
LE MATEMATICHE
Vol. LXXIX (2024) – Issue II, pp. 405–422
doi: 10.4418/2024.79.2.8

FEASIBLE SETS FOR VERTEX COLORINGS OF P4-DESIGNS

P. BONACINI - L. MARINO

A P4-design of order v is a system Σ = (X ,B) where X has v vertices
and B is a set of copies of P4, called blocks, decomposing the complete
graph Kv on X . A BP4-design is a P4-design Σ endowed with a coloring
of the vertices of Σ in such a way that in any block there are at least two
vertices with the same color and two vertices with different colors. The
feasible set Ω(Σ) of Σ is the set of integers k for which Σ is k-colorable.
The minimum and maximum of Ω(Σ) are, respectively, the lower and
upper chromatic number of Σ. In this paper the study of BP4-designs is
initiated, giving a lower and upper bound for feasible sets of BP4-designs
and showing the existence, for any admissible integer v, of BP4-designs
of order v with the largest possible feasible set. Some results are obtained
for small values of v.

1. Introduction

Let G = (V,E) a graph on n vertices and let Kv be the complete graph on v
vertices. A G-design of order v is a couple Σ = (X ,B), where X is a set of v
vertices and B is a set of copies of G, called blocks, decomposing the complete
graph Kv having X as set of vertices. The spectrum of G-designs is the set of all
integers v for which there exists a G-design of order v.
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In this paper we will consider P4-designs, whose spectrum is well known
(see [1]): a P4-design of order v exists if and only if v ≡ 0,1 mod 3, v ≥ 4. We
initiate the study of vertex colorings of P4-designs, in the sense due to Voloshin’s
work on mixed hypergraphs (see [16–18]). A k-coloring of a G-design Σ =
(X ,B) is a map ϕ : X → C, where C is a set of k colors. A k-coloring is strict
if exactly k colors are used. From now on, we assume that all our colorings are
strict. It is possible to consider these type of colorings:

• colorings such that any block of B contains at least two vertices of a com-
mon color; if Σ admits such a coloring, we call it a CG-design;

• colorings such that any block of B contains at least two vertices of dif-
ferent colors; if Σ admits such a coloring, we call it a DG-design (this
corresponds to the usual definition of a coloring of a design);

• colorings for which Σ is, at the same time, a CG and a DG-design; if Σ

admits such a coloring, we call it a BG-design: this is the type of coloring
we are interested in.

Given a G-design Σ = (X ,B), the feasible set of Σ is:

Ω(Σ) = {k | ∃ a k-coloring of Σ}.

The system Σ is uncolorable if Ω(Σ) = /0. If Σ is colorable, the minimum and
the maximum of Ω(Σ) are the lower and upper chromatic number of Σ and we
denote them by, respectively, χ(Σ) and χ(Σ).

Given a colorable G-design Σ = (X ,B) and denoted by Xi the set of vertices
of X with color i for any i = 1, . . . ,k, Xi is called color class.

Voloshin colorings has been considered for P3-designs (see [6–8]), Steiner
Triple Systems (see [4, 5, 11, 13–15]), S(2,4,v) (see [9]), SQS(v) (see [12, 14])
and also in the case of hypergraph designs (see [2, 3]).

In this paper we determine sharp bounds for the lower and upper chromatic
numbers of colorable BP4-designs and we show that, for all admissible values v,
there exists a BP4-design with the largest possible feasible set. In the last section
we also prove a few results for BP4-designs of small orders.

2. Feasible sets for BP4-designs

Let T = {a,b,c,d}. We denote by ⟨a,b,c,d⟩ the path P4 with T as set of vertices
and with edges {a,b}, {b,c} and {c,d}.



FEASIBLE SETS FOR VERTEX COLORINGS OF P4-DESIGNS 407

For any v ∈ N let:

χv =


⌊

3v+2
4

⌋
if v ≡ 0,1,3 mod 4

3v−2
4

if v ≡ 2 mod 4.

Theorem 2.1. Let Σ = (X ,B) be a colorable BP4-design of order v. Then 2 ≤
χ(Σ)≤ χ(Σ)≤ χv.

Proof. Let X1,. . . , Xs be color classes in a coloring of Σ and let |Xi| = ni for
i = 1, . . . ,s. Suppose that ni = 1 for i = 1, . . . ,r and ni ≥ 2 for i = r+ 1, . . . ,s,
for some r < s, so that v = r+∑

s
i=r+1 ni. Let also Xi = {xi} for i = 1, . . . ,r.

Any block of B must contain at most one of the edges {xi,x j}, for i, j =
1, . . . ,r, i ̸= j. So, in any block containing one of these edges there exist y,z∈Xk,
y ̸= z, for some k ∈ {r+1, . . . ,s}, such that the block is of one of the following
types:

1. < xi,x j,y,z >,

2. < y,xi,x j,z >.

Let a denote the number of blocks of type 1 and b denote the number of blocks
of type 2, for any i, j. Then we have the conditions:

a+b =

(
r
2

)
a ≤

s

∑
i=r+1

(
ni

2

)
b ≤ r(v− r)

2
.

