LE MATEMATICHE Vol. LXXIX (2024) – Issue II, pp. 405–422 doi: 10.4418/2024.79.2.8

FEASIBLE SETS FOR VERTEX COLORINGS OF P₄-DESIGNS

P. BONACINI - L. MARINO

A P_4 -design of order v is a system $\Sigma = (X, \mathcal{B})$ where X has v vertices and \mathcal{B} is a set of copies of P_4 , called blocks, decomposing the complete graph K_v on X. A BP_4 -design is a P_4 -design Σ endowed with a coloring of the vertices of Σ in such a way that in any block there are at least two vertices with the same color and two vertices with different colors. The feasible set $\Omega(\Sigma)$ of Σ is the set of integers k for which Σ is k-colorable. The minimum and maximum of $\Omega(\Sigma)$ are, respectively, the lower and upper chromatic number of Σ . In this paper the study of BP_4 -designs is initiated, giving a lower and upper bound for feasible sets of BP_4 -designs of order v with the largest possible feasible set. Some results are obtained for small values of v.

1. Introduction

Let G = (V, E) a graph on *n* vertices and let K_v be the complete graph on *v* vertices. A *G*-design of order *v* is a couple $\Sigma = (X, \mathcal{B})$, where *X* is a set of *v* vertices and \mathcal{B} is a set of copies of *G*, called *blocks*, decomposing the complete graph K_v having *X* as set of vertices. The *spectrum* of *G*-designs is the set of all integers *v* for which there exists a *G*-design of order *v*.

Keywords: P4-design, coloring, feasible set

Received on July 19, 2024

AMS 2010 Subject Classification: 05B05, 05C15

The authors are both supported by the University of Catania, "PIACERI 2020/22, Linea di intervento 2". Both authors are members of GNSAGA of INDAM (Italy).

In this paper we will consider P_4 -designs, whose spectrum is well known (see [1]): a P_4 -design of order v exists if and only if $v \equiv 0, 1 \mod 3$, $v \ge 4$. We initiate the study of vertex colorings of P_4 -designs, in the sense due to Voloshin's work on mixed hypergraphs (see [16–18]). A *k*-coloring of a *G*-design $\Sigma =$ (*X*, \mathcal{B}) is a map $\varphi: X \to C$, where *C* is a set of *k* colors. A *k*-coloring is *strict* if exactly *k* colors are used. From now on, we assume that all our colorings are strict. It is possible to consider these type of colorings:

- colorings such that any block of B contains at least two vertices of a common color; if Σ admits such a coloring, we call it a CG-design;
- colorings such that any block of \mathcal{B} contains at least two vertices of different colors; if Σ admits such a coloring, we call it a *DG*-design (this corresponds to the usual definition of a coloring of a design);
- colorings for which Σ is, at the same time, a *CG* and a *DG*-design; if Σ admits such a coloring, we call it a *BG*-design: this is the type of coloring we are interested in.

Given a *G*-design $\Sigma = (X, \mathcal{B})$, the *feasible set* of Σ is:

 $\Omega(\Sigma) = \{k \mid \exists a k \text{-coloring of } \Sigma\}.$

The system Σ is *uncolorable* if $\Omega(\Sigma) = \emptyset$. If Σ is colorable, the minimum and the maximum of $\Omega(\Sigma)$ are the *lower* and *upper chromatic number of* Σ and we denote them by, respectively, $\chi(\Sigma)$ and $\overline{\chi}(\Sigma)$.

Given a colorable *G*-design $\Sigma = (X, B)$ and denoted by X_i the set of vertices of *X* with color *i* for any i = 1, ..., k, X_i is called *color class*.

Voloshin colorings has been considered for P_3 -designs (see [6–8]), Steiner Triple Systems (see [4, 5, 11, 13–15]), S(2,4,v) (see [9]), SQS(v) (see [12, 14]) and also in the case of hypergraph designs (see [2, 3]).

In this paper we determine sharp bounds for the lower and upper chromatic numbers of colorable BP_4 -designs and we show that, for all admissible values v, there exists a BP_4 -design with the largest possible feasible set. In the last section we also prove a few results for BP_4 -designs of small orders.

2. Feasible sets for *BP*₄-designs

Let $T = \{a, b, c, d\}$. We denote by $\langle a, b, c, d \rangle$ the path P_4 with T as set of vertices and with edges $\{a, b\}, \{b, c\}$ and $\{c, d\}$.

For any $v \in \mathbb{N}$ let:

$$\chi_{v} = \begin{cases} \left\lfloor \frac{3v+2}{4} \right\rfloor & \text{if } v \equiv 0, 1, 3 \mod 4 \\\\ \frac{3v-2}{4} & \text{if } v \equiv 2 \mod 4. \end{cases}$$

Theorem 2.1. Let $\Sigma = (X, \mathcal{B})$ be a colorable BP₄-design of order v. Then $2 \leq \chi(\Sigma) \leq \overline{\chi}(\Sigma) \leq \chi_v$.

Proof. Let X_1, \ldots, X_s be color classes in a coloring of Σ and let $|X_i| = n_i$ for $i = 1, \ldots, s$. Suppose that $n_i = 1$ for $i = 1, \ldots, r$ and $n_i \ge 2$ for $i = r + 1, \ldots, s$, for some r < s, so that $v = r + \sum_{i=r+1}^{s} n_i$. Let also $X_i = \{x_i\}$ for $i = 1, \ldots, r$.

Any block of \mathcal{B} must contain at most one of the edges $\{x_i, x_j\}$, for $i, j = 1, ..., r, i \neq j$. So, in any block containing one of these edges there exist $y, z \in X_k$, $y \neq z$, for some $k \in \{r+1,...,s\}$, such that the block is of one of the following types:

1. $< x_i, x_j, y, z >$,

2.
$$< y, x_i, x_j, z >$$
.

