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FAT POINTS ON A GRID IN P2

MARK BUCKLES - ELENA GUARDO - ADAM VAN TUYL

We study homogeneous schemes of fat points in P
2 whose support

is either a complete intersection (CI for short) constructed on an a × b
grid or a CI minus a point, i.e. Xgrid = {CIgrid (a, b); m} and Ygrid =

{CIgrid (a, b) \ Pab; m} respectively.
We study the connections between the above fat point schemes and

particular varieties of simple points called partial intersections (p.i. for
short). We prove that a homogeneous fat point scheme of type Xgrid =

{CIgrid (a, b); m} has the same graded Betti numbers, and hence, the same
Hilbert function of a particular p.i. depending only on a, b, m . Moreover, a
scheme of double points of type Ygrid = {CIgrid (a, b)\ Pab; 2} has the same
Hilbert function of another particular p.i. depending on a, b, m .

We also describe an alternative approach to the problem by considering
the Gröbner basis of IYgrid

.

Introduction.

Let P1, . . . , Ps be s distinct points in P
n and m1, . . . , ms a list of positive

integers. Let IZ = p
m1

1 ∩ . . . ∩ pms
s ⊆ R = k[x0, . . . , xn], where k is an

algebraically closed �eld and pi is the prime ideal corresponding to Pi in
R. Let Z denote the subscheme de�ned by IZ . Sometimes Z is denoted as
Z = {P1, . . . , Ps; m1, . . . , ms}. The scheme Z is called a scheme of fat points.
If mi = m for all i = 1, . . . , s , then Z is called a homogeneous scheme of fat
points.

Entrato in Redazione il 1 aprile 2001.



170 MARK BUCKLES - ELENA GUARDO - ADAM VAN TUYL

The Hilbert function of IZ has been studied in P2 by many authors, (cf. [6],
[8], [9], [13], [14], [15], [16]) but much remains conjectural for points in generic
position. We know very few results for schemes of fat points in P

n . Important
work in this area is due to Alexander and Hirschowitz in [2], [3], and [4]. Other
papers that have results about fat points in P

n are [7], where the authors �nd an
algorithm to compute the Hilbert function of fat points whose support lies on a
rational normal curve, and [10], where the author studies fat point schemes on a
smooth quadric of P3.

We specialize to the case n = 2 and Z is a homogeneous fat point scheme
whose support Zred is either a complete intersection (CI for short) or a CI minus
a point. The philosophy behind this approach is that complete intersections (and
their subsets) have more properties and structure than general sets of points. We
study the following problem:

Problem 1. Let X = {P1, . . . , Pab; m1, . . . , mab} be a scheme of fat points in
P2 such that Xred = {P1, . . . , Pab} is a CI of type (a, b). Furthermore, assume
that m = m1 = · · · = mab . Let Y ⊆ X be de�ned by removing one point from
the support of X. What are the possible Hilbert functions of Y ⊆ P2 ?

In the case that the underlying CI is a grid in P
2, we were partially

successful in answering the question. Our main contribution is to show that
in this restricted case there is a connection between the Hilbert function of
fat points whose reduced scheme is a CI and the Hilbert function of a partial
intersection (de�ned in Section 3). This connection is the content of Proposition
3.2 and Proposition 4.7. Moreover, the latter proposition shows that the Hilbert
function of schemes of fat points whose support is a CI or a CI minus a point
does not depend on the forms of degree a and b that generate the CI, but only
on the numbers a, b and m.

Our paper is structured as follows. In the �rst section we set our notation.
Next, we quickly examine what the current literature says in connection to
our problem. In Section 3 we examine the homogeneous scheme Xgrid =

{CI (a, b); m} whose support Xred = CI (a, b) is constructed on a grid. We
also introduce the notion of a partial intersection. In the following section,
we discuss the connection to our problem and the Hilbert functions of partial
intersections. In the last section, we describe an alternative approach to the
problem by considering the Gröbner basis of IXgrid

.
Some results of this paper are part of the Ph. D. thesis of the second author

([11]).
All the results of this paper are contained in the survey [5]. We would

like to thank all those involved at Pragmatic Summer School of Research at
the Università di Catania, especially A. Ragusa, A.V. Geramita, J. Migliore,
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C. Peterson, and A. Bigatti, for introducing us to this problem. The third author
would also like to acknowledge his �nancial support from NSERC.

1. Preliminaries and setup.

We �x R = k[x0, x1, x2], where k is an algebraically closed �eld of
characteristic zero. Let Z = {P1, . . . , Ps; m1, . . . , ms} be a scheme of fat points
in P2 whose support is Zred = {P1, . . . , Ps}. If mi = m for all i = 1, . . . , s ,
then Z is called a homogeneous scheme of fat points.

