] of the real line R, if either

there exists 1o € RTand 1 < i < N such that the partial function
(Yo) § xi € [a,b] — @(x,1) changes constantly its monotony on both
sides of 7y ( that is forz > to and t < 1p),

or

(Y..) there exists 1 <i < N such that for all # > 0, the partial function
“7\ xi € |a,b] — @(x,r) is monotone on [a,b].

Here, x; is the i component of x = (x1,x2,...,xy) € Q.

Remark 2.1. Let Q be a bounded Lipschitz domain, and ¢(x,7) be a Musielak-
Orlicz function that satisfies (M). Then, @(x,?) is integrable over Q. More-
over, for any Musielak-Orlicz function y(x,¢) that verifying Yy << ¢, we have:
for any € > 0 there exists e (x) € L' (Q) such that

y(x,t) < @(x,€t)+he(x) foranyz>0 anda.e. x € Q.

Let ¢(x,t) be a Musielak-Orlicz function, and u : Q — R be a measurable
function. We define the modular

po(i) = | gl u(x)) dx.
and the convex set
Ko (Q) = {u: Q'+ R measurable /py(u) < +oo} .

The set Ky (L) is called the Musielak-Orlicz class ( the generalized Orlicz class).
We define the Musielak-Orlicz space Ly (Q) by the vector space
u

Ly(Q)= {u : Q —— R measurable / 1

€ Ky(Q) forsome A > 0} .

equipped by the Luxemburg norm

luflp = inf{?L >0/ py (%) < 1}. %
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Note that, the norm (7) satisfies the inequality
llullp < po(u)+1 forany u € Ky(Q). (8)

The generalized Holder’s inequality is giving by

[

The closure in Ly(Q) of bounded measurable functions with compact support
in Q is denoted by E,(Q). It is a separable space and (Ey(Q))" = Lg(Q).
We have E,(Q) = Ly (Q) if and only if ¢(x,?) verifies the A-condition.
The space Ly(Q) is reflexive if and only if ¢@(x,7) and @(x,t) verify the Ap-
condition.

A sequence (u,), C Ly(Q) is called converge to u in Ly(Q) for the modular
topology if there exists a constant A > 0 such that

. Up— U\
,115‘30”“’( 2 >_O'

The Musielak-Orlicz-Sobolev spaces W!Ly(Q) and W!E,(Q) are defined by

<2||ul||lvllg forany wue€Ly(Q)andveLy(Q). (9)

WLy(Q) = {ueLy(Q), with|Vul€Ly(Q)},

and
W'Ey(Q) = {u€ Ey(Q), with |Vu| € Ep(Q)}.

The space W!Ly(Q) is endowed with the norm
ullr.p = llullg +[Vull. (10)

The vector space (W!Ly(Q), |- ||1,¢) is a Banach space not necessarily reflexive.
A sequence of functions (u,), C WIL(P (Q) is called converges to u in WlL(p(Q)
for the modular topology, if there exists A > 0 such that

Up —u |Vu, — Vu|
Po\ =7 + Py — — 0 as n-— oo

The spaces W'Ly(Q) (resp. W!Ey(Q)) can be identified to a subspace
of the product of N+ 1 copies of Ly (L) (resp. Ey(Q)), denoting this prod-
uct by IILy(Q) (resp. HE(,,(Q)). We will use the following weak topology
0 (TILy(Q),T1E4(Q)) and 6 (TILy(Q),T1Le(Q)) .

The space W E (L) is defined as the closure of the Schwartz space Cfy (Q)
with respect to the norm || - ||1,¢ in W!E(Q), and the space W Ly(Q) as the
weak 0 (IILy(Q),TIE4(Q)) closure of Cj (Q) in WLy (Q).
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The dual space of W Ly (L) is given by

WLy (Q) = {v — f—divF, with f€Ls(Q)and F € (L(;,(Q))N} :
and the dual space of W E¢ () is defined by

W EH(Q) = {v — f—divF, with f € E5(Q)and F € (E(;,(Q))N} :

The below lemma gives the modularly density of C*(Q) in W Ly (Q).