Let *a* denote the number of blocks of type 1 and *b* denote the number of blocks of type 2, for any *i*, *j*. Then we have the conditions:

$$a+b = \binom{r}{2}$$
$$a \le \sum_{i=r+1}^{s} \binom{n_i}{2}$$
$$b \le \frac{r(v-r)}{2}.$$

This clearly implies that:

$$\binom{r}{2} \le \sum_{i=r+1}^{s} \binom{n_i}{2} + \frac{r(v-r)}{2}.$$
 (1)

Now, given m_1, \ldots, m_n integers such that $n \ge 1$ and $m_i \ge 2$ for any *i*, it is easy to prove by induction the following inequality:

$$\sum_{i=1}^n \binom{m_i}{2} \leq \binom{\sum_{i=1}^n m_i - 2n + 2}{2} + n - 1.$$

So by equation (1) we get:

$$\binom{r}{2} \le \binom{\sum_{i=r+1}^{s} n_i - 2(s-r) + 2}{2} + s - r - 1 + \frac{r(v-r)}{2} = = \binom{v+r-2s+2}{2} + s - r - 1 + \frac{r(v-r)}{2}.$$

This implies:

$$r^{2} + r(4s - 3v - 2) \le v^{2} + 4s^{2} - 4sv + 3v - 4s.$$
 (2)

Suppose that $s \ge \frac{3v+2}{4}$. Then, since $v = r + \sum_{i=r+1}^{s} n_i$ and $n_i \ge 2$ for i = r + 1, ..., n, we have $v \ge 2s - r$, so that $r \ge 2s - v > 0$ and equation (2) implies:

$$(2s-v)^2 + (4s-3v-2)(2s-v) \le v^2 + 4s^2 - 4sv + 3v - 4s$$

$$\Rightarrow 8s^2 - 10sv + 3v^2 - v \le 0.$$

Since $s \ge \frac{3\nu+2}{4}$ and $\frac{3\nu+2}{4} > \frac{5}{8}\nu$, we get easily a contradiction:

$$8\left(\frac{3v+2}{4}\right)^2 - 5\frac{3v+2}{2}v + 3v^2 - v \le 0 \Rightarrow 2 \le 0$$

This shows that it must be $s < \frac{3\nu+2}{4}$, which proves the statement.

Now we prove that the above bounds are sharp. More precisely, we prove that:

Theorem 2.2. For any $v \in \mathbb{N}$, $v \equiv 0, 1 \mod 3$ and $v \ge 4$, there exists a BP₄-design of order v having as feasible set the complete interval of integers $[2, \chi_v]$.

Proof. Let $\mathbf{v} = \mathbf{12h}$, for some $h \in \mathbb{N}$, $h \ge 1$. Let $X = \{x_1, \dots, x_{6h}\}$ and $Y = \{y_1, \dots, y_{6h}\}$ be disjoint sets. We want to construct a *BP*₄ design of order 12*h* having $X \cup Y$ as vertex set and satisfying the conditions of the statement.

Let \mathcal{B}_{12h} be the set of the following blocks:

- $\langle y_{i+k}, x_i, x_{i+2k}, y_{i+k+3h} \rangle$ for $i = 1, \dots, 6h$ and $2k \in \{1, \dots, 3h-1\}$;
- $\langle y_{i+k+3h}, x_i, x_{i+2k+1}, y_{i+k} \rangle$ for $i = 1, \dots, 6h$ and $2k+1 \in \{1, \dots, 3h-1\}$;
- $\langle y_i, x_i, x_{i+3h}, y_{i+3h} \rangle$ for i = 1, ..., 3h;
- $\langle x_{i-\overline{k}}, y_i, y_{i+3h}, x_{i+3h-\overline{k}} \rangle$ for $i = 1, \dots, 3h$ and with

$$\bar{k} = \begin{cases} \frac{3h}{2} & \text{if } h \text{ is even} \\ \frac{9h-1}{2} & \text{if } h \text{ is odd} \end{cases}$$

- $\langle y_{i+k}, y_i, y_{i+k+h}, y_{i+3h} \rangle$ for i = 1, ..., 6h and k = h + 1, ..., 2h 1 (in the case $h \ge 2$);
- $\langle y_i, y_{i+h}, y_{i+3h}, y_{i+2h} \rangle$ for i = 1, ..., 2h;
- $\langle y_{i+5h}, y_{i+3h}, y_{i+4h}, y_i \rangle$ for $i = h+1, \dots, 2h$;
- $\langle y_{i+h}, y_{i+3h}, y_{i+4h}, y_i \rangle$ for $i = 2h + 1, \dots, 3h$.

It is easy to see that $\Sigma = (X \cup Y, \mathcal{B}_{12h})$ is a P_4 -design of order 12*h*. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h}] = [2, 9h]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes the sets $\{x_1, \ldots, x_{6h}, y_1, \ldots, y_{3h}\}$ and $\{y_{3h+1}, \ldots, y_{6h}\}$;
- for s = 3 we can take as color classes $\{x_1, ..., x_{6h}\}$, $\{y_1, ..., y_{3h}\}$ and $\{y_{3h+1}, ..., y_{6h}\}$;
- for s = 4, ..., 9h we can take as color classes $A_1, ..., A_m, B_1, ..., B_p, C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h\}$, $p, q, r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - A_1,\ldots,A_m is any partition of $\{x_1,\ldots,x_{6h}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_h\} \cup \{y_{3h+1}, \ldots, y_{4h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 1, \ldots, h$ is contained in some of the B_j ;
 - C_1, \ldots, C_q is any partition of $\{y_{h+1}, \ldots, y_{2h}\} \cup \{y_{4h+1}, \ldots, y_{5h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = h + 1, \ldots, 2h$ is contained in some of the C_i ;
 - D_1, \ldots, D_r is any partition of $\{y_{2h+1}, \ldots, y_{3h}\} \cup \{y_{5h+1}, \ldots, y_{6h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 2h + 1, \ldots, 3h$ is contained in some of the D_j .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{1}$, for some $h \in \mathbb{N}$, $h \ge 1$. Let $X = \{x_1, \dots, x_{6h+1}\}$ and $Y = \{y_1, \dots, y_{6h}\}$ be disjoint sets. We want to construct a *BP*₄ design of order 12h + 1 having $X \cup Y$ as vertex set and satisfying the conditions of the statement.

Let \mathcal{B}_{12h+1} be the set of the following blocks:

- $\langle y_k, x_i, x_{i+k}, y_{k+3h} \rangle$ for i = 1, ..., 6h + 1 and k = 1, ..., 3h;
- $\langle y_{i+k}, y_i, y_{i+k+h}, y_{i+3h} \rangle$ for i = 1, ..., 6h and k = h + 1, ..., 2h 1 (in the case $h \ge 2$);
- $\langle y_{i+2h}, y_i, y_{i+3h}, y_{i+5h} \rangle$ for i = 1, ..., 3h;
- $\langle y_i, y_{i+h}, y_{i+2h}, y_{i+3h} \rangle$ for i = 1, ..., h and i = 3h + 1, ..., 4h.