Let X� be a complete intersection of type (a, b) in P2. We write X� =

CI (a, b). Suppose X
� = {P1, . . . , Pab} are the distinct ab points in this CI. If

pi is the prime ideal of R that corresponds to Pi , then for any positive integer
m, we let

IX = pm
1 ∩ · · · ∩ pm

ab.

We denote the homogeneous scheme de�ned by IX by X = {CI (a, b); m}. Note
that Xred = X� = CI (a, b). We also assume that a ≤ b.

Let Y
� denote the scheme de�ned by removing one point from X

� =

CI (a, b), i.e., Y� = CI (a, b)\{P}. We are interested in determining the Hilbert
function of R/IY where IY = pm

1 ∩ · · · ∩ pm
ab−1 is the ideal corresponding to

the homogeneous scheme Y of fat points whose support is Y�.

From now on we will write X \ P to denote the set X \ {P}.

In this paper we focus our attention to the schemes of fat points whose
support is a CI constructed on an a × b grid. We describe this construction
below.

Method 1.1. We construct X = {CI (a, b); m} by taking Xred to be a CI
generated by two � totally reducible � forms of degree a and b, that is, the
CI is given by the intersection of two sets of lines in P2 as an a × b grid. We
can visualize this as

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

R1

Ra

...

L1 L2 Lb· · ·
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where the lines R1, R2, . . . , Ra and L1, L2, . . . , Lb which de�ne the grid in P2

are chosen generically. Once we have picked the lines de�ning the grid, we
can determine {P1, . . . , Pab} and compute the prime ideal pi corresponding to
Pi . We denote the homogeneous scheme X by Xgrid = {CIgrid (a, b); m} and
its de�ning ideal by IXgrid

= pm
1 ∩ · · · ∩ pm

ab . The homogeneous scheme Y is
denoted by Ygrid = {CIgrid (a, b) \ Pi j ; m} for some 1 ≤ i ≤ a and 1 ≤ j ≤ b.
By renumbering the lines Ri or Lj , we can always suppose to remove Pab . We
denote its de�ning ideal by IYgrid

= pm
1 ∩ · · · ∩ pm

ab−1.

2. Known results.

Let X = {CI (a, b); m} for some a, b, and m with a ≤ b. In this section
we look at the case a = 1. If a = 1, and thus X = {CI (1, b); m}, then X is a
collection of b fat points on a line in P

2. When we remove a point from Xred

to construct Y, the resulting scheme is simply Y = {CI (1, b − 1); m}. In other
words Y is the scheme of b − 1 fat points on line.

We can now use a result of [8] to compute the Hilbert function of Y.

Proposition 2.1. Let X = {CI (1, b); m} and Y the homogeneous scheme of
fat points whose support is Yred = Xred \ P. Then Y = {CI (1, b − 1); m}.
Furthermore, set ti = m + i(b − 2) for 0 ≤ i ≤ m. Then

�HR/IY
(t) =

�
t+1 0 ≤ t < m
m-i ti ≤ t < ti+1

0 tm ≤ t

where �HR/IY
(t) := HR/IY

(t)− HR/IY
(t − 1).

Proof. The formula is an application of Proposition 3.3 of [8]. �

3. Results on Xgr id = {CIgrid (a, b);m}.

In this section we will prove some results concerning the Hilbert function
of Xgrid = {CIgrid (a, b); m} and special varieties of points called partial
intersections that depend on a, b and m.

Let us de�ne partial intersections in P
2. Fix two sets of lines of P

2, say
{R�

i } for i = 1, . . . , a and {L �
j } for j = 1, . . . , b such that no three of them

have a common point, and denote Pi, j = R�
i ∩ L �

j . Let p = (p1, . . . , pr ) and
q = (q1, . . . , qr ) be two sets of r positive integers with b = p1 > . . . > pr > 0,

q1 + . . . + qr = a. Put r(i) = in f {s ∈ N|
�s

j=1 qj ≥ i}, for i = 1, . . . , a.
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With this notation, we consider the variety V consisting of the points
Pi, j (i) , where i = 1, . . . , a and j (i) = 1, . . . , pr(i) . (Note that r(i) takes the
meaning of the subscript of the q corresponding to the line R�

i .) Every variety
constructed in this way will be called a partial intersection of type (p, q), or
simply, a p.i.