This clearly implies that:(
r
2

)
≤

s

∑
i=r+1

(
ni

2

)
+

r(v− r)
2

. (1)

Now, given m1,. . . ,mn integers such that n ≥ 1 and mi ≥ 2 for any i, it is easy to
prove by induction the following inequality:

n

∑
i=1

(
mi

2

)
≤
(

∑
n
i=1 mi −2n+2

2

)
+n−1.
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So by equation (1) we get:(
r
2

)
≤
(

∑
s
i=r+1 ni −2(s− r)+2

2

)
+ s− r−1+

r(v− r)
2

=

=

(
v+ r−2s+2

2

)
+ s− r−1+

r(v− r)
2

.

This implies:

r2 + r(4s−3v−2)≤ v2 +4s2 −4sv+3v−4s. (2)

Suppose that s ≥ 3v+2
4 . Then, since v = r +∑

s
i=r+1 ni and ni ≥ 2 for i = r +

1, . . . ,n, we have v ≥ 2s− r, so that r ≥ 2s− v > 0 and equation (2) implies:

(2s− v)2 +(4s−3v−2)(2s− v)≤ v2 +4s2 −4sv+3v−4s

⇒ 8s2 −10sv+3v2 − v ≤ 0.

Since s ≥ 3v+2
4 and 3v+2

4 > 5
8 v, we get easily a contradiction:

8
(

3v+2
4

)2

−5
3v+2

2
v+3v2 − v ≤ 0 ⇒ 2 ≤ 0.

This shows that it must be s < 3v+2
4 , which proves the statement.

Now we prove that the above bounds are sharp. More precisely, we prove
that:

Theorem 2.2. For any v ∈ N, v ≡ 0,1 mod 3 and v ≥ 4, there exists a BP4-
design of order v having as feasible set the complete interval of integers [2,χv].

Proof. Let v = 12h, for some h ∈ N, h ≥ 1. Let X = {x1, . . . ,x6h} and Y =
{y1, . . . ,y6h} be disjoint sets. We want to construct a BP4 design of order 12h
having X ∪Y as vertex set and satisfying the conditions of the statement.

Let B12h be the set of the following blocks:

• ⟨yi+k,xi,xi+2k,yi+k+3h⟩ for i = 1, . . . ,6h and 2k ∈ {1, . . . ,3h−1};

• ⟨yi+k+3h,xi,xi+2k+1,yi+k⟩ for i = 1, . . . ,6h and 2k+1 ∈ {1, . . . ,3h−1};

• ⟨yi,xi,xi+3h,yi+3h⟩ for i = 1, . . . ,3h;

• ⟨xi−k,yi,yi+3h,xi+3h−k⟩ for i = 1, . . . ,3h and with

k =


3h
2

if h is even

9h−1
2

if h is odd



FEASIBLE SETS FOR VERTEX COLORINGS OF P4-DESIGNS 409

• ⟨yi+k,yi,yi+k+h,yi+3h⟩ for i = 1, . . . ,6h and k = h+ 1, . . . ,2h− 1 (in the
case h ≥ 2);

• ⟨yi,yi+h,yi+3h,yi+2h⟩ for i = 1, . . . ,2h;

• ⟨yi+5h,yi+3h,yi+4h,yi⟩ for i = h+1, . . . ,2h;

• ⟨yi+h,yi+3h,yi+4h,yi⟩ for i = 2h+1, . . . ,3h.

It is easy to see that Σ = (X ∪Y,B12h) is a P4-design of order 12h. Moreover, it
is s-colorable for any s ∈ [2,χ12h] = [2,9h]. Indeed, it is not difficult to see that:

• for s = 2 we can take as color classes the sets {x1, . . . ,x6h,y1, . . . ,y3h} and
{y3h+1, . . . ,y6h};

• for s = 3 we can take as color classes {x1, . . . ,x6h}, {y1, . . . ,y3h} and
{y3h+1, . . . ,y6h};

• for s= 4, . . . ,9h we can take as color classes A1,. . . ,Am, B1,. . . , Bp, C1,. . . ,
Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h}, p,q,r ∈ {1, . . . ,h} and m+ p+q+
r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h};

– B1,. . . , Bp is any partition of {y1, . . . ,yh}∪{y3h+1, . . . ,y4h} such that
{yi,y3h+i} for any i = 1, . . . ,h is contained in some of the B j;

– C1,. . . , Cq is any partition of {yh+1, . . . ,y2h}∪{y4h+1, . . . ,y5h} such
that {yi,y3h+i} for any i = h+1, . . . ,2h is contained in some of the
C j;

– D1,. . . , Dr is any partition of {y2h+1, . . . ,y3h}∪{y5h+1, . . . ,y6h} such
that {yi,y3h+i} for any i = 2h+1, . . . ,3h is contained in some of the
D j.

Let v = 12h+1, for some h ∈ N, h ≥ 1. Let X = {x1, . . . ,x6h+1} and Y =
{y1, . . . ,y6h} be disjoint sets. We want to construct a BP4 design of order 12h+1
having X ∪Y as vertex set and satisfying the conditions of the statement.