It is easy to see that $\Sigma = (X \cup Y, \mathcal{B}_{12h+1})$ is a P_4 -design of order 12h + 1. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+1}] = [2, 9h + 1]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes the sets {x₁,...,x_{6h+1},y₁,...,y_{3h}} and {y_{3h+1},...,y_{6h}};
- for s = 3 we can take as color classes $\{x_1, ..., x_{6h+1}\}$, $\{y_1, ..., y_{3h}\}$ and $\{y_{3h+1}, ..., y_{6h}\}$;
- for s = 4, ..., 9h + 1 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 1\}$, $p, q, r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+1}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_h\} \cup \{y_{3h+1}, \ldots, y_{4h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 1, \ldots, h$ is contained in some of the B_j ;
 - C_1, \ldots, C_q is any partition of $\{y_{h+1}, \ldots, y_{2h}\} \cup \{y_{4h+1}, \ldots, y_{5h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = h + 1, \ldots, 2h$ is contained in some of the C_i ;
 - D_1, \ldots, D_r is any partition of $\{y_{2h+1}, \ldots, y_{3h}\} \cup \{y_{5h+1}, \ldots, y_{6h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 2h + 1, \ldots, 3h$ is contained in some of the D_i .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{3}$, for some $h \in \mathbb{N}$, $h \ge 1$. Let $X = \{x_1, \dots, x_{6h+1}\}$ and $Y = \{y_1, \dots, y_{6h}\}$ be disjoint sets and let $\Sigma = (X \cup Y, \mathcal{B}_{12h+1})$ be the previous BP_4 -design of order 12h + 1. Let us consider two elements $\infty_1, \infty_2 \notin X \cup Y, \infty_1 \neq \infty_2$. Let C be the set of the following blocks:

- $\langle y_i, \infty_1, y_{i+h}, \infty_2 \rangle$ for i = 1, ..., h and i = 3h + 1, ..., 4h;
- $\langle y_i, \infty_2, y_{i+2h}, \infty_1 \rangle$ for i = 1, ..., h and i = 3h + 1, ..., 4h;
- $\langle x_{3i+1}, \infty_1, x_{3i+2}, \infty_2 \rangle$ for $i = 0, \dots, 2h-2$;
- $\langle x_{3i+1}, \infty_2, x_{3i+3}, \infty_1 \rangle$ for $i = 0, \dots, 2h-2$;
- $\langle x_{6h-2}, \infty_1, x_{6h-1}, \infty_2 \rangle;$
- $\langle x_{6h+1}, \infty_2, x_{6h}, \infty_1 \rangle;$
- $\langle x_{6h+1}, \infty_1, \infty_2, x_{6h-2} \rangle$.

Then it is easy to see that $\Sigma' = (X \cup Y \cup \{\infty_1, \infty_2\}, \mathcal{B}_{12h+1} \cup \mathcal{C})$ is a *P*₄-design of order 12h + 3. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+3}] = [2, 9h + 2]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+1}, y_1, \dots, y_{3h}, \infty_1\}$ and $\{y_{3h+1}, \dots, y_{6h}, \infty_2\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+1}\}, \{y_1, \dots, y_{3h}, \infty_1\}$ and $\{y_{3h+1}, \dots, y_{6h}, \infty_2\}$;
- for s = 4, ..., 9h + 2 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 1\}$, $p \in \{1, ..., h + 1\}$ $q, r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+1}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_h, \infty_1\} \cup \{y_{3h+1}, \ldots, y_{4h}, \infty_2\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 1, \ldots, h$ and $\{\infty_1, \infty_2\}$ are contained in some of the B_j ;
 - C_1, \ldots, C_q is any partition of $\{y_{h+1}, \ldots, y_{2h}\} \cup \{y_{4h+1}, \ldots, y_{5h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = h + 1, \ldots, 2h$ is contained in some of the C_j ;
 - D_1, \ldots, D_r is any partition of $\{y_{2h+1}, \ldots, y_{3h}\} \cup \{y_{5h+1}, \ldots, y_{6h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 2h + 1, \ldots, 3h$ is contained in some of the D_i .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{4}$, for some $h \in \mathbb{N}$, $h \ge 0$.

Let h = 0, so that v = 4. In this case, it is easy to see that any P_4 -design of order 4 is a BP_4 -design which is *s*-colorable for any $s \in [2, \chi_4] = [2, 3]$.

Let $h \ge 1$ and let $X = \{x_1, \dots, x_{6h+2}\}$ and $Y = \{y_1, \dots, y_{6h+2}\}$ be disjoint sets. We want to construct a *BP*₄ design of order 12h + 4 having $X \cup Y$ as vertex set and satisfying the conditions of the statement.

Let \mathcal{B}_{12h+4} be the set of the following blocks:

- $\langle y_{i+k}, x_i, x_{i+2k+1}, y_{i+k+3h+1} \rangle$ for $i = 1, \dots, 6h+2$ and $2k+1 \in \{1, \dots, 3h\}$;
- $\langle y_{i+k+3h+1}, x_i, x_{i+2k}, y_{i+k} \rangle$ for $i = 1, \dots, 6h+2$ and $2k \in \{1, \dots, 3h\}$;
- $\langle y_{i+3h+1}, x_i, x_{i+3h+1}, y_i \rangle$ for $i = 1, \dots, 3h+1$;
- $\langle x_{i-\bar{k}}, y_i, y_{i+3h+1}, x_{i+3h+1-\bar{k}} \rangle$ for i = 1, ..., 3h+1 and with:

$$\bar{k} = \begin{cases} \frac{3}{2}h & \text{if } h \text{ is even} \\ \\ \frac{9h+3}{2} & \text{if } h \text{ is odd} \end{cases}$$

• $\langle y_{i+k}, y_i, y_{i+k+h}, y_{i+3h+1} \rangle$ for $i = 1, \dots, 6h+2$ and $k = h+1, \dots, 2h$.