We have

Lemma 3.1. Let V be a partial intersection of type (p, q), with p =

(p1, . . . , pr ) and q = (q1, . . . , qr ). Put b = p1 and a =
r�

i=1

qi . Then OV

has a minimal free resolution of the following form

(1) 0 →

r�

t=1

OP2 (−bt ) →

r�

t=0

OP2 (−at ) → OP2 → OV → 0

where a0 = a, at = pt +
t−1�

k=0

qk (q0 = 0), and bt = pt +
t�

k=1

qk, for

t = 1, . . . , r .

Proof. See Proposition 2.1 in [17] or [18]. �

Let a, b and m be three positive integers with a ≤ b. Let p = (p1, . . . , pm)
and q = (q1, . . . , qm) be two m-tuples of positive integers such that pk =

(m − k + 1)b, and qk = a for k = 1, . . . , m. That is, p = (mb, (m − 1)b, (m −

2)b, . . . , 2b, b), and q = (a, a, . . . , a). We de�ne Xp.i. to be the partial inter-
section of type (p, q) = ((mb, (m − 1)b, (m − 2)b, . . . , 2b, b), (a, a, . . . , a)),
i.e.,

Xp.i. = {P �
i, j (i) = R�

i ∩ L �
j (i) | i = 1, . . . , ma and j (i) = 1, . . . , pr(i)}.

We can visualize this scheme as the following scheme of simple points:

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • •
• • • •
• • • •

R�
1

R�
ma� �� � � �� � � �� �

�

�

L �
1 L �

mb

b b b

a

a
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Using Lemma 3.1 to compute the minimal resolution of Xp.i. , we have

(2) 0 →

m�

t=1

OP2 (−bt ) →

m�

t=0

OP2 (−at ) → OP2 → OXp.i.
→ 0

where a0 = ma, at = (m − t + 1)b + (t − 1)a, and bt = (m − t + 1)b + ta, for
t = 1, . . . , m. The generators of Xp.i. are of type:

G �
k+1 = R�

1R�
2 . . . R�

(m−k)a L �
1 . . . L �

kb for k = 0, . . . , m.

From the construction of Xp.i. , we can also deduce that

�H F(Xp.i., t)=�H F(C1, t)+�H F(C2, t −a)+. . .+�H F(Cm , t −(m−1)a)

where Ck = CI (a, (m − k + 1)b) for k = 1, . . . , m.
Let Xgrid = {CI (a, b); m} be the fat point scheme constructed on an a ×b

grid, where a, b, and m are the same integers used to construct Xp.i. above,
that is

Xgrid = {Pi j = Ri ∩ Lj ; mij = m ∀ i = 1, . . . , a and j = 1, . . . , b}.

We then have the following result:

Proposition 3.2. Let a, b and m be positive integers such that a ≤ b. Then
Xgrid = {CI (a, b); m} and the partial intersection Xp.i. of type ((mb, (m −

1)b, (m − 2)b, . . . , 2b, b), (a, a, . . . , a)) have the same graded Betti numbers,
and hence, the same Hilbert function.

Proof. If a = 1, then Xgrid = {CI (1, b); m}, i.e., Xgrid is a set of b fat points
on a line. We know that {mb, (m − 1)b + 1, . . . , m − 1 + b, m} is a list of the
degrees of the generators for Xgrid . Moreover, by Proposition 2.1 we have

�HIXgrid
(t) = HIXgen

(t) =

�
t + 1 0 ≤ t < m
m − i ti ≤ t < ti+1

0 tm ≤ t

where ti = m + i(b − 1) for 0 ≤ i ≤ m.
From Lemma 1.1 in [17], we know that the syz-degrees of Xgrid are of type

(m − k)b + k + 1 for k = 0, . . . , m − 1, hence it has a minimal resolution of
type (2) and then it has the same graded Betti numbers of a partial intersection
of type ((mb, (m − 1)b, (m − 2)b, . . . , 2b, b), (1, 1, . . . , 1)).
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Let us suppose a > 1, and the thesis is true for homogeneous fat points
schemes X = {CI (a, b); m} with a < a and b ≤ b whose support CI (a, b) is
constructed on an a × b grid. De�ne the following two homogeneous fat points
schemes:

X1 := {CI (a − 1, b); m} = {Pi j = Ri ∩ Lj ; m = mij for

i = 1, . . . , a − 1, j = 1, . . . , b}

and

X2 :={CI (1, b); m} = {Paj = Ra ∩ Lj ; m = maj for j = 1, . . . , b}

We have Xgrid = X1 ∪ X2.

By inductionX1 has the same graded Betti numbers as the partial intersec-
tion V1 of type (p

�, q �) where p� = (mb, . . . , b) and q � = (a − 1, . . . , a − 1
� �� �

m

).