Let B12h+1 be the set of the following blocks:

• ⟨yk,xi,xi+k,yk+3h⟩ for i = 1, . . . ,6h+1 and k = 1, . . . ,3h;

• ⟨yi+k,yi,yi+k+h,yi+3h⟩ for i = 1, . . . ,6h and k = h+ 1, . . . ,2h− 1 (in the
case h ≥ 2);

• ⟨yi+2h,yi,yi+3h,yi+5h⟩ for i = 1, . . . ,3h;

• ⟨yi,yi+h,yi+2h,yi+3h⟩ for i = 1, . . . ,h and i = 3h+1, . . . ,4h.



410 P. BONACINI - L. MARINO

It is easy to see that Σ = (X ∪Y,B12h+1) is a P4-design of order 12h+1. More-
over, it is s-colorable for any s ∈ [2,χ12h+1] = [2,9h+1]. Indeed, it is not diffi-
cult to see that:

• for s = 2 we can take as color classes the sets {x1, . . . ,x6h+1,y1, . . . ,y3h}
and {y3h+1, . . . ,y6h};

• for s = 3 we can take as color classes {x1, . . . ,x6h+1}, {y1, . . . ,y3h} and
{y3h+1, . . . ,y6h};

• for s = 4, . . . ,9h+ 1 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+ 1}, p,q,r ∈ {1, . . . ,h} and
m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+1};

– B1,. . . , Bp is any partition of {y1, . . . ,yh}∪{y3h+1, . . . ,y4h} such that
{yi,y3h+i} for any i = 1, . . . ,h is contained in some of the B j;

– C1,. . . , Cq is any partition of {yh+1, . . . ,y2h}∪{y4h+1, . . . ,y5h} such
that {yi,y3h+i} for any i = h+1, . . . ,2h is contained in some of the
C j;

– D1,. . . , Dr is any partition of {y2h+1, . . . ,y3h}∪{y5h+1, . . . ,y6h} such
that {yi,y3h+i} for any i = 2h+1, . . . ,3h is contained in some of the
D j.

Let v = 12h+3, for some h ∈ N, h ≥ 1. Let X = {x1, . . . ,x6h+1} and Y =
{y1, . . . ,y6h} be disjoint sets and let Σ = (X ∪Y,B12h+1) be the previous BP4-
design of order 12h+1. Let us consider two elements ∞1,∞2 /∈ X ∪Y , ∞1 ̸= ∞2.
Let C be the set of the following blocks:

• ⟨yi,∞1,yi+h,∞2⟩ for i = 1, . . . ,h and i = 3h+1, . . . ,4h;

• ⟨yi,∞2,yi+2h,∞1⟩ for i = 1, . . . ,h and i = 3h+1, . . . ,4h;

• ⟨x3i+1,∞1,x3i+2,∞2⟩ for i = 0, . . . ,2h−2;

• ⟨x3i+1,∞2,x3i+3,∞1⟩ for i = 0, . . . ,2h−2;

• ⟨x6h−2,∞1,x6h−1,∞2⟩;

• ⟨x6h+1,∞2,x6h,∞1⟩;

• ⟨x6h+1,∞1,∞2,x6h−2⟩.

Then it is easy to see that Σ′ = (X ∪Y ∪{∞1,∞2},B12h+1 ∪C) is a P4-design of
order 12h+ 3. Moreover, it is s-colorable for any s ∈ [2,χ12h+3] = [2,9h+ 2].
Indeed, it is not difficult to see that:
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• for s = 2 we can take as color classes {x1, . . . ,x6h+1,y1, . . . ,y3h,∞1} and
{y3h+1, . . . ,y6h,∞2};

• for s = 3 we can take as color classes {x1, . . . ,x6h+1}, {y1, . . . ,y3h,∞1}
and {y3h+1, . . . ,y6h,∞2};

• for s = 4, . . . ,9h+ 2 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+1}, p ∈ {1, . . . ,h+1} q,r ∈
{1, . . . ,h} and m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+1};

– B1,. . . , Bp is any partition of {y1, . . . ,yh,∞1}∪{y3h+1, . . . ,y4h,∞2}
such that {yi,y3h+i} for any i = 1, . . . ,h and {∞1,∞2} are contained
in some of the B j;

– C1,. . . , Cq is any partition of {yh+1, . . . ,y2h}∪{y4h+1, . . . ,y5h} such
that {yi,y3h+i} for any i = h+1, . . . ,2h is contained in some of the
C j;

– D1,. . . , Dr is any partition of {y2h+1, . . . ,y3h}∪{y5h+1, . . . ,y6h} such
that {yi,y3h+i} for any i = 2h+1, . . . ,3h is contained in some of the
D j.

Let v = 12h+4, for some h ∈ N, h ≥ 0.
Let h = 0, so that v = 4. In this case, it is easy to see that any P4-design of

order 4 is a BP4-design which is s-colorable for any s ∈ [2,χ4] = [2,3].
Let h ≥ 1 and let X = {x1, . . . ,x6h+2} and Y = {y1, . . . ,y6h+2} be disjoint

sets. We want to construct a BP4 design of order 12h+4 having X ∪Y as vertex
set and satisfying the conditions of the statement.