It is easy to see that $\Sigma = (X \cup Y, \mathcal{B}_{12h+4})$ is a P_4 -design of order 12*h*. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+4}] = [2, 9h+3]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+2}, y_1, \dots, y_{3h+1}\}$ and $\{y_{3h+2}, \dots, y_{6h+2}\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+2}\}, \{y_1, \dots, y_{3h+1}\}$ and $\{y_{3h+2}, \dots, y_{6h+2}\};$
- for s = 4, ..., 9h + 3 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 2\}$, $p \in \{1, ..., h + 1\}$ $q, r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+2}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_{h+1}\} \cup \{y_{3h+2}, \ldots, y_{4h+2}\}$ such that $\{y_i, y_{3h+1+i}\}$ for any $i = 1, \ldots, h+1$ is contained in some of the B_j ;
 - C_1, \ldots, C_q is any partition of $\{y_{h+2}, \ldots, y_{2h+1}\} \cup \{y_{4h+3}, \ldots, y_{5h+2}\}$ such that $\{y_i, y_{3h+1+i}\}$ for any $i = h+2, \ldots, 2h+1$ is contained in some of the C_j ;
 - D_1, \ldots, D_r is any partition of $\{y_{2h+2}, \ldots, y_{3h+1}\} \cup \{y_{5h+3}, \ldots, y_{6h+2}\}$ such that $\{y_i, y_{3h+1+i}\}$ for any $i = 2h+2, \ldots, 3h+1$ is contained in some of the D_j .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{6}$, for some $h \in \mathbb{N}$. If h = 0, then consider the system $\Sigma = (\{0, 1, 2, 3, 4\} \cup \{\infty\}, \mathcal{B})$, where $\infty \notin \{0, 1, 2, 3, 4\}$ and \mathcal{B} is the set of blocks $\langle \infty, i, i+1, i+3 \rangle$ for i = 0, 1, 2, 3, 4. Then, Σ is clearly 2 and 3-colorable. It is also 4-colorable, since we can take $\{\infty, 0, 1\}, \{2\}, \{3\}$ and $\{4\}$ as color classes.

Let $h \ge 1$. Let $X = \{x_1, \dots, x_{6h+2}\}$ and $Y = \{y_1, \dots, y_{6h+2}\}$ be disjoint sets and let $\Sigma = (X \cup Y, \mathcal{B}_{12h+4})$ be the previous BP_4 -design of order 12h + 4. Let us consider two elements $\infty_1, \infty_2 \notin X \cup Y, \infty_1 \neq \infty_2$. Let C be the set of the following blocks:

- $\langle y_i, \infty_1, y_{i+h+1}, \infty_2 \rangle$ for i = 1, ..., h and i = 3h + 2, ..., 4h + 1 (in the case $h \ge 1$);
- $\langle y_i, \infty_2, y_{i+2h+1}, \infty_1 \rangle$ for i = 1, ..., h and i = 3h+2, ..., 4h+1 (in the case $h \ge 1$);
- $\langle x_i, \infty_1, x_{i+h+1}, \infty_2 \rangle$ for i = 1, ..., h and i = 3h + 2, ..., 4h + 1 (in the case $h \ge 1$);

- $\langle x_i, \infty_2, x_{i+2h+1}, \infty_1 \rangle$ for i = 1, ..., h and i = 3h+2, ..., 4h+1 (in the case $h \ge 1$);
- $\langle x_{h+1}, \infty_1, \infty_2, x_{4h+2} \rangle$;
- $\langle \infty_1, y_{h+1}, \infty_2, x_{h+1} \rangle$;
- $\langle \infty_2, y_{4h+2}, \infty_1, x_{4h+2} \rangle$.

Then it is easy to see that $\Sigma' = (X \cup Y \cup \{\infty_1, \infty_2\}, \mathcal{B}_{12h+4} \cup \mathcal{C})$ is a P_4 -design of order 12h + 6. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+6}] = [2, 9h + 4]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+2}, y_1, \dots, y_{3h+1}, \infty_1\}$ and $\{y_{3h+2}, \dots, y_{6h+2}, \infty_2\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+2}\}, \{y_1, \dots, y_{3h+1}, \infty_1\}$ and $\{y_{3h+2}, \dots, y_{6h+2}, \infty_2\}$;
- for s = 4, ..., 9h + 4 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 2\}$, $p, q \in \{1, ..., h + 1\}$, $r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+2}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_{h+1}\} \cup \{y_{3h+2}, \ldots, y_{4h+2}\}$ such that $\{y_i, y_{3h+1+i}\}$ for any $i = 1, \ldots, h+1$ is contained in some of the B_j ;
 - C_1, \ldots, C_q is any partition of

$$\{y_{h+2},\ldots,y_{2h+1},\infty_1\}\cup\{y_{4h+3},\ldots,y_{5h+2},\infty_2\}$$

such that $\{y_i, y_{3h+1+i}\}$ for any i = h+2, ..., 2h+1 and $\{\infty_1, \infty_2\}$ are contained in some of the C_i ;

- D_1, \ldots, D_r is any partition of $\{y_{2h+2}, \ldots, y_{3h+1}\} \cup \{y_{5h+3}, \ldots, y_{6h+2}\}$ such that $\{y_i, y_{3h+1+i}\}$ for any $i = 2h+2, \ldots, 3h+1$ is contained in some of the D_j .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{7}$, for some $h \in \mathbb{N}$. Let h = 0 and let $X = \{x_1, x_2, x_3\}$ and $Z = \{z_1, z_2, z_3, z_4\}$ be disjoint sets. Let $\Sigma = (Z, \mathcal{B})$ a P_4 -design of order 4 and let \mathcal{C} be the set of the following blocks:

- $\langle z_1, x_1, x_2, z_2 \rangle$;
- $\langle z_2, x_1, x_3, z_1 \rangle;$

- $\langle z_1, x_2, x_3, z_2 \rangle$;
- $\langle x_1, z_3, x_2, z_4 \rangle$;
- $\langle x_1, z_4, x_3, z_3 \rangle$.

Then $\Sigma' = (X \cup Z, \mathcal{B} \cup \mathcal{C})$ is a *P*₄-design which is *r*-colorable for r = 2, 3, 4, 5. Indeed, we can take as color classes:

- $\{x_1, z_1, z_2\}$ and $\{x_2, x_3, z_3, z_4\}$ for r = 2;
- $\{x_1, x_2, x_3\}, \{z_1, z_2\}$ and $\{z_3, z_4\}$ for r = 3;
- $\{x_1, x_2\}, \{x_3\}, \{z_1, z_2\}, \{z_3, z_4\}$ for r = 4;
- $\{x_1\}, \{x_2\}, \{x_3\}, \{z_1, z_2\}$ and $\{z_3, z_4\}$ for r = 5.