Lemma 2.2 (see [6], Theorem 3). Let Q be a bounded Lipschitz domain in RN
(N > 2), and let ¢ be a Musielak-Orlicz function that satisfying the condition
(My). Then, C3 () is dense in Wy Ly(Q) for the modular topology. That is,
for any u € Wy Lo(Q) there exists a sequence of functions (uy), C Cg(Q) such
that

Uy — u  modularly in Wy Ly(Q) as n— oo,

Remark 2.3. Let Q be a bounded domain in RY, and let ¢(x,?) and ¢(x,?) be
a pair of complimentary a Musielak-Orlicz functions. Then, the assumption (4)
on ¢(x,t) implies that ¢(x,7) is integrable over Q.

Lemma 2.4 (see [7], Theorem 1.4 ). Under the same conditions of the previous
lemma 2.2, we have

WoLo(Q) =W, (Q)NW'Ly(Q) = {u e W'Ly(Q); ujpq=0}. (11

Lemma 2.5 (see [7], Theorem 1.1). (Poincaré’s inequality) Let Q be a bounded
Lipschitz domain of RN, and let ¢(x,t) be a Musielak-Orlicz function that sat-
isfies (M) and (Ma). Then, there exists two constants dy > 0 and dy > 0
depending only on Q and ¢ such that

/ O(x,|ul)dx < d; / @ (x,do|Vu|)dx  for any u € Wy Lo(Q). (12)

Q Q

In addition, there exists a constant C > 0 depends only on Q and ¢ such that
lullp <C||Vullp  forany u€WyLy(Q). (13)

Remark 2.6.

* We can prove the Poincaré’s inequality (13) by following the same tech-
nique used in [2] without assuming the condition (M3) on @(x,7).

* The Poincaré’s inequality (13) implies that, the two norms ||V - ||, and
|| Il1,¢ are equivalents in W) Ly (Q).
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3. [Essential Assumptions

Let Q be a bounded Lipschitz domain of R, (N >2). Let ¢(x,t) be a Musielak-

Orlicz function that satisfies (M) and (M;), and we assume that the comple-

mentary function of ¢(x,#) denote by ¢(x,¢) satisfying the A, —condition, and

then we get (Ly(Q) = E5(Q)).

We consider the following non-coercive quasilinear elliptic problem
Au+g(x,u) = f—div(¢(u)) inQ, (14)
u=0 on dQ.

We shall now give the essential assumptions for each term of our problem (14).

The mapping A : D(A) C Wy Ly(Q) — W 'Lp(Q) is a Leray-Lions operator

defined by

Au = —diva(x,u,Vu),

where a : Q x R x RY — RV is a Carathéodory function that satisfying the
following conditions

la(x,5,8)| <ao(x) +ki@ " (x, ¥ (xkals) +ki1 0~ (v, 0 (x k3E])),  (15)
(a(x,5,&) —a(x,5,€"))-(E—&') >0 forall& #¢&', (16)

for almost all x € Q and for any (s,&,&') € R x RN x R, where ag(x) is a
nonnegative function lying in Lg(€2), and y(x,t) is a Musielak-Orlicz function
such that Y << ¢, the constants k|, k; and k3 are non negatives.

The degenerate coercivity condition

a(x,s,6)-& = a(|s)e(x,[)), (17)
. . . . s| +1
where o(|s|) is a nonnegative decreasing function such that a(|s|) > Y EFSE
s

and A(-) is an Orlicz function that verifies A << ¢.
Under the assumption (17) and the continuity of the function a(x,s,-) with
respect to &, we have
a(x,s,0) =0.

For the perturbing function g(x,s) : Q@ x R — R, we assume the usual condi-
tions.
sup |g(x,5)] € L'(Q)  for any k > 0, (18)

s <k

and
g(x,s)s >0 foranys € R. (19)

Finally, we assume that

fell(Q) and ¢cC’R,RY). (20)
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4. Some technical Lemmas

Lemma 4.1 (see [19], Theorem 13.47). Let (u,), be a sequence in LY(Q) and
u € LY(Q) such that

(i) u, — ua.e. in Q,

(ii) u, > 0a.e. in Q,

(iii) /undx—>/udxasn—>oo,
Q Q

then u, —> u strongly in L' (Q) as n — oo.

Lemma 4.2 (see [10], Lemma 1). Let u € Ly(Q) and (u,), be a uniformly
bounded sequence in Ly(Q). If uy — u a.e. in Q, then u, — u weakly in
Ly(Q) for 6 (Lp(Q),Ep(Q)).