Let B12h+4 be the set of the following blocks:

• ⟨yi+k,xi,xi+2k+1,yi+k+3h+1⟩ for i = 1, . . . ,6h+2 and 2k+1 ∈ {1, . . . ,3h};

• ⟨yi+k+3h+1,xi,xi+2k,yi+k⟩ for i = 1, . . . ,6h+2 and 2k ∈ {1, . . . ,3h};

• ⟨yi+3h+1,xi,xi+3h+1,yi⟩ for i = 1, . . . ,3h+1;

• ⟨xi−k,yi,yi+3h+1,xi+3h+1−k⟩ for i = 1, . . . ,3h+1 and with:

k =


3
2

h if h is even

9h+3
2

if h is odd

• ⟨yi+k,yi,yi+k+h,yi+3h+1⟩ for i = 1, . . . ,6h+2 and k = h+1, . . . ,2h.
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It is easy to see that Σ = (X ∪Y,B12h+4) is a P4-design of order 12h. Moreover,
it is s-colorable for any s ∈ [2,χ12h+4] = [2,9h+3]. Indeed, it is not difficult to
see that:

• for s = 2 we can take as color classes {x1, . . . ,x6h+2,y1, . . . ,y3h+1} and
{y3h+2, . . . ,y6h+2};

• for s = 3 we can take as color classes {x1, . . . ,x6h+2}, {y1, . . . ,y3h+1} and
{y3h+2, . . . ,y6h+2};

• for s = 4, . . . ,9h+ 3 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+2}, p ∈ {1, . . . ,h+1} q,r ∈
{1, . . . ,h} and m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+2};

– B1,. . . , Bp is any partition of {y1, . . . ,yh+1}∪{y3h+2, . . . ,y4h+2} such
that {yi,y3h+1+i} for any i = 1, . . . ,h+1 is contained in some of the
B j;

– C1,. . . , Cq is any partition of {yh+2, . . . ,y2h+1}∪{y4h+3, . . . ,y5h+2}
such that {yi,y3h+1+i} for any i = h+ 2, . . . ,2h+ 1 is contained in
some of the C j;

– D1,. . . , Dr is any partition of {y2h+2, . . . ,y3h+1}∪{y5h+3, . . . ,y6h+2}
such that {yi,y3h+1+i} for any i = 2h+2, . . . ,3h+1 is contained in
some of the D j.

Let v = 12h+6, for some h ∈ N. If h = 0, then consider the system Σ =
({0,1,2,3,4} ∪ {∞},B), where ∞ /∈ {0,1,2,3,4} and B is the set of blocks
⟨∞, i, i+ 1, i+ 3⟩ for i = 0,1,2,3,4. Then, Σ is clearly 2 and 3-colorable. It is
also 4-colorable, since we can take {∞,0,1}, {2},{3} and {4} as color classes.

Let h ≥ 1. Let X = {x1, . . . ,x6h+2} and Y = {y1, . . . ,y6h+2} be disjoint sets
and let Σ = (X ∪Y,B12h+4) be the previous BP4-design of order 12h+ 4. Let
us consider two elements ∞1,∞2 /∈ X ∪Y , ∞1 ̸= ∞2. Let C be the set of the
following blocks:

• ⟨yi,∞1,yi+h+1,∞2⟩ for i = 1, . . . ,h and i = 3h+ 2, . . . ,4h+ 1 (in the case
h ≥ 1);

• ⟨yi,∞2,yi+2h+1,∞1⟩ for i = 1, . . . ,h and i = 3h+2, . . . ,4h+1 (in the case
h ≥ 1);

• ⟨xi,∞1,xi+h+1,∞2⟩ for i = 1, . . . ,h and i = 3h+ 2, . . . ,4h+ 1 (in the case
h ≥ 1);
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• ⟨xi,∞2,xi+2h+1,∞1⟩ for i = 1, . . . ,h and i = 3h+2, . . . ,4h+1 (in the case
h ≥ 1);

• ⟨xh+1,∞1,∞2,x4h+2⟩;

• ⟨∞1,yh+1,∞2,xh+1⟩;

• ⟨∞2,y4h+2,∞1,x4h+2⟩.

Then it is easy to see that Σ′ = (X ∪Y ∪{∞1,∞2},B12h+4 ∪C) is a P4-design of
order 12h+ 6. Moreover, it is s-colorable for any s ∈ [2,χ12h+6] = [2,9h+ 4].
Indeed, it is not difficult to see that:

• for s= 2 we can take as color classes {x1, . . . ,x6h+2,y1, . . . ,y3h+1,∞1} and
{y3h+2, . . . ,y6h+2,∞2};

• for s = 3 we can take as color classes {x1, . . . ,x6h+2}, {y1, . . . ,y3h+1,∞1}
and {y3h+2, . . . ,y6h+2,∞2};

• for s = 4, . . . ,9h+ 4 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+ 2}, p,q ∈ {1, . . . ,h+ 1},
r ∈ {1, . . . ,h} and m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+2};

– B1,. . . , Bp is any partition of {y1, . . . ,yh+1}∪{y3h+2, . . . ,y4h+2} such
that {yi,y3h+1+i} for any i = 1, . . . ,h+1 is contained in some of the
B j;

– C1,. . . , Cq is any partition of

{yh+2, . . . ,y2h+1,∞1}∪{y4h+3, . . . ,y5h+2,∞2}

such that {yi,y3h+1+i} for any i = h+2, . . . ,2h+1 and {∞1,∞2} are
contained in some of the C j;

– D1,. . . , Dr is any partition of {y2h+2, . . . ,y3h+1}∪{y5h+3, . . . ,y6h+2}
such that {yi,y3h+1+i} for any i = 2h+2, . . . ,3h+1 is contained in
some of the D j.