Let $h \ge 1$. Let $X = \{x_1, \dots, x_{6h+3}\}$, $Y = \{y_1, \dots, y_{6h}\}$ and $Z = \{z_1, z_2, z_3, z_4\}$ be pairwise disjoint sets and let $\Sigma = (Z, \mathcal{B})$ be a P_4 -design of order 4. Let \mathcal{C} be the set of the following blocks:

- $\langle y_k, x_i, x_{i+k}, y_{k+3h} \rangle$ for i = 1, ..., 6h + 3 and k = 1, ..., 3h;
- $\langle z_1, x_i, x_{i+3h+1}, z_2 \rangle$ for $i = 1, \dots, 6h+3$;
- $\langle x_{3i+1}, z_3, x_{3i+2}, z_4 \rangle$ for $i = 0, \dots, 2h$;
- $\langle x_{3i+1}, z_4, x_{3i+3}, z_3 \rangle$ for $i = 0, \dots, 2h$;
- $\langle y_i, z_{2j+1}, y_{i+h}, z_{2j+2} \rangle$ for j = 0, 1, i = 1, ..., h and i = 3h + 1, ..., 4h;
- $\langle y_i, z_{2j+2}, y_{i+2h}, z_{2j+1} \rangle$ for j = 0, 1, i = 1, ..., h and i = 3h + 1, ..., 4h;
- $\langle y_{i+k}, y_i, y_{i+k+h}, y_{i+3h} \rangle$ for i = 1, ..., 6h and k = h+1, ..., 2h-1;
- $\langle y_{i+2h}, y_i, y_{i+3h}, y_{i+5h} \rangle$ for i = 1, ..., 3h;
- $\langle y_i, y_{i+h}, y_{i+2h}, y_{i+3h} \rangle$ for i = 1, ..., h and i = 3h + 1, ..., 4h.

Then it is easy to see that $\Sigma' = (X \cup Y \cup Z, \mathcal{B} \cup \mathcal{C})$ is a P_4 -design of order 12h+7. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+7}] = [2, 9h+5]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+3}, y_1, \dots, y_{3h}, z_1, z_3\}$ and $\{y_{3h+1}, \dots, y_{6h}, z_2, z_4\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+3}\}, \{y_1, \dots, y_{3h}, z_1, z_3\}$ and $\{y_{3h+1}, \dots, y_{6h}, z_2, z_4\}$;

- for s = 4, ..., 9h + 5 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 3\}$, $p, q \in \{1, ..., h + 1\}$, $r \in \{1, ..., h\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+3}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_h\} \cup \{y_{3h+1}, \ldots, y_{4h}\} \cup \{z_1, z_2\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 1, \ldots, h$ and $\{z_1, z_2\}$ are contained in some of the B_i ;
 - C_1, \ldots, C_q is any partition of

$$\{y_{h+1},\ldots,y_{2h}\}\cup\{y_{4h+1},\ldots,y_{5h}\}\cup\{z_3,z_4\}$$

such that $\{y_i, y_{3h+i}\}$ for any i = h + 1, ..., 2h and $\{z_3, z_4\}$ are contained in some of the C_j ;

- D_1, \ldots, D_r is any partition of $\{y_{2h+1}, \ldots, y_{3h}\} \cup \{y_{5h+1}, \ldots, y_{6h}\}$ such that $\{y_i, y_{3h+i}\}$ for any $i = 2h + 1, \ldots, 3h$ is contained in some of the D_i .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{9}$, for some $h \in \mathbb{N}$. Let us consider two disjoint sets $X = \{x_1, \dots, x_{6h+5}\}$ and $Y = \{y_1, \dots, y_{6h+4}\}$. We want to construct a *BP*₄ design of order 12h + 9 having $X \cup Y$ as vertex set and satisfying the conditions of the statement.

Let \mathcal{B}_{12h+9} be the set of the following blocks:

- $\langle y_k, x_i, x_{i+k}, y_{k+3h+2} \rangle$ for $i = 1, \dots, 6h+5$ and $k = 1, \dots, 3h+2$;
- $\langle y_{i+k}, y_i, y_{i+k+h}, y_{i+3h+2} \rangle$ for i = 1, ..., 6h + 4 and k = h + 2, ..., 2h + 1 (in the case $h \ge 1$);
- $\langle y_{i+h+1}, y_i, y_{i+3h+2}, y_{i+4h+3} \rangle$ for $i = 1, \dots, 3h+2$.

It is easy to see that $\Sigma = (X \cup Y, \mathcal{B}_{12h+9})$ is a P_4 -design of order 12h+9. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+9}] = [2, 9h+7]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+5}, y_1, \dots, y_{3h+2}\}$ and $\{y_{3h+3}, \dots, y_{6h+4}\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+5}\}, \{y_1, \dots, y_{3h+2}\}$ and $\{y_{3h+3}, \dots, y_{6h+4}\}$;
- for s = 4, ..., 9h + 7 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 5\}$, $p, q \in \{1, ..., h + 1\}$, $r \in \{1, ..., h\}$ and m + p + q + r = s, where:

- $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+5}\}$;
- B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_{h+1}\} \cup \{y_{3h+3}, \ldots, y_{4h+3}\}$ such that $\{y_i, y_{3h+2+i}\}$ for any $i = 1, \ldots, h+1$ is contained in some of the B_j ;
- C_1, \ldots, C_q is any partition of $\{y_{h+2}, \ldots, y_{2h+2}\} \cup \{y_{4h+4}, \ldots, y_{5h+4}\}$ such that $\{y_i, y_{3h+2+i}\}$ for any $i = h+2, \ldots, 2h+2$ is contained in some of the C_i ;
- D_1, \ldots, D_r is any partition of $\{y_{2h+3}, \ldots, y_{3h+2}\} \cup \{y_{5h+5}, \ldots, y_{6h+4}\}$ such that $\{y_i, y_{3h+2+i}\}$ for any $i = 2h+3, \ldots, 3h+2$ is contained in some of the D_j .