Lemma 4.3 (see [10], Lemma 4). Let F : R — R be uniformly Lipschitz func-
tion, with F(0) = 0. If u € Wy Ly(Q), then F (1) € Wy Lo(Q). Moreover, if the
set D of discontinuity points of F'(-) is finite, then

. du _ _
iF(u): F(u)a—Xi a.ein{xe€Q:u(x) ¢ D},

. 2D
Xi 0 a.ein {x € Q:u(x) € D}.

For any k > 0, we define the truncation function by

RN if 5| <k,
KD =9 ks it || >k

|s

Also, we define the continuous function
Sk(S) =1- |Tk+1(s) — Tk(s)| .

Remark 4.4. Let k > 0, it’s clear that the function 7;(-) verifying the assump-
tions of the Lemma 4.3, then T;(u) € Wy Ly(Q) for any u € Wy Ly(€2). More-
over, we have

ITi(u) [~ for |ul <k,
ax,'

0  for|u| >k
Lemma 4.5. Let (uy,),, be a sequence in Ly(K2) such that
Uy, —u a.e infd asn— oo,

and
o(x,u,) <veL'(Q) foranynecN.

Then,

u€Ly(Q)and u, — u modularly in Ly(Q) asn — oo,
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Lemma 4.6. Let (uy,), be a bounded sequence in L (Q) and u be a measurable
Sfunction, with
U, —u a.e inf asn— oo,

Then, u € L*(Q) and u,, — u weak—x in L*(Q) as n — oo.
In addition, if v € Ly(Q) (resp, v € Ey(2)), then
upy —> uv  modularly in Ly(Q) ( resp, strongly in Eg(Q)) as n— oo,
The proofs of Lemma 4.5 and Lemma 4.6 are based on the Vitali’s theorem.

Lemma 4.7 (see [21], lemma 4.10). Under the assumptions (15)—(17), let (uy),
be a sequence in Wy Ly(Q) such that, (uy), is uniformly bounded in L™(SQ),

— u weakly in Wy Lo(Q), (a(x,un, Vuy)), is bounded in (Lg (Q))N and
/ D} dx = / a (x,uy, Vi) —a(x,un, Vu)e)) (Vu, — Vuy:) dx — 0, (22)

as n then T tending to oo, where ) is the characteristic function of the set
K:={x€Q; |Vulx)| <1}
Then,
Vu, — Vu a.e. in Q.
Uy — u  modularly in Wy Ly(Q).
a(x,uy, Vi) - Vi, — a(x,u,Vu) -Vu  strongly in L'(Q).

5. Main result

Definition 5.1. A measurable function u« defined on Q is called a renormalized
solution of problem (14). If Ty (1) € Wy Ly(Q) for any k > 0, and g(x,u) € L' (Q)
with

lim a(x,u,Vu)-Vudx =0
k—reo J{k<|u|<k+1}

In addition, the function u satisfies the following equality

/a(x u, Vi) - (VuS' () v+ VvS(u) dx+/ 2, 1) vS(u) dx
(23)
= / F(x)vS(u dx+/ ¢ (u) - (VuS' (u)v+VvS(u)) dx,
for any v € W Ly(Q)NL™(Q) and any S(-) € W!=(R) with a compact support.
Now, we shall prove the following existence result.

Theorem 5.2. Under the assumptions (15)—(20), there exists at least one renor-
malized solution for the non-coercive quasilinear elliptic problem (14).
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Proof of Theorem 5.2
Step 1: Approximate problems

Let n € N*. We set f,(x) = T,,(f(x)), then f, — f strongly in L!(Q) as
n— oo. Let g,(x,s) = T, (g(x,s)) and ¢, (s) = ¢(T,(s)). Note that

[gn(x,5)| <nand [gu(x,s)| < |g(x,5)[- 24)
Moreover, since ¢(-) € CO(R,RY) then

[9n(s)| < sup [9(s)] < ee. (25)

Js|<n

We consider the approximate problem of (14) giving by

{—div(a(x,Tn(u,,),vu,,))+g,,(x,u,,)—fn—div(qsn(un)) nQ, oo

u, =0 on dQ.