Let v = 12h+7, for some h ∈ N. Let h = 0 and let X = {x1,x2,x3} and
Z = {z1,z2,z3,z4} be disjoint sets. Let Σ = (Z,B) a P4-design of order 4 and let
C be the set of the following blocks:

• ⟨z1,x1,x2,z2⟩;

• ⟨z2,x1,x3,z1⟩;
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• ⟨z1,x2,x3,z2⟩;

• ⟨x1,z3,x2,z4⟩;

• ⟨x1,z4,x3,z3⟩.

Then Σ′ = (X ∪Z,B∪C) is a P4-design which is r-colorable for r = 2,3,4,5.
Indeed, we can take as color classes:

• {x1,z1,z2} and {x2,x3,z3,z4} for r = 2;

• {x1,x2,x3}, {z1,z2} and {z3,z4} for r = 3;

• {x1,x2}, {x3}, {z1,z2}, {z3,z4} for r = 4;

• {x1}, {x2}, {x3}, {z1,z2} and {z3,z4} for r = 5.

Let h ≥ 1. Let X = {x1, . . . ,x6h+3}, Y = {y1, . . . ,y6h} and Z = {z1,z2,z3,z4}
be pairwise disjoint sets and let Σ = (Z,B) be a P4-design of order 4. Let C be
the set of the following blocks:

• ⟨yk,xi,xi+k,yk+3h⟩ for i = 1, . . . ,6h+3 and k = 1, . . . ,3h;

• ⟨z1,xi,xi+3h+1,z2⟩ for i = 1, . . . ,6h+3;

• ⟨x3i+1,z3,x3i+2,z4⟩ for i = 0, . . . ,2h;

• ⟨x3i+1,z4,x3i+3,z3⟩ for i = 0, . . . ,2h;

• ⟨yi,z2 j+1,yi+h,z2 j+2⟩ for j = 0,1, i = 1, . . . ,h and i = 3h+1, . . . ,4h;

• ⟨yi,z2 j+2,yi+2h,z2 j+1⟩ for j = 0,1, i = 1, . . . ,h and i = 3h+1, . . . ,4h;

• ⟨yi+k,yi,yi+k+h,yi+3h⟩ for i = 1, . . . ,6h and k = h+1, . . . ,2h−1;

• ⟨yi+2h,yi,yi+3h,yi+5h⟩ for i = 1, . . . ,3h;

• ⟨yi,yi+h,yi+2h,yi+3h⟩ for i = 1, . . . ,h and i = 3h+1, . . . ,4h.

Then it is easy to see that Σ′ = (X ∪Y ∪Z,B∪C) is a P4-design of order 12h+7.
Moreover, it is s-colorable for any s ∈ [2,χ12h+7] = [2,9h+5]. Indeed, it is not
difficult to see that:

• for s = 2 we can take as color classes {x1, . . . ,x6h+3,y1, . . . ,y3h,z1,z3} and
{y3h+1, . . . ,y6h,z2,z4};

• for s = 3 we can take as color classes {x1, . . . ,x6h+3}, {y1, . . . ,y3h,z1,z3}
and {y3h+1, . . . ,y6h,z2,z4};
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• for s = 4, . . . ,9h+ 5 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+ 3}, p,q ∈ {1, . . . ,h+ 1},
r ∈ {1, . . . ,h} and m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+3};

– B1,. . . , Bp is any partition of {y1, . . . ,yh}∪{y3h+1, . . . ,y4h}∪{z1,z2}
such that {yi,y3h+i} for any i = 1, . . . ,h and {z1,z2} are contained in
some of the B j;

– C1,. . . , Cq is any partition of

{yh+1, . . . ,y2h}∪{y4h+1, . . . ,y5h}∪{z3,z4}

such that {yi,y3h+i} for any i = h+ 1, . . . ,2h and {z3,z4} are con-
tained in some of the C j;

– D1,. . . , Dr is any partition of {y2h+1, . . . ,y3h}∪{y5h+1, . . . ,y6h} such
that {yi,y3h+i} for any i = 2h+1, . . . ,3h is contained in some of the
D j.

Let v = 12h+9, for some h ∈ N. Let us consider two disjoint sets X =
{x1, . . . ,x6h+5} and Y = {y1, . . . ,y6h+4}. We want to construct a BP4 design of
order 12h+ 9 having X ∪Y as vertex set and satisfying the conditions of the
statement.