Let $\mathbf{v} = \mathbf{12h} + \mathbf{10}$, for some $h \in \mathbb{N}$. Let us consider three pairwise disjoint sets, $X = \{x_1, \dots, x_{6h+4}\}$, $Y = \{y_1, \dots, y_{6h+4}\}$ and $Z = \{z_1, z_2\}$. Let \mathcal{B} be the set of the following blocks:

- $\langle y_{i+k}, x_i, x_{i+2k}, y_{i+k+3h+2} \rangle$ for i = 1, ..., 6h+4 and $2k \in \{1, ..., 3h+1\}$ (in the case $h \ge 1$);
- $\langle y_{i+k+3h+2}, x_i, x_{i+2k+1}, y_{i+k} \rangle$ for $i = 1, \dots, 6h+4$ and $2k+1 \in \{1, \dots, 3h+1\}$;
- $\langle y_i, x_i, x_{i+3h+2}, y_{i+3h+2} \rangle$ for $i = 1, \dots, 3h+2$;
- $\langle x_{i-\bar{k}}, y_i, y_{i+3h+2}, x_{i+3h+2-\bar{k}} \rangle$ for i = 1, ..., 3h + 2 and with:

$$\overline{k} = \begin{cases} \frac{3}{2}h+1 & \text{if } h \text{ is even} \\ \\ \frac{9h+5}{2} & \text{if } h \text{ is odd} \end{cases}$$

- $\langle y_{i+k}, y_i, y_{i+k+h+1}, y_{i+3h+2} \rangle$ for i = 1, ..., 6h + 4 and k = h + 1, ..., 2h (in the case $h \ge 1$);
- $\langle z_1, y_i, y_{i+2h+1}, z_2 \rangle$ for $i = 1, \dots, 6h+4$;
- $\langle x_{3i+1}, z_1, x_{3i+2}, z_2 \rangle$ for $i = 0, \dots, 2h 1$ (in the case $h \ge 1$);
- $\langle x_{3i+1}, z_2, x_{3i+3}, z_1 \rangle$ for $i = 0, \dots, 2h 1$ (in the case $h \ge 1$);
- $\langle x_{6h+1}, z_1, z_2, x_{6h+2} \rangle$;
- $\langle x_{6h+2}, z_1, x_{6h+3}, z_2 \rangle;$
- $\langle x_{6h+1}, z_2, x_{6h+4}, z_1 \rangle$.

Then it is easy to see that $\Sigma' = (X \cup Y \cup Z, \mathcal{B})$ is a P_4 -design of order 12h + 10. Moreover, it is *s*-colorable for any $s \in [2, \chi_{12h+10}] = [2, 9h + 7]$. Indeed, it is not difficult to see that:

- for s = 2 we can take as color classes $\{x_1, \dots, x_{6h+4}, y_1, \dots, y_{3h+2}, z_1\}$ and $\{y_{3h+3}, \dots, y_{6h+4}, z_2\}$;
- for s = 3 we can take as color classes $\{x_1, \dots, x_{6h+4}\}, \{y_1, \dots, y_{3h+2}, z_1\}$ and $\{y_{3h+3}, \dots, y_{6h+4}, z_2\}$;
- for s = 4, ..., 9h + 7 we can take as color classes $A_1, ..., A_m, B_1, ..., B_p$, $C_1, ..., C_q, D_1, ..., D_r$, with $m \in \{1, ..., 6h + 4\}$, $p, q, r \in \{1, ..., h + 1\}$ and m + p + q + r = s, where:
 - $A_1, ..., A_m$ is any partition of $\{x_1, ..., x_{6h+4}\}$;
 - B_1, \ldots, B_p is any partition of $\{y_1, \ldots, y_{h+1}\} \cup \{y_{3h+3}, \ldots, y_{4h+3}\}$ such that $\{y_i, y_{3h+2+i}\}$ for any $i = 1, \ldots, h+1$ is contained in some of the B_i ;
 - C_1, \ldots, C_q is any partition of $\{y_{h+2}, \ldots, y_{2h+2}\} \cup \{y_{4h+4}, \ldots, y_{5h+4}\}$ such that $\{y_i, y_{3h+2+i}\}$ for any $i = h+2, \ldots, 2h+2$ is contained in some of the C_i ;
 - D_1, \ldots, D_r is any partition of

$$\{y_{2h+3},\ldots,y_{3h+2}\}\cup\{y_{5h+5},\ldots,y_{6h+4}\}\cup\{z_1,z_2\}$$

such that $\{y_i, y_{3h+2+i}\}$ for any i = 2h+3, ..., 3h+2 and $\{z_1, z_2\}$ are contained in some of the D_i .

3. *BP*₄-designs of small orders

In this section we get a few results in the case that the P_4 -designs have small orders. Let us recall that, given two sets X and Y with $X \subset Y$ and |X| = s, X is called an *s*-subset of Y.

In the following proposition we make a few easy remarks:

Proposition 3.1. Let $v \in \mathbb{N}$, with $v \equiv 0, 1 \mod 3$ and $v \ge 4$, and let $s \in [2, \chi_v]$. *If* Σ *is a BP*₄-design of order v, then:

- *1. if* Σ *is* 2*-colorable, it is also* 3*-colorable;*
- 2. *if* Σ *is a s-colorable, with* $s > \frac{\nu}{2}$ *, then* Σ *is also* (s-1)*-colorable.*

Proof. It is obvious that a 2-colorable P_4 -design is also 3-colorable. If Σ is a is *s*-colorable for some $s > \frac{\nu}{2}$, then in any *s*-coloring of Σ there exist at least two color classes X_1 and X_2 such that $2 \le |X_1 \cup X_2| \le 3$. Then Σ admits an (s-1)-coloring with color classes $X_1 \cup X_2, X_3, \ldots, X_s$.

Proposition 3.2. Let $v \in \mathbb{N}$, with $v \equiv 0, 1 \mod 3$ and $v \ge 4$, and let $s \in [2, \chi_v]$. *Then:*

- 1. for v = 4 and v = 6 any BP₄-design of order v is s-colorable, for any s;
- 2. for v = 7 any BP₄-design of order v is s-colorable for s = 2, 3, 4 and there exists a BP₄-design which is not 5-colorable;
- 3. for v = 9 any BP₄-design of order v is s-colorable for s = 2, 3, 4 and there exists a BP₄-design which is not s-colorable for s = 6, 7;
- 4. for v = 10 any BP₄-design of order v is s-colorable for s = 2, 3, 4.

Proof. Let $\Sigma = (X, \mathcal{B})$ be any P_4 -design of order v. We denote by r(x, y) the number of blocks of $B \in \mathcal{B}$ having x and y among its set of vertices.

If $\mathbf{v} = \mathbf{4}$, then the statement is trivial. If $\mathbf{v} = \mathbf{6}$, the cases s = 2 and s = 3 are immediate. We just need to prove the case s = 4. Let $X = \{0, 1, 2, 3, 4, 5\}$. If there is a triple, say $\{0, 1, 2\}$, which is not contained in any block, then $\{0\}$, $\{1\}$, $\{2\}$ and $\{3, 4, 5\}$ are the color classes of a 4-coloring of Σ . Otherwise, since $|\mathcal{B}| = 5$, any triple in *X* is contained in exactly just one block of \mathcal{B} . So, if $\{0, 1, 2, 3\} = V(\mathcal{B})$ for some $\mathcal{B} \in \mathcal{B}$, then $\{0\}$, $\{1\}$, $\{2, 3\}$ and $\{4, 5\}$ are the color classes of a 4-coloring of Σ .