That is,

V1 :={P �
i, j (i) = R�

i ∩ L �
j (i) | i =1, . . . , m(a − 1), j (i)=1, . . . , p��

r(i)}

Similarly, X2 has the same graded Betti numbers as the partial intersection V2

of type (p��, q ��) where p�� = (mb, (m − 1)b, . . . , b) and q �� = (1, 1, . . . , 1
� �� �

m

).

That is,

V2 :={P �
i, j (i) = R�

i ∩ L �
j (i)| i =m(a − 1)+ 1, . . . , ma, j (i)=1, . . . , p��

r(i)}.

But
p�

r(t ) = p��
r(ma−m+2) = mb for t = 1, . . . , a − 1

p�
r(t ) = p��

r(ma−m+2) = (m − 1)b for t = a, . . . , 2(a − 1)
...

p�
r(t ) = p��

r(ma) = b for t = m(a − 1)− a + 2, . . . , m(a − 1)

If we now renumber the lines of type R�
i , we get

V = V1 ∪ V2

= {P �
i, j (i)= R�

i ∩ L �
j (i)| i =1, . . . , ma, j (i)=1, . . . , pr(i)}

where

pr(i) =






mb if 1 ≤ i ≤ a
(m − 1)b if a + 1 ≤ i ≤ 2a
...

b if ma − a + 1 ≤ i ≤ ma
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Hence, V is a partial intersection that is equal to Xp.i. and thus, it has a minimal
resolution of type (2). Furthermore, since the generators of X1 are of type

G (1)
k+1 = Rm−k

1 · · · Rm−k
a−1 Lk

1 · · · Lk
b

for k = 0, . . . , m, then the generators of Xgrid = X1 ∪ X2 are of type

G
(1)
k+1Rm−k

a = Rm−k
1 · · · Rm−k

a−1 Rm−k
a Lk

1 · · · Lk
b

for k = 0, . . . , m. Hence Xgrid has the same graded Betti numbers as Xp.i. . �

Remark 3.3. We notice that the generators of

Xgrid = {CI (a, b) ; m}

= {Pi j = Ri ∩Lj ; mij = m ∀ i = 1, . . . , a and j = 1, . . . , b}

are of the type

Gk+1 = Rm−k
1 · · · Rm−k

a Lk
1 · · · Lk

b for k = 0, . . . , m.

4. Schemes of double points and connections with Partial Intersections.

In this section we show how partial intersections are connected with
Problem 1 in the case that m = 2. We continue to assume that a ≤ b.

Let us consider the following partial intersection Xp.i. of type (p, q) where
p = (2b, b) and q = (a, a). For such a set Xp.i. , we know that the minimal
resolution is

(3) 0 → OP2 (−a− 2b)⊕ OP2 (−2a −b) →

→ OP2(−2a) ⊕ OP2(−2b)⊕ OP2 (−a − b)→OP2 → OXp.i.
→0

and the Hilbert function is

(4) �H F(Xpi, t) = �H F(C1, t)+ �H F(C2, t − a)

where C1 = CI (a, 2b) and C2 = CI (a, b). More generally, if b > 2a −1, then
by using (4) and Theorem 3.2, we have

�HR/IXgrid
(t) = �HR/IXp.i.

(t) =






t + 1 0 ≤ t ≤ 2a − 1
2a 2a ≤ t ≤ a + b − 1
3a + b − t − 1 a + b ≤ t ≤ 2a + b − 2
a 2a + b − 1 ≤ t ≤ 2b − 1
a + 2b − t − 1 2b ≤ t ≤ a + 2b − 2
0 i ≥ a + 2b − 1
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If b ≤ 2a − 1, then

�HR/IXgrid
(t)=�HR/I Xp.i.

(t)=






t + 1 0 ≤ t ≤ 2a − 1
2a 2a ≤ t ≤ a + b − 1
3a + b − t − 1 a + b ≤ t ≤ 2b − 1
3a + 3b−2t −2 2b ≤ t ≤ 2a + b − 2
a + 2b−t −1 2a + b−1 ≤ t ≤ a + 2b−2
0 t ≥ a + 2b − 1.

In the cases a = 1 and a = 2, we recover the same formulas of [8] and [6]
respectively.

We now want to calculate the Hilbert function of the following subset of
Xp.i.

�Yp.i. = Xp.i. \ {Pr,s , Pa+r,s , Pr,b+s}

for any r ∈ {1, . . . , a} and s ∈ {1, . . . , b}. After renumbering the lines, we can
always suppose that r = a and s = b. We are therefore interested in the Hilbert
function of

�Yp.i. = Xp.i. \ {Pa,b, P2a,b, Pa,2b}.