Let B12h+9 be the set of the following blocks:

• ⟨yk,xi,xi+k,yk+3h+2⟩ for i = 1, . . . ,6h+5 and k = 1, . . . ,3h+2;

• ⟨yi+k,yi,yi+k+h,yi+3h+2⟩ for i = 1, . . . ,6h+4 and k = h+2, . . . ,2h+1 (in
the case h ≥ 1);

• ⟨yi+h+1,yi,yi+3h+2,yi+4h+3⟩ for i = 1, . . . ,3h+2.

It is easy to see that Σ = (X ∪Y,B12h+9) is a P4-design of order 12h+9. More-
over, it is s-colorable for any s ∈ [2,χ12h+9] = [2,9h+7]. Indeed, it is not diffi-
cult to see that:

• for s = 2 we can take as color classes {x1, . . . ,x6h+5,y1, . . . ,y3h+2} and
{y3h+3, . . . ,y6h+4};

• for s = 3 we can take as color classes {x1, . . . ,x6h+5}, {y1, . . . ,y3h+2} and
{y3h+3, . . . ,y6h+4};

• for s = 4, . . . ,9h+ 7 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+ 5}, p,q ∈ {1, . . . ,h+ 1},
r ∈ {1, . . . ,h} and m+ p+q+ r = s, where:
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– A1,. . . ,Am is any partition of {x1, . . . ,x6h+5};

– B1,. . . , Bp is any partition of {y1, . . . ,yh+1}∪{y3h+3, . . . ,y4h+3} such
that {yi,y3h+2+i} for any i = 1, . . . ,h+1 is contained in some of the
B j;

– C1,. . . , Cq is any partition of {yh+2, . . . ,y2h+2}∪{y4h+4, . . . ,y5h+4}
such that {yi,y3h+2+i} for any i = h+ 2, . . . ,2h+ 2 is contained in
some of the C j;

– D1,. . . , Dr is any partition of {y2h+3, . . . ,y3h+2}∪{y5h+5, . . . ,y6h+4}
such that {yi,y3h+2+i} for any i = 2h+3, . . . ,3h+2 is contained in
some of the D j.

Let v = 12h+10, for some h ∈ N. Let us consider three pairwise disjoint
sets, X = {x1, . . . ,x6h+4}, Y = {y1, . . . ,y6h+4} and Z = {z1,z2}. Let B be the set
of the following blocks:

• ⟨yi+k,xi,xi+2k,yi+k+3h+2⟩ for i = 1, . . . ,6h+4 and 2k ∈ {1, . . . ,3h+1} (in
the case h ≥ 1);

• ⟨yi+k+3h+2,xi,xi+2k+1,yi+k⟩ for i = 1, . . . ,6h+4 and 2k+1 ∈ {1, . . . ,3h+
1};

• ⟨yi,xi,xi+3h+2,yi+3h+2⟩ for i = 1, . . . ,3h+2;

• ⟨xi−k,yi,yi+3h+2,xi+3h+2−k⟩ for i = 1, . . . ,3h+2 and with:

k =


3
2

h+1 if h is even

9h+5
2

if h is odd

• ⟨yi+k,yi,yi+k+h+1,yi+3h+2⟩ for i = 1, . . . ,6h+ 4 and k = h+ 1, . . . ,2h (in
the case h ≥ 1);

• ⟨z1,yi,yi+2h+1,z2⟩ for i = 1, . . . ,6h+4;

• ⟨x3i+1,z1,x3i+2,z2⟩ for i = 0, . . . ,2h−1 (in the case h ≥ 1);

• ⟨x3i+1,z2,x3i+3,z1⟩ for i = 0, . . . ,2h−1 (in the case h ≥ 1);

• ⟨x6h+1,z1,z2,x6h+2⟩;

• ⟨x6h+2,z1,x6h+3,z2⟩;

• ⟨x6h+1,z2,x6h+4,z1⟩.
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Then it is easy to see that Σ′ = (X ∪Y ∪Z,B) is a P4-design of order 12h+10.
Moreover, it is s-colorable for any s ∈ [2,χ12h+10] = [2,9h+7]. Indeed, it is not
difficult to see that:

• for s = 2 we can take as color classes {x1, . . . ,x6h+4,y1, . . . ,y3h+2,z1} and
{y3h+3, . . . ,y6h+4,z2};

• for s = 3 we can take as color classes {x1, . . . ,x6h+4}, {y1, . . . ,y3h+2,z1}
and {y3h+3, . . . ,y6h+4,z2};

• for s = 4, . . . ,9h+ 7 we can take as color classes A1,. . . ,Am, B1,. . . , Bp,
C1,. . . , Cq, D1,. . . , Dr, with m ∈ {1, . . . ,6h+ 4}, p,q,r ∈ {1, . . . ,h+ 1}
and m+ p+q+ r = s, where:

– A1,. . . ,Am is any partition of {x1, . . . ,x6h+4};

– B1,. . . , Bp is any partition of {y1, . . . ,yh+1}∪{y3h+3, . . . ,y4h+3} such
that {yi,y3h+2+i} for any i = 1, . . . ,h+1 is contained in some of the
B j;

– C1,. . . , Cq is any partition of {yh+2, . . . ,y2h+2}∪{y4h+4, . . . ,y5h+4}
such that {yi,y3h+2+i} for any i = h+ 2, . . . ,2h+ 2 is contained in
some of the C j;

– D1,. . . , Dr is any partition of

{y2h+3, . . . ,y3h+2}∪{y5h+5, . . . ,y6h+4}∪{z1,z2}

such that {yi,y3h+2+i} for any i = 2h+3, . . . ,3h+2 and {z1,z2} are
contained in some of the D j.