We consider the two operators A, and G, acting from W, L, (Q) into W 1L (Q),
defined by

(At v) = /Q (a(x, Ty(u), Vi) — du(u)) - Vv dx,

and
(Guu,v) :/gn(x,u)v dx.
Q

The assumptions (15)—(17) and (24), (25) imply that the operator B, = A, + G,
satisfying the conditions (i) — (iv) in [20].
Indeed, for the degenerate coercivity condition we have

a(x,T,(u),Vu)-Vu> o(n)@(x,|Vu|) forany u € D(A). (27)
In view of Young’s inequality and Poincaré’s inequality, we conclude that
{ueD(A), <Buu,u—f,><0}

is bounded in W, Ly (), thus the condition (iv) is verified with i = 0. Then, by
Proposition 1 in [20], the problem (26) has at least one solution u,, € WolL(p(Q),
ie.

/a(x,Tn(un),Vun)-Vv dx—i—/gn(x,un)v dx
Q o

(28)
:/fnvdx—k/ On(uy) - Vv dx,
Q Q

for any v € W Ly ().
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Step 2: Weak convergence of (7} (u,)),

Let k > 0, by taking v = T;(uy,) as a test function for the approximate problem
(26), we obtain

G Tan), Vi) V() dx-+ [ (0 Telan) s
Q Q

(29)
_ / FuT(ay) dx+ / O (14) - VTi(uy) dx.
Q Q
For the second term on the left-hand side of (29), thanks to (19) we have
/ &n(x, ) Tie(uy) dx > 0. (30)
Q
Moreover, we have
' [ ity as| < [ 171 <Kl sy G1)

Concerning the second terms on the right-hand side of (29). We set ®,(¢) =
!

/ 0, (s) ds, thanks to (11) and (20) we have ®,(u,) = 0 on dQ. In view of the
0

Green formula, we obtain
[ 90 VTi(ur) dx= [ 90(Tu(wn))- Vi) dx
= / div (P, (Ti(uy))) dx (32)

/ n(Ti(un)) -1ido =0,

where 7 is a exterior normal vector on the boundary dQ.
By combining (29) and (30)—(32), we obtain

[ 0 T(w), VT3 0) - VT () d < K] . (33)

On the other hand, in view of (17) we have

@ Tau), VT ) V() > [ (7)o, [V )
> a(k) [ plx[VTi(w)]) dx

k+1
> X.
> ) o 0 Vi) dx
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Then, from (33) we deduce that
| @G IVT)]) dx < 1 flr @ (k4 1), (34)

According to (8) and Poincaré’s inequality there exists a constant C(k) > 0 de-
pending on k and doesn’t depending on n such that

T (tn) |1, < C(K). (35)

Thus, the sequence (Ty(uy)),, is uniformly bounded in W, Ly, (Q). In view of the
Banach-Alaoglu-Bourbaki’s theorem, there exists a measurable function
Vi € Wi Lp(Q) such that

Ti(ty) — vi weakly in Wy Lp(Q) as n — oo. (36)
Moreover, by the compact embedding W Ly (Q) < L!(Q) we obtain

Ti(u,) — v strongly in L'(Q) and a.e. on Q as n— oo, for a subsequence.
(37
In view of the Poincaré’s inequality, we conclude that

. k ’Tk(”n”
£ £ > k) < :
(0 () ol = [ o (7t ) o
g/ ¢<X7|Tk(”n)|> I
Q d>

<d /Q ¢ (4, |VTi(y)]) dx
<di|[flp@rE+1).

Having in mind that A << ¢, we obtain

1
meas(|u,| > k) < C;sup Alk+1)
x€Q (0] (x’d%>

It follows that : for any &€ > 0, thanks to (38), there exists a positive constant
large enough ko (&) > 0 such that

—50 ask— oo, (38)

£

meas(|u,| > k) < g and  meas(|uy| > k) < 3 for any k > ko(€). (39)

Moreover, in view of (37) we have (7 (u,)),, is a Cauchy sequence in measure
on Q, then for any k > 0 and J, € > 0, there exists ny(k, d,€) > 0 such that

meas{\rk(un>—rk(um)|>5}g§ forall mn>no(k,8,€).  (40)
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By combining (39) and (40), we conclude that : for any 8,& > 0 there exists
ni(8,€) > 0 such that

meas{|u, —uy,| > 8} <e forall n,m>n(d,¢).