We note that �Yp.i. is not a p.i., but we will show that it has the same graded Betti
numbers as a particular partial intersection.

We need some de�nitions.

De�nition 4.1. Let X = {P1, . . . , Ps} be a set of s distinct points in P2. We
say that F ∈ k[x0, x1, x2] is a separator for Pi if F(Pj ) = 0 for all j �= i and
F(Pi ) �= 0. We call the degree of Pi in X the minimal degree of a separator for
Pi .

The following theorem provides a result on the degree of Pi in X that we
will use in the next theorem.

Theorem 4.2. Let X be a �nite set of distinct points in P
2. Let

0 →
�

j∈B2

OP2 (− j )β2 j →
�

j∈B1

OP2 (− j )β1 j → OP2 → OX → 0.

be a minimal free resolution of OX with β1 j , β2 j �= 0. Then for any point P ∈ X,
the degree of P in X, say α, has the property that α + 2∈ B2.

Proof. See [1]. �

With the above notation, we have
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Theorem 4.3.

�HR/I�Yp.i.

(t) =






�HR/I Xp.i.
(t)− 1 i f t = 2a + b − 2,

a + 2b − 3, a + 2b − 2
�HR/I Xp.i.

(t) otherwise.

Proof. Let us start by removing the point Pa,2b from Xp.i. . Since Y1 =

Xp.i.\Pa,2b is a p.i. of type (p�, q �) where p� = (2b, 2b − 1, b) and q � =

(a − 1, 1, a), then Y1 has the following minimal resolution

0 → O2
P2 (−a − 2b + 1)⊕ OP2 (−2a − b) →

OP2 (−2a)⊕OP2 (−2b)⊕OP2 (−a −b)⊕OP2 (−a −2b+2) → OP2 → OY1
→ 0

and hence, its Hilbert function is:

�HR/IY1
(t) =

�
�HR/IXp.i.

(t)− 1 if t = a + 2b − 2
�HR/IXp.i.

(t) otherwise.

Let us consider Y2 = Y1\P2a,b = Xp.i.\{Pa,2b, P2a,b}. Y2 is a p.i. of type
(p��, q ��) where p�� = (2b, 2b − 1, b, b − 1) and q �� = (a − 1, 1, a − 1, 1). The
minimal resolution of Y2 is

(5) 0 → O2
P2 (−a − 2b + 1)⊕ O2

P2 (−2a − b + 1) →

OP2 (−2a)⊕OP2 (−2b)⊕OP2 (−a−b+1)⊕OP2 (−a−2b+2)⊕OP2 (−2a−b+1)→

OP2 → OY2
→ 0

Hence, the Hilbert function is:

�HR/IY2
(t) =

�
�HR/IY1

(t)− 1 if t = 2a + b − 2
�HR/IY1

(t) otherwise.

Using Theorem 4.2 and (5) we can say that the degree of Pa,b in Y2 can be
either a + 2b − 3 or 2a + b − 3. Let us show that it is a + 2b − 3.

For j = b + 1, . . . , b + a − 1, let Hj denote the line passing through Pa, j

and Pi,b , i.e., Hj = Pa, j Pi,b where i = j − b + a. By this construction, each
Hj does not pass through Pa,b . For j = b + a, . . . , 2b − 1, let Hj = Pa, j be a
line passing through Pa, j but not Pa,b. Then the form

R1 · · · Ra−1L1 · · · Lb−1Hb+1 · · · H2b−1
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de�nes a curve of degree a + 2b − 3 passing through all the points of Y2 but
not Pa,b .

We claim there is no curve of degree 2a + b − 3 which passes through
Y2\Pa,b but not Pa,b. Indeed, let us consider the set

Y3 = CI (a, 2b) \ Pa,2b

It is known that the Hilbert function of the set Y4 = Y3 \ Pa,b is the following:

�HR/IY4
(t) =

�
�HR/IY3

(t)− 1 if t = a + 2b − 3
�HR/IY3

(t) otherwise.

This means that every curve of degree 2a+b−3 passing through all the points of
Y4 also passes through Pa,b. Hence, a fortiori, every curve of degree 2a +b −3
passing through all the points of Y2 = Y3 ∪ {CI (a, b) \ P2a,b} also passes
through Pa,b .

If we put Y = Y2\Pa,b, then we have

�HR/IY
(t) =

�
�HR/IY2

(t)− 1 if t = a + 2b − 3
�HR/IY2

(t) otherwise.