Let $\mathbf{v} = \mathbf{7}$. Then $|\mathcal{B}| = 7$ and so, clearly, there exists a 4-subset X_1 of X which is not the set of vertices of some block of \mathcal{B} . This means that X_1 and $X \setminus X_1$ provide a 2-coloring of Σ . Moreover, any partition of X in 3 nonempty subsets, all of cardinality at most 3, provides a 3-coloring of Σ .

Now we want to show that Σ is 4-colorable. Let $X = \{0, 1, ..., 6\}$. We know that:

$$\sum_{x,y\in X, x\neq y} r(x,y) = 6 \cdot 7 = 42.$$

Then, we can suppose that $r(0,1) \le 2$. If $\{0,1,2,3\}$ and $\{0,1,4,5\}$ are the set of vertices of blocks containing 0 and 1, then $\{0\}$, $\{1\}$, $\{2,3\}$ and $\{4,5,6\}$ are the color classes of a 4-coloring of Σ . This holds also if only $\{0,1,2,3\}$ is the set of vertices of the only block containing 0 and 1. If $\{0,1,2,3\}$ and $\{0,1,2,4\}$ are the set of vertices of two blocks containing 0 and 1, then $\{0\}$, $\{1\}$, $\{2,3,4\}$ and $\{5,6\}$ are the color classes of a 4-coloring of Σ .

Now, let $Y = \{0, 1, ..., 6\}$ and let $\Sigma' = (Y, C)$ be P_4 -design of order 7 with base block (0, 1, 3, 6). It is easy to see that any 5-subset of Y contains a triple

i, i+1, i+2 for some i = 0, 1, ..., 6. From this we easily get that any 5-subset of *Y* contains some block of *C*, which implies that Σ' is not 5-colorable.

Let $\mathbf{v} = \mathbf{9}$. Then $|\mathcal{B}| = 12$, $\binom{9}{4} = \binom{9}{5} = 126$ and there exist at most 60 5subsets of *X* containing the set of vertices of at least one block of *B*. So, clearly, there exists a 5-subset X_1 of *X* which does not contain the set of vertices of some block of *B* and such that $X \setminus X_1$ is not the set of vertices of some block of *B*. This means that X_1 and $X \setminus X_1$ provide a 2-coloring of Σ . Moreover, any partition of *X* in 3-subsets, all of cardinality 3, provides a 3-coloring of Σ .

Now we want to show that Σ is 4-colorable. Let $x = \{0, 1, ..., 8\}$. Since $|\mathcal{B}| = 12$, we can say that there exist two vertices, say 0 and 1, such that $r(0, 1) \le 2$.

Suppose that $\{0,1,2,3\}$ and $\{0,1,4,5\}$ are set of vertices of the two blocks containing 0 and 1. If $\{2,3,4,5\}$ is not the set of vertices of some block, then Σ is 4-colorable, since we can take $\{0\}$, $\{1\}$, $\{2,3,4,5\}$ and $\{6,7,8\}$ as color classes of a 4-coloring.

Suppose that $\{0,1,2,3\}$ and $\{0,1,4,5\}$ are set of vertices of the two blocks containing 0 and 1 and that two of the remaining vertices, say 6 and 7, are not contained in a block with 2 and 3, for example. Then, $\{0\}$, $\{1\}$, $\{2,3,6,7\}$ and $\{4,5,8\}$ are color classes of a 4-coloring of Σ .

If the above conditions don't hold, then we can say that the following sets:

 $\{2,3,4,5\}, \{2,3,6,7\}, \{2,3,6,8\}, \\ \{2,3,7,8\}, \{4,5,6,7\}, \{4,5,6,8\}, \{4,5,7,8\} \}$

are sets vertices of some blocks of Σ . This implies that all the edges of $K_{\{2,3,\ldots,8\}}$ are contained in these blocks. So, the remaining 5 blocks must al contain both 0 and 1, which is not possible, because $r(0,1) \leq 2$.

If $\{0, 1, 2, 3\}$ and $\{0, 1, 2, 4\}$ are set of vertices of the two blocks containing 0 and 1, we can note that there exists at least one vertex in $\{5, 6, 7, 8\}$, say 5, that is not contained in any block together with 2, 3, 4. So, $\{0\}$, $\{1\}$, $\{2, 3, 4, 5\}$ and $\{6, 7, 8\}$ are color classes of a 4-coloring of Σ .

If only $\{0, 1, 2, 3\}$ is the set of vertices of some blocks containing 0 and 1, then we take any vertex in $\{4, 5, \dots, 8\}$, say 4, and proceed as above.

Now, we show that there exists a *BP*₄-design of order 9 which is not 6 and 7-colorable. Let $Y = \{0, 1, ..., 6\}$ and we take the *P*₄-design $\Sigma' = (Y, C)$ of order 7 we base block (0, 1, 3, 6), which we know is not 5-colorable. Let $\infty_1, \infty_2 \notin Y$, $\infty_1 \neq \infty_2$. Consider the family \mathcal{D} of the following blocks:

 $\langle 0, \infty_1, \infty_2, 1 \rangle, \langle 1, \infty_1, 2, \infty_2 \rangle, \langle 0, \infty_2, 3, \infty_1 \rangle, \langle 4, \infty_1, 5, \infty_2 \rangle, \langle 4, \infty_2, 6, \infty_1 \rangle.$

Then $\Sigma'' = (Y \cup \{\infty_1, \infty_2\}, C \cup D)$ is a a *P*₄-design of order 9 which is not *s*-colorable for *s* = 7, because Σ' is not 5-colorable. It is immediate to see that it is

not 6-colorable, because in a 6-coloring we must have $\{\infty_1\}$ and $\{\infty_2\}$ as color classes, which implies that $\{0, 1, 2, 3\}$ and $\{4, 5, 6\}$ are color classes and this is not a 6-coloring.

Let $\mathbf{v} = \mathbf{10}$. Then $|\mathcal{B}| = 15$, so that there exist at most 90 5-subsets of *X* containing the vertex set of some block in \mathcal{B} . Since $\binom{10}{5} = 252$, there exists a partition of *X* into two 5-subsets X_1 , X_2 that don't contain the vertex set of some block in \mathcal{B} . This shows that Σ is 2-colorable. By Proposition 3.1 it is also 3–colorable.