Hence, (u,), is a Cauchy sequence in measure in Q, and there exists a subse-
quence still denoted by (u,), and a measurable function u such that

U, —ru ae. inQ asn— oo, 41

In view of (36), we conclude that
Tic (un) — Ti(u) weakly in Wy Ly (Q) for o (TILy(Q),IIE5(Q)) . (42)
Moreover, in view of (20) we have |¢, (7 (u,))| < sup(|¢(s)]) € Lp(Q), it im-

|s|<k
plies from (41) and Vitali’s theorem that

0u(Tx(un)) — 0 (T(w)) strongly in (Ly(Q))" = (Ep(Q))"  asn— .

Step 3 : Some regularity results

In this step, we will show that

limsup a(x,T,(un),Vup) -Vu, dx — 0 as h — oo,

n—yoo /{hﬁun|§h+1}

and
gn(x,u,) —> g(x,u) strongly in L' (Q) as n— oo,

Let h > 0, by taking v = (T},11 (u,) — Ty (u,)) as a test function in (26) we obtain

/ a(x, T, (up),Vuy) - Vuy, dx+/ gn(x,uy) (Thiy (un) — Ti(uyn)) dx
{h<|un|<h+1} Q

= /an (Thi1 (un) — Tin(un)) dx‘f‘/9¢n(”n) (Vi1 (un) — VT (un)) dx.
(44)
For the second term on the left-hand side of (44), in view of (19) we have

80 (T ) = T0)) = [ g x0T ) = T i
Q Q

> / lgn(x,u,)| dx.
{|un|>h+1}
45)
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Concerning the second term on the right-hand side of (44), similarly as in (32)
we have

[ 910 (Vi1 () = VT3 (1))
:/ (Pﬂ(un) 'VTh+l(un) dx—/ ¢n(un) VTh(l/ln) dx
Q Q

= [ 0u(Buaa () Vi () d— [ 00 (7)) - Vi) s
Q Q
=0.

(46)

Finally, for the first term on the right-hand side of (44), thanks to (39) we obtain

£ (n.h) = ] [ 50 s ) —Th<un>>\ dx

47)
Ssup/ |f(x)]dx — 0 ash— oo,
n J{|lu,>h|}
By combining (44) and (45)—(47), we conclude that
/ a(x,T,(uy),Vuy,) - Vu, dx+ |gn(x,u,)| dx < g (n,h).
{h<|un|<h+1} {|un|>h+1}
According to (17), we get
lim limsup/ a(x,T,(un), Vuy) - Vu, dx =0, (48)
h>e0 poseo J {h<|up|<h+1}
and
lim limsup |gn(x,u,)| dx = 0. (49)

h—eo poo Jluy|>h+1}

Thus, thanks to (49) we have: for any € > 0, there exists 4(€) > 0 such that
€
/ |gn(x,u,)| dx < = forany h > h(€). (50)
{lun >} 2

On the other hand, let £ be a measurable subset of Q. In view of (18), we have

|n(x, T (u))| < sup |g(x,5)| € L' (Q). Thus, there exists B (/,€) > 0 such that
Is| <h

/ goluTilw) dx <5 forany  meas(E) < B(he). (5D
E

By combining (50) and (51), we conclude that: For any € > 0 there exists
B(€) > 0 such that

/Egn (x, Ty () dx < é |gn (2, Ty (un)) ‘ dx+/{u,,>h} |gn(x, ”n)‘ dx<¢g, (52)
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for any E C Q with meas(E) < f(€). Thus, the sequences (g, (x,u,)), is uni-
formly equi-integrable. Consequently, in view of (41) and Vitali’s theorem we
conclude that

gu(x,u,) — g(x,u) strongly in L'(Q) as n — oo. (53)

Step 4 : Almost everywhere convergence of the gradients

In this step, we will show that the conditions of Lemma 4.7 hold true.

Firstly, we prove that the sequence (a (x,Ti(us), VTi(un))), is uniformly
bounded in (L¢(Q))N. Indeed, thanks to (16) we have for any v € (E¢(Q))N

/a(x,n(un),vn(un)).vdxg/a(x,Tk(un),VTk(un))-vz*k(u,,) dx
Q Q (54)
+/ a (6, Ty(un), V) - (V= V() d.
Q

In view of (15), we have

p (x 2l

<@ HQ).
L) < plaan(n) (k) +hag (e dalv) € 21(9)

Thus, the sequence (a (x,Ti(uy),V)), is uniformly bounded in Lg(€2), and in
view of Holder’s inequality we obtain

| a6 T, v)- (v = VT (w) d
<2l (x, Te(ua), V) llg (IVIlp + IV Tic(n) ) -
Having in mind (35) we conclude that
[ @), v)- (v = VIi(w)) dx < Co(k.v) (55)
By combining (33) and (54)—(55), we conclude that
/Qa(x, Ti(un),VTi(uy))-vdx < C(k,v) forany ve& (E(p(Q))N,

where C(k, V) is a finite positive constant that depends only on k and v.