We observe that Y = �Yp.i. and hence, we are done. �

Example 4.4. Let us consider the case a = 3 and b = 5 and m = 2. Let Xp.i.

be the partial intersection of type (p, q), where p = (10, 5) and q = (3, 3), i.e.,

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • •

• • • • •

• • • • •

R�
1

R�
6

L �
1 L �

10

The minimal resolution is

0 → OP2 (−13)⊕ OP2 (−11) → OP2 (−6) ⊕ OP2 (−8) ⊕ OP2 (−10) →

OP2 → OXp.i.
→ 0
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and the Hilbert function is

t : 0 1 2 3 4 5 6 7 8 9 10 11 12 13

HXp.i.
(t) : 1 3 6 10 15 21 27 33 38 42 44 45 →

�HXp.i.
(t) : 1 2 3 4 5 6 6 6 5 4 2 1 0 →

When we remove the points P3,10, P6,5 and P3,5 from Xp.i. we construct the set
�Yp.i. , i.e.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • •

• • • • •

• • • • •

• • • •

R�
1

R�
6

L �
1 L �

10

The minimal resolution is

0 → OP2 (−12)⊕ OP2 (−11)⊕ O2
P2 (−10) →

OP2 (−6) ⊕ OP2 (−8) ⊕ OP2 (−9)⊕ O2
P2 (−10) → OP2 → O�Yp.i.

→ 0

and the Hilbert function is

t : 0 1 2 3 4 5 6 7 8 9 10 11 12

H�Yp.i.
(t) : 1 3 6 10 15 21 27 33 38 41 42 →

�H�Yp.i.
(t) : 1 2 3 4 5 6 6 6 5 3 1 0 →

Remark 4.5. We observe that from Theorem 4.3, the degree of Pa,b in Y2 =

Xp.i.\{Pa,2b, P2a,b} is the same as in Pa,2b−1. In fact the form

C := R�
1 · · · R�

a−1L �
1 · · · L �

2b−2

has degree a + 2b − 3 and C(Pi, j ) = 0 for all (i, j ) �= (a, 2b − 1), but
C(Pa,2b−1) �= 0.

Remark 4.6. We notice that from previous remark and from the construction,
we have

�H F(�Yp.i., t) = �H F(C �
1, t)+ �H F(C �

2, t − a)

where C �
1 = CI (a, 2b)\{Pa,2b−1, Pa,2b} and C �

2 = CI (a, b)\{Pa,b}.
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Let us consider the homogeneous schemes of double points Xgrid =

{CIgrid (a, b); 2} and Ygrid = {CIgrid \Pab ; 2}. Using the same a and b,
consider the partial intersection Xp.i. of type (p, q) where p = (2b, b) and
q = (a, a). Let

Yp.i. = Xp.i.\{Pa,2b, P2a,b, Pa,2b−1}.

In this case, we observe that Yp.i. is partial intersection of type p = (2b, 2b −

2, b, b − 1), q = (a − 1, 1, a − 1, 1). Furthermore, by the Remark 4.5 and

Remark 4.6, �Yp.i. and Yp.i. share the same graded Betti numbers. With this
notation, we have

Proposition 4.7. Ygrid and Yp.i. have the same graded Betti numbers.

Proof. We can work in an analogous way as in Proposition 3.2. For a = 1
there is nothing to prove. Let us suppose a > 1 and the theorem is true for ho-
mogeneous schemes of double points of the type Ygrid = {CI (a, b) \Pa,b ; 2}

with a < a and b ≤ b whose support is CI (a , b)\Pa,b constructed on an a × b
grid.

De�ne the following homogeneous schemes of double points:

Y1 := {CI (a−1, b); 2}={Pi j = Ri ∩Lj ; m = 2 | i =1, . . . , a−1, j =1, . . . , b}

and

Y2 := {CI (1, b − 1) ; 2} = {Paj = Ra ∩ Lj ; m = 2 | j = 1, . . . , b − 1}.

Then we have Ygrid = Y1 ∪ Y2.
By inductionY1 has the same graded Betti numbers as the partial intersec-

tion V1 of type (p
�, q �) where p� = (2b, b) and q � = (a − 1, a − 1) , and Y2

has the same graded Betti numbers as the partial intersection V2 of type (p
��, q ��)

where p�� = (2(b − 1), b − 1) and q �� = (1, 1). Renumbering the lines of type
R�

i , we get
V = Yp.i. = V1 ∪ V2

and hence, Yp.i. has the same graded Betti numbers as Y1 ∪ Y2. �

Corollary 4.8. Ygrid , �Yp.i. and Yp.i. have the same Hilbert function.