Let $X = \{0, 1, ..., 9\}$. Now we want to show that Σ is always 4-colorable. We know that:

$$\sum_{x,y \in X, x \neq y} r(x,y) = 6 \cdot 15 = 90.$$

Suppose that r(0,1) = 1 and let $\{0,1,2,3\}$ be the set of vertices of the only block containing both 0 and 1. Since $\frac{6\cdot5}{2\cdot3} = 5$ and $\binom{6}{4} = 15$, there exist at least 10 4-subsets of $\{4,5,\ldots,9\}$ that are not the set of vertices of some block in \mathcal{B} . Since it must be $r(2,3) \leq 8$, we can suppose that both $\{2,3,4,5\}$ and $\{6,7,8,9\}$ are not sets of vertices of some blocks in \mathcal{B} . This means that the sets $\{0\}, \{1\}, \{2,3,4,5\}$ and $\{6,7,8,9\}$ provide a 4-coloring of Σ .

We can suppose, now, that r(x, y) = 2 for any $x, y \in X$, $x \neq y$.

Suppose that $\{0,1,2,3\}$ and $\{0,1,4,5\}$ are the set of vertices of the blocks containing both 0 and 1. Since r(x,y) = 2 for any $x, y \in X$, $x \neq y$, we can suppose that $\{2,3,6,7\}$ and $\{4,5,8,9\}$ are not the set of vertices of some blocks of Σ . This means that the sets $\{0\}$, $\{1\}$, $\{2,3,6,7\}$ and $\{4,5,8,9\}$ provide a 4-coloring of Σ .

Suppose that $\{0, 1, 2, 3\}$ and $\{0, 1, 2, 4\}$ are the set of vertices of the blocks containing both 0 and 1.

If there exists the block with set of vertices $\{2,3,4,5\}$ (and only one block of this type can exist), since r(x,y) = 2 for any $x, y \in X$, $x \neq y$, then we can suppose that $\{2,3,4,6,7\}$ doesn't contain any block of Σ . So, $\{0\}$, $\{1\}$, $\{2,3,4,6,7\}$ and $\{5,8,9\}$ provide a 4-coloring of Σ .

Otherwise, we can anyway take, as above, 6 and 7 in such a way that $\{2,3,4,6,7\}$ doesn't contain any block of Σ . And again $\{0\}$, $\{1\}$, $\{2,3,4,6,7\}$ and $\{5,8,9\}$ provide a 4-coloring of Σ .

In the case that $\{0, 1, 2, 3\}$ is the only set of vertices of the blocks containing 0 and 1 we take 4 in such a way that the triple $\{2,3,4\}$ is not contained in any block and we proceed as above.

Remark 3.3. In [10] (see note at page 156) it is stated the existence of Steiner systems S(2,4,25) with lower chromatic number 3. This, together with the existence of a P_4 -design of order 4, imply the existence of BP_4 -designs of order 25 which are 3-colorable, but not 2-colorable.

REFERENCES

- [1] J.C. Bermond, D. Sotteau, *Graph decomposition and G-designs*, Proc. 5th British Combinatorial Conference, Aberdeen (1975), 53–72.
- [2] P. Bonacini, L. Marino, On Voloshin colorings in 3-hypergraph designs, Discr. Math., 343 (2020), no. 10, 112030, 11 pp.
- [3] P. Bonacini, L. Marino, *Edge balanced star-hypergraph designs and vertex colorings of path designs*, J. Comb. Des. 30(2022), no. 7, 497–514.
- [4] C. Bujtas, M. Gionfriddo, E. Guardo, L. Milazzo, Zs.Tuza, V. I. Voloshin, *Extended Bicolorings of Steiner Triple Systems of order* 2^h 1, Taiwanese J. Math., 21 no. 6 (2017), 1265–1276.
- [5] M. Buratti, M. Gionfriddo, L. Milazzo, V. I. Voloshin, *Lower and upper chromatic numbers for BSTSs*(2^h 1), Comput. Sci. J. Moldova, 9 (2001), 259–272.
- [6] L. Gionfriddo, *Extremal gaps in BP*₃-designs, Computer Science Journal of Moldova, 9 (2001), 305–319.
- [7] L. Gionfriddo, *Construction of BP*₃-designs with mononumerical spectrum, Utilitas Mathematica, 65 (2004), 201–218.
- [8] L. Gionfriddo, Voloshin's colourings of P₃-designs, Discr. Math. 275 (2004), 137–149.
- [9] M. Gionfriddo, L. Milazzo, A. Rosa, V. I. Voloshin, *Bicoloring Steiner systems* S(2,4,v), Discrete Math., 283 (2004), 249–253.
- [10] E.S. Kramer, S.S. Magliveras, R. Mathon, *The Steiner systems S*(2,4,25) with nontrivial automorphism group, Discr. Math., 77 (1989), 137–157.
- [11] G. Lo Faro, L. Milazzo, A. Tripodi, *The first BSTS with different upper and lower chromatic numbers*, Australas. J. Combin., 22 (2000), 123–133.
- [12] G. Lo Faro, L. Milazzo, A. Tripodi, On the upper and lower chromatic numbers of BSQS(16), Electron. J. Combin. 8 R6.
- [13] L. Milazzo, Zs. Tuza, Strict colourings for classes of Steiner triple systems, Discrete Math., 182 (1998), 233–243.
- [14] L. Milazzo, Zs. Tuza, *Upper chromatic number of Steiner triple and quadruple systems*, Discrete Math., 174 (1997), 247–259.
- [15] L. Milazzo, Zs. Tuza, V. I. Voloshin, *Strict colouring for triple and quadruple Steiner systems: a survey*, Discrete Math., 261 (2003), 399–411.
- [16] V. I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova, 1 (1993), 49-52.
- [17] V. I. Voloshin, On the upper chromatic number of hypergraphs, Australas. J. Combin., 11 (2001), 25–45.
- [18] V. I. Voloshin, *Introduction to Graph and Hypergraph Theory*, Nova Science Publishers, New York City, NY, 2008.

P. BONACINI Department of Mathematics and Computer Science University of Catania Viale A. Doria 6, 95125 Catania, Italy e-mail: paola.bonacini@unict.it

L. MARINO Department of Mathematics and Computer Science University of Catania Viale A. Doria 6, 95125 Catania, Italy e-mail: lucia.marino@unict.it