By using the uniform boundedness principle we deduce that, the sequence (a(x,
Ti(un),VTi(uy)))y is uniformly bounded in (L¢(Q))N. Hence, there exists a
measurable function 1y € (L¢(Q))N such that

a(x, Ti(un), VTi(uy)) — M~ weakly in (L(;,(Q))N asn— oo,  (56)
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for the weak topology o ((Lq-, (Q))N ,(Eg (Q))N) .
Now, we will establish that

lim lim | (a(x,Ti(un), VIi(tn)) —a (x, T (tn), VIR (1) X7)) - (Vi () — VT (1) %z) dx=0.

T—roon—so0 [

Let 0 < k < T < h < < n; we denote by & (n) some various functions of real
number that goes to 0 as n tends to infinity. Similarly we define €;(n,1), &(n,l,h)
and g(n,l,h,7) fori=1,2,....

In view of (42) we have Ty (1) € W Ly (L), thanks to Lemma 2.2 there exists
a sequence (w;);en in C3'(€2) such that

Ti(wi) — Ti(u) modularly in Wy Ly(Q)  as ! — oo. (57)
Thus,
Ti(wi) — Ti(u) weakly in Wy Ly (Q)  as [ — oo. (58)
We set ¥, ; = Ti(un) — Te(wy) and & = Ty (u) — Ti(w;). In view of (41) we have
Oy —> % ae.inQ asn— oo, (59)
and
% — 0 ae. inQ as/— o forasubsequence. (60)

By taking Sj(u,) 9, as a test function in (26), we obtain
Ji,z,h + Jr%,l.,h +Js,z,h = J:,l,h + Js,z,h + JS,I,h’ (61)

where
Than= [, e Vi) - 9,8 (w) d.
Jr%l h= _/ a(x7 un,Vun) : Vun Sign(un)ﬁml dx7
w {h<|up|<h+1}
Taan= [ gn(stn) S (un)
Toin= /Q FaO1Sh(un) dx,
Jr?,l,h = /Q‘Pn(”n) 'Vﬁn,lsh(un) dx,
San=—| Ouitn) Vit sign(iey) By .
' {h<un| <h-+1}
For the first term J,Ll 4> we have Sy (u,) = 1 on {|u,| <k} and |S,(u,)| < 1, then

Thin= [ @ Telun) VTx(un)) -0 dn
v Q

_ / (%, Tyt (100), Vi1 (1)) - VT (w1) S (10) .
{k<[un| <h+1}
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Since VT (w;) € (E(p(Q))N, then from (41) and Lemma 4.6 we get VT;(w;)
. N

Sn(ttn) X< tin<n1y —> VTeW1)Sh () X< iuj<n+1y strongly in (Eg(Q))" as

n — oo, in view of (56) we obtain

lim a(x, Th+1(un),VTh+1(un)) -VTk(WZ)Sh(un> dx
= J{ k< |u,|<h+1}

= Nnt1 - VT (wy)Sp(u) dx.
(k<lul<h+1}

Having in mind (58) we conclude that

lim

/ Nh+1 -VTk(Wl)Sh<M)dx = / Nh1 -VTk(u)Sh(u)dx =0.
[0 J {k<|u|<h+1}

kL u|<h+1}

It follows that
J,th = /Qa(x, Ti(un),VTi(un)) - (VT (u) — VTi(wy))dx + €1 (n,1).  (62)
For the second term Jil_’h, we have |9,;| < 2k and thanks to (48) we obtain

>
&(n,h) =|Jy

§2k/ a(x,un,Vuy) -Vu, dx — 0 asn,h — oo.
{(h<|un|<h+1}

(63)
Concerning the third and forth terms J3,, and Jil,h’ in view of (59)—(60) we
have |0, ;| — 0 weak—sx in L () as n,] — oo, and thanks to (53) we obtain