Remark 4.9. Proposition 3.2 and Proposition 4.7 show that the Hilbert func-
tions of the schemes Xgrid and Ygrid do not depend on the forms of degree a
and b that generate CIgrid (a, b) but it depends only on the numbers a, b and m.
(see also [12]).
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5. Finding a Gröbner basis for Ygr id .

In this section we work over complex projective space (k = C) and restrict
our attention to the case that m = 2. Suppose G is a set of points in P

2 lying
in the af�ne slice A2

z = {[x , y, 1] ∈ A2|x , y ∈ k}. Let G � = {P = (x , y) ∈

A
2|[x , y, 1]∈ G}. If Z is the scheme of double points whose support is G , then

its corresponding ideal is given by IZ = ({homogeneousg ∈ k[x , y, z]|g(P) =

0, ∂g
∂ x
(P) = 0, ∂g

∂y
(P) = 0, and ∂g

∂ z
(P) = 0 for all P ∈ G}). Let IZ � = { f ∈

k[x , y]| f (P �) = 0, ∂ f
∂ x
(P �) = 0, and ∂ f

∂y
(P �) = 0 for all P � ∈ G �}. The Hilbert

function of k[x , y, z]/IZ is de�ned by HZ (t) = dimk k[x , y, z]t −dimk(IZ )t for
any natural number t . We can, with the help of Theorem 6.3 below, compute
the Hilbert function of k[x , y, z]/IZ with reference only to the properties of IZ � .

We begin by �xing basic de�nitions. Let σ denote the degree reverse
lexicographical order on the terms in T2 = {x i y j ∈ k[x , y]|i, j ∈ {0, 1, 2, . . .}}.
Notice that this term ordering is degree compatible. For any nonzero f ∈ k[x , y]
we have deg( f ) = deg(LTσ ( f )). Suppose B = {g1, g2, . . . , gn} is a Gröbner
basis of IZ � with respect to the term ordering σ . The leading term set of the
ideal IZ � is de�ned by LTσ {IZ � } = {t ∈ T2|t = LTσ ( f ) for some f ∈ IZ � }.
Since B is a Gröbner basis of IZ � , the leading term set of IZ � is also given
by LTσ {IZ � } = {tLTσ (gi ) ∈ T2|t ∈ T2 and gi ∈ B}. For any d ≥ 0, let
Pd = { f ∈ k[x , y]|deg( f ) ≤ d}. Pd is a vector space over k. Let (IZ � )d be
the degree d or less polynomials in IZ � .

Recall that there is a natural vector space isomorphism φd : Pd →

k[x , y, z]d given by φd ( f (x , y)) = zd f ( x
z
,

y
z
). and that φd restricted to

(IZ � )d = IZ � ∩ Pd is an isomorphism of the k-vector spaces (IZ � )d and (IZ )d .

Theorem 5.1. The Hilbert function of k[x , y, z]/IZ is given by the formula
H (d) = dimk Pd −dimk (IZ � )d . If Td = {t ∈ T2|deg(t) ≤ d} and for a particular
choice of d, Q = LTσ {IZ � } ∩ Td, then dimk(IZ � )d = #Q.

Proof. We apply the observations of the previous paragraph and note that if
n = #Q , then we can list the distinct terms t1, t2, . . . , tn appearing in Q in
decreasing order with respect to σ . For each term ti , choose a polynomial
gi ∈ IZ � such that LT(gi ) = ti . Since σ is degree compatible, gi ∈ (IZ � )d .
M = {g1, g2, . . . , gn} form a basis for the k-vector space (IZ � )d . This is justi�ed
by noting that if L = k1g1 + k2g2 + · · · + kn gn = 0, then k1 is the coef�cient
of the term t1. But L = 0, so the coef�cient of t1 must be 0, i.e. k1 must be
0. Then we have L = k2g2 + k3g3 + · · · + kngn = 0. k2 is the coef�cient
of t2 and thus must be 0 since L = 0. Continuing the same argument, we get
ki = 0 for all i = 1, 2, 3, . . . , n. This shows that {g1, g2, . . . , gn} are linearly
independent. The fact that {g1, g2, . . . , gn} generate (IZ � )d follows easily from
the division algorithm. �
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The �rst difference Hilbert function of k[x , y, z]/IZ is denoted �H (d) and
is de�ned by �H (d) = H (d) − H (d − 1) if d ≥ 1 and �H (d) = 1 if d = 0.
We can rewrite the above theorem with respect to this new de�nition as follows.

Corollary 5.2. For the ring k[x , y, z]/IZ ,

�H (d) = #{t ∈ T
2| deg(t) = d and t /∈ LTσ {IZ � }, of the ideal IZ � }.