3. BP4-designs of small orders

In this section we get a few results in the case that the P4-designs have small
orders. Let us recall that, given two sets X and Y with X ⊂ Y and |X | = s, X is
called an s-subset of Y .

In the following proposition we make a few easy remarks:

Proposition 3.1. Let v ∈ N, with v ≡ 0,1 mod 3 and v ≥ 4, and let s ∈ [2,χv].
If Σ is a BP4-design of order v, then:

1. if Σ is 2-colorable, it is also 3-colorable;

2. if Σ is a s-colorable, with s > v
2 , then Σ is also (s−1)-colorable.
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Proof. It is obvious that a 2-colorable P4-design is also 3-colorable. If Σ is a
is s-colorable for some s > v

2 , then in any s-coloring of Σ there exist at least
two color classes X1 and X2 such that 2 ≤ |X1 ∪ X2| ≤ 3. Then Σ admits an
(s−1)-coloring with color classes X1 ∪X2, X3,. . . ,Xs.

Proposition 3.2. Let v ∈ N, with v ≡ 0,1 mod 3 and v ≥ 4, and let s ∈ [2,χv].
Then:

1. for v = 4 and v = 6 any BP4-design of order v is s-colorable, for any s;

2. for v = 7 any BP4-design of order v is s-colorable for s = 2,3,4 and there
exists a BP4-design which is not 5-colorable;

3. for v = 9 any BP4-design of order v is s-colorable for s = 2,3,4 and there
exists a BP4-design which is not s-colorable for s = 6,7;

4. for v = 10 any BP4-design of order v is s-colorable for s = 2,3,4.

Proof. Let Σ = (X ,B) be any P4-design of order v. We denote by r(x,y) the
number of blocks of B ∈ B having x and y among its set of vertices.

If v = 4, then the statement is trivial. If v = 6, the cases s = 2 and s = 3
are immediate. We just need to prove the case s = 4. Let X = {0,1,2,3,4,5}.
If there is a triple, say {0,1,2}, which is not contained in any block, then {0},
{1}, {2} and {3,4,5} are the color classes of a 4-coloring of Σ. Otherwise,
since |B| = 5, any triple in X is contained in exactly just one block of B. So,
if {0,1,2,3} = V (B) for some B ∈ B, then {0}, {1}, {2,3} and {4,5} are the
color classes of a 4-coloring of Σ.

Let v = 7. Then |B| = 7 and so, clearly, there exists a 4-subset X1 of X
which is not the set of vertices of some block of B. This means that X1 and
X \X1 provide a 2-coloring of Σ. Moreover, any partition of X in 3 nonempty
subsets, all of cardinality at most 3, provides a 3-coloring of Σ.

Now we want to show that Σ is 4-colorable. Let X = {0,1, . . . ,6}. We know
that:

∑
x,y∈X ,x ̸=y

r(x,y) = 6 ·7 = 42.

Then, we can suppose that r(0,1) ≤ 2. If {0,1,2,3} and {0,1,4,5} are the set
of vertices of blocks containing 0 and 1, then {0}, {1}, {2,3} and {4,5,6} are
the color classes of a 4-coloring of Σ. This holds also if only {0,1,2,3} is the
set of vertices of the only block containing 0 and 1. If {0,1,2,3} and {0,1,2,4}
are the set of vertices of two blocks containing 0 and 1, then {0}, {1}, {2,3,4}
and {5,6} are the color classes of a 4-coloring of Σ.

Now, let Y = {0,1, . . . ,6} and let Σ′ = (Y,C) be P4-design of order 7 with
base block ⟨0,1,3,6⟩. It is easy to see that any 5-subset of Y contains a triple
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i, i+1, i+2 for some i = 0,1, . . . ,6. From this we easily get that any 5-subset
of Y contains some block of C, which implies that Σ′ is not 5-colorable.

Let v = 9. Then |B| = 12,
(9

4

)
=

(9
5

)
= 126 and there exist at most 60 5-

subsets of X containing the set of vertices of at least one block of B. So, clearly,
there exists a 5-subset X1 of X which does not contain the set of vertices of some
block of B and such that X \X1 is not the set of vertices of some block of B. This
means that X1 and X \X1 provide a 2-coloring of Σ. Moreover, any partition of
X in 3-subsets, all of cardinality 3, provides a 3-coloring of Σ.

Now we want to show that Σ is 4-colorable. Let x = {0,1, . . . ,8}. Since
|B|= 12, we can say that there exist two vertices, say 0 and 1, such that r(0,1)≤
2.

Suppose that {0,1,2,3} and {0,1,4,5} are set of vertices of the two blocks
containing 0 and 1. If {2,3,4,5} is not the set of vertices of some block, then
Σ is 4-colorable, since we can take {0}, {1}, {2,3,4,5} and {6,7,8} as color
classes of a 4-coloring.