83(”71) = “]l::,l,h| < /Q |gn(x7 un)|‘l9n,l‘ dx —0 as n, [ — oo, (64)
Similarly, we have f,(x) — f(x) strongly in L' (Q), then
ea(n.0) = Vi1l < [ UfllBnl dx —0  asml e (65)
1, o :

For the fifth term J2, ,, we have |Sj(u,)| < 1 and supp(Sy) C [~h—1,h+ 1],
then

Taaal < [ 10T )V 01| d

< [ 10T () [V 00 .
Q

By using (42) and (58), we get |V, ;| = |VTi(un) — VTi(w;)| — 0 weakly in
Ly(Q) as n,l — oo, and thanks to (43) we get

es(n,0) = U, 4] < /Q (0Tt (1) |IV Bt dx —5 0 asn,l oo (66)
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Concerning the last term on the right-hand side of (61), we have h > k then
== 0a(tn) - Vit O]
{(h<|up|<h+1}
- div (1)) [Ti(1tn) — Tic(wy) | dx
(h<|ua| <h+1}

:/ D, () - V|Ti(n) — T (wy)| dx
{h<|u,|<h+1}

_ / B (Tyo1 (un)) - VT(wy) sign(uen) dx,
(h<lun|<h 1}

where ®,(1) = / 0a(s) ds € C1(R,RY). Since @, (Tjs1(un)) —> D(Tjs1(u))
)"

strongly in ( as n — oo, then by (58) we obtain

es(n,1) =JS, , — — / &(Tyy1 (1)) V() sign(u) dx =0 as n,1 — oo. (67)
b (h<|u|<h+1}

By combining (61) and (62)—(67), we deduce that
/Qa(x, Tu(un), VT (0n)) - (VT (1) — VTi(wy)) dx < €1(n, 1, h).
It follows that
/Q (a(x, Ti(un), VTi(un)) — a (x, Ti(un), VTi (1) X)) - (VTic(tn) — Vi (1) 2c) dx
< &r(n,1,h) + /Q a (5 T (), VT () - (VTe(wy) — VT(u)ge) dx

~ || (T VT (0)22) - (V) = VE(w)z:)

=g (n,l,h)+1 + 1,
(68)
where X is the characteristic function of the set {|VT}(u)| < 7}.
We have (VT (w;) — VTi(u)x:) € (Eq,(Q))N, and having in mind (56) and (58)
we obtain
lim lim Iy = lim /Q M- (VTe(wr) — V() ) dox

|—ocon—roo

= /an'VTk(u)X{WTk(u)br} dx.

Since |1 - VTi(u)| € L' (Q), by using Lebesgue’s dominated convergence theo-
rem, we obtain

lim lim lim [ I; =0. (69)

T—>00 [ —oon—r00 ()
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On the other hand, we have @ satisfies the A;—condition and in view of (15),

(41) and Lebesgue dominated convergence theorem, we obtain

a (x, T (un), VT (1) Yz) — @ (x, Ty (u), VTi(w) %) strongly in (Eg(Q))™ as n — .

It follows from (42) that

tim b = — Tim [ a(x, 7). V() xe) - (Vi) — VTi(u) ) dx
n—roo n—oo Q

= —/ a(x, Ti(u), VTi(u) xz) - VT (1) X )v 1, () >y 4%

e (70)
= /Qa(x,Tk(M),O) VT () X (v ()| >y dx
=0

By combining (68) and (69)—(70), we deduce that

/Q (@ (x, Tic(un), VTic(un)) — a (x, Te(un), Vi () x2)) - (Vi (n) = VTi(u) 7) dx < &7(n, 1, h,T),

where &7(n,l,h,T) — 0 as n, [, hand 7 respectively tends to infinity. Thus,

we conclude that

dim_lim (a(x, Tic(un), VTic(un)) — a (x, Tie(un), VI () X)) - (VT (un) — VTie(0) xz) dx = 0.

In view of Lemma 4.7, we obtain

Vu, — Vu ae.in Q, (71)

Ti(uy) — Ti(u)  modularly in Wy Ly (), (72)

and

a(x, T (un), Vi (1)) - Vi (1) — a (x, T (), VIi (1)) - VT;(u) strongly in L' (Q).

(73)
Moreover, thanks to (41), (71) and Lemma 4.2, we deduce that

a(x, Ti(un), Vi (un)) — a(x, Ty (u), VT (u)) weakly in (Lq,(Q))N. (74)
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Step 5 : Passage to the limit

Let v € C7(Q), and S(-) € W(R) such that suppS(-) C [-M,M] for some
M > 0 and let n > M. By taking vS(u,) as a test function for the approximate
problem (14), we obtain

/ 0 (5, Ty (102), Vitn) - (VitnS' (1) + VVS(1a)) dx+ / n (0, 10n) VS(itn) dx
Q JQ

_ / Fa(X)VS(ty) dx+ / On(ttn) - (VitnS' )V + VVS () dlx.
Q Q
(75)
Now, we pass to the limit on each term of the equality (75).
Firstly, we have suppS(-) C [—-M,M] then S(u,) = S(Ty(uy)), it follows that

/Qa(x,Tn(un),Vun)-(VunS’(un)v—i—VvS(un)) dx

_ /Q a (X, T (), VT (t60)) - (VT30 () S' (Tog () )V + VVS(Tig (1)) dix,
and

/Q 0u(tn) - (VitnS' (1) v + VS (1)) dx

:/Qq)(TM(u,,))-(VTM(un)S’(TM(u,,))v+VVS(TM(un))) dx.

In view of (41) and the Lemma 4.6 we have S' (T (u,))v — S’ (Tyr(u) ) v weak —sx
in L(Q) and S(Ty (un))VV — S(Ty () Vv strongly in (Eg(Q) N, By using
(43) and (73)—(74), we obtain

lim | a(x, T,(un), Vitn) - (VS (un)v +VVS(uy)) dx

n—e JQ

=1lim [ a(x,Ty(un), VT () - Vs (t0n)S (Ths () v dx

n—oo 0

+lim [ a(x, Ty (un),VTu(uy)) - VVvS(Tyy(uy)) dx

n—eo [0

(76)
_ /Q a(x, Ty (1), VT () - VT ()S' (Tyy () v dix

+ [ @l i), V730)) - 9VS(Tig ) d

:/Qa(x7u7vu).(Vus’(u)v+VvS(u)) dx.
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Moreover, we have @ (Ty(u,)) — ¢ (Ty(u)) strongly in (E,p(Q))N and since
VT (un) — VT (u) weakly in (Lg (Q))N as n — oo, then
lim (j)(un) (VS (un)v + VvS(uy)) dx

n—yoo

=lim [ ¢ (Ty(un)) - VTa(un)S (Ta(un)) Vv dx

n—e JQ

‘f’r}g]; Q‘P(TM(MH))‘VVS(TM(W)) dx
- / 0 (Tog (1)) - Vg (u)S' (Tog (1)) v dx + /Q 0 (T () - VVS(Ty () dox

= / ¢(u) - (VuS' (u)v+VvS(u)) dx
(77)
For the others terms of (75), we have S(u,)v = S (Ty(un)) v — S(Ty(u))v =
S(u)v weak—x* in L= () and since f,, —> f strongly in L' (Q), then
lim [ f,vS(u,) dx= / fvS(u (78)
Q

n—yoo

Moreover, thanks to (53) we obtain

lim [ g, (x,u,)vS(u,) dx = /Qg(x,u) vS(u) dx. (79)

n—o Jo

By combining (75) and (76)—(79) we conclude that

/a(x 0, Vi) - (VuS' () v+ VvS(u) dx+/g x,u)vS(u) dx
(30)
— / FVS(u) dx + / 0(u)- (VuS'(u)V +VS()) dx.

Remark 5.3. In the last step of this proof, we can take the function
VEW]Ly(Q) ﬂL”(Q) instead of i (€2).

Indeed, for v € W Ly(Q) NL™(Q), there exists a sequence (v;) C Cg(Q) such
that sup [Vill=(q) < C and

Vi — v modularly in Wy Ly(Q) as— oo.
Moreover,
vi — v weakly in W Ly (Q),
and

v — v weak—x in L”(Q) asl/— o for a supsequence.

Thus, by taking v = v; in (80) and passing / to infinity, the inequality (80) re-
mains true for any v € W)Ly (Q)) NL=(Q) and any S(-) € W'(R) with com-
pact support.
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Then, the proof of the Theorem 5.2 is completed.
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