Suppose that {0,1,2,3} and {0,1,4,5} are set of vertices of the two blocks
containing 0 and 1 and that two of the remaining vertices, say 6 and 7, are not
contained in a block with 2 and 3, for example. Then, {0}, {1}, {2,3,6,7} and
{4,5,8} are color classes of a 4-coloring of Σ.

If the above conditions don’t hold, then we can say that the following sets:

{2,3,4,5}, {2,3,6,7}, {2,3,6,8},
{2,3,7,8}, {4,5,6,7}, {4,5,6,8}, {4,5,7,8}

are sets vertices of some blocks of Σ. This implies that all the edges of K{2,3,...,8}
are contained in these blocks. So, the remaining 5 blocks must al contain both
0 and 1, which is not possible, because r(0,1)≤ 2.

If {0,1,2,3} and {0,1,2,4} are set of vertices of the two blocks containing
0 and 1, we can note that there exists at least one vertex in {5,6,7,8}, say 5,
that is not contained in any block together with 2,3,4. So, {0}, {1}, {2,3,4,5}
and {6,7,8} are color classes of a 4-coloring of Σ.

If only {0,1,2,3} is the set of vertices of some blocks containing 0 and 1,
then we take any vertex in {4,5, . . . ,8}, say 4, and proceed as above.

Now, we show that there exists a BP4-design of order 9 which is not 6 and
7-colorable. Let Y = {0,1, . . . ,6} and we take the P4-design Σ′ = (Y,C) of order
7 we base block ⟨0,1,3,6⟩, which we know is not 5-colorable. Let ∞1,∞2 /∈ Y ,
∞1 ̸= ∞2. Consider the family D of the following blocks:

⟨0,∞1,∞2,1⟩, ⟨1,∞1,2,∞2⟩, ⟨0,∞2,3,∞1⟩, ⟨4,∞1,5,∞2⟩, ⟨4,∞2,6,∞1⟩.

Then Σ′′ = (Y ∪ {∞1,∞2},C ∪D) is a a P4-design of order 9 which is not s-
colorable for s = 7, because Σ′ is not 5-colorable. It is immediate to see that it is
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not 6-colorable, because in a 6-coloring we must have {∞1} and {∞2} as color
classes, which implies that {0,1,2,3} and {4,5,6} are color classes and this is
not a 6-coloring.

Let v = 10. Then |B| = 15, so that there exist at most 90 5-subsets of X
containing the vertex set of some block in B. Since

(10
5

)
= 252, there exists

a partition of X into two 5-subsets X1, X2 that don’t contain the vertex set of
some block in B. This shows that Σ is 2-colorable. By Proposition 3.1 it is also
3–colorable.

Let X = {0,1, . . . ,9}. Now we want to show that Σ is always 4-colorable.
We know that:

∑
x,y∈X ,x ̸=y

r(x,y) = 6 ·15 = 90.

Suppose that r(0,1) = 1 and let {0,1,2,3} be the set of vertices of the only
block containing both 0 and 1. Since 6·5

2·3 = 5 and
(6

4

)
= 15, there exist at least

10 4-subsets of {4,5, . . . ,9} that are not the set of vertices of some block in B.
Since it must be r(2,3)≤ 8, we can suppose that both {2,3,4,5} and {6,7,8,9}
are not sets of vertices of some blocks in B. This means that the sets {0}, {1},
{2,3,4,5} and {6,7,8,9} provide a 4-coloring of Σ.

We can suppose, now, that r(x,y) = 2 for any x,y ∈ X , x ̸= y.
Suppose that {0,1,2,3} and {0,1,4,5} are the set of vertices of the blocks

containing both 0 and 1. Since r(x,y) = 2 for any x,y ∈ X , x ̸= y, we can
suppose that {2,3,6,7} and {4,5,8,9} are not the set of vertices of some blocks
of Σ. This means that the sets {0}, {1}, {2,3,6,7} and {4,5,8,9} provide a
4-coloring of Σ.

Suppose that {0,1,2,3} and {0,1,2,4} are the set of vertices of the blocks
containing both 0 and 1.

If there exists the block with set of vertices {2,3,4,5} (and only one block of
this type can exist), since r(x,y) = 2 for any x,y ∈ X , x ̸= y, then we can suppose
that {2,3,4,6,7} doesn’t contain any block of Σ. So, {0}, {1}, {2,3,4,6,7} and
{5,8,9} provide a 4-coloring of Σ.

Otherwise, we can anyway take, as above, 6 and 7 in such a way that
{2,3,4,6,7} doesn’t contain any block of Σ. And again {0}, {1}, {2,3,4,6,7}
and {5,8,9} provide a 4-coloring of Σ.

In the case that {0,1,2,3} is the only set of vertices of the blocks containing
0 and 1 we take 4 in such a way that the triple {2,3,4} is not contained in any
block and we proceed as above.

Remark 3.3. In [10] (see note at page 156) it is stated the existence of Steiner
systems S(2,4,25) with lower chromatic number 3. This, together with the
existence of a P4-design of order 4, imply the existence of BP4-designs of order
25 which are 3-colorable, but not 2-colorable.
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