Proof. The proof is immediate from the de�nition of �H and the above
theorem. �
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FIGURE 1

De�nition 5.3. A set of points, G �, in A
2 is a �ush almost complete N × M

grid if it is a grid made up of N rows and M columns, has sides parallel to
the x and y axes respectively (we are assuming the co-ordinates of the points
are in R) and is missing the point in the lower left-hand corner. In this event
there exists x1 < x2 < . . . < xM and y1 < y2 < . . . < yN in R such that
G � = {(xi , yj ) such that i ∈ {1, 2, . . . , M} and j ∈ {1, 2, . . . , N}} − {(x1, y1)}.
Naturally associated to G � is G = {[xi : yj : 1] ∈ P2 such that (xi , yj ) ∈ G �},
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We want the Hilbert function of the scheme of double points whose support is
G . This scheme is the same as the scheme Ygrid of the previous section, except
a particular point has been removed for convenience. For the remainder of the
paper we tacitly assume we have in the background G �, G , and the ideals IZ �

and IZ .
For various choices of G �, we get various ideals IZ � . Figure 1 displays

leading term sets of ideals corresponding to �ush almost complete 2× 2, 3× 3,
4× 4, and 5× 5 grids. In general, if G � is a particular almost complete N × N
grid with corresponding ideal IZ � , the leading term set of IZ � is the collection
of terms which are multiples of the terms y2N , x 2N , x N yN , x N−1y2N−1 , and
x 2N−2yN−1 .

We will �nd explicitly generators of the ideal IZ � with leading terms equal
to y2N , x 2N , x N yN , x N−1 y2N−1 , and x 2N−2 yN−1 . This set of generators is a
Gröbner basis of IZ � . Actually, we do more than this. The next theorem gives a
Gröbner basis for the ideal corresponding to the almost complete N × M grid.

Theorem 5.4. Suppose G � is a �ush almost complete N × M grid with M ≥ N
and N, M ≥ 2. Let H1, H2, . . . , HN in k[x , y] be polynomials corresponding
to the horizontal lines of the grid running from top to bottom. Similarly, let
V1, V2, . . . , VM in k[x , y] be polynomials corresponding to the vertical lines of
the grid running from left to right. For each i ∈ {2, 3, . . . , N}, let Dk be the
polynomial in k[x , y] corresponding to the line passing through (x1, yk) and
(xk, y1). The following polynomials are generators of IZ � .

g1 = H 2
1 H 2

2 . . . H 2
N

g2 = V 2
1 V 2

2 . . . V 2
M

g3 = H1H2 . . . HN V1V2 . . . VM

g4 = H 2
1 H 2

2 H 2
3 . . . HN V2V3 . . . VM

g5 = D2D3 . . . DN H1H2 . . . HN−1V2V3 . . . VN V 2
N+1V

2
N+2 . . . V 2

M

In particular, {g1, g2, g3, g4, g5} is a Gröbner basis of IZ � .

Proof. We observe that LTσ (Hi ) = y for all i ∈ {1, 2, . . . , N}. LTσ (Vj ) = x
for all j ∈ {1, 2, . . . , M} and LTσ (Dk ) = x for all k ∈ {2, 3, . . . , N}. Therefore,
the leading terms of g1, g2, g3, g4, are y2N , x 2M , x M yN , x M−1y2N−1 , and
x 2M−2yN−1 respectively. Let K = {t ∈ T

2 that are multiples of y2N , x 2M ,
x M yN , x M−1y2N−1 , or x 2M−2yN−1} and C = T

2 − K .

C ∪ {x M−1y2N−1, x 2M−2yN−1, x 2M−1yN−1} =

= {x pyq | 0 ≤ p ≤ M − 1, 0 ≤ q ≤ N − 1}∪

∪{x p+M yq | 0 ≤ p ≤ M − 1, 0 ≤ q ≤ N − 1}∪
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∪{x pyq+N | 0 ≤ p ≤ M − 1, 0 ≤ q ≤ N − 1}.

The latter three sets are disjoint and each have M N elements. C and
{x M−1y2N−1, x 2M−2yN−1, x 2M−1yN−1} are also disjoint with the latter set hav-
ing three elements. Thus #C = 3M N − 3 = dimk(k[x , y]/IZ � ). So K is
the leading term set of IZ � . Since the leading terms of the polynomials in
{g1, g2, g3, g4, g5} generate K , {g1, g2, g3, g4, g5} is a Gröbner basis for IZ � .
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............................................................................

FIGURE 2

To get a sense of the geometric nature of the solution, Figure 2 gives the
zero sets of the generators for IZ � , the ideal corresponding to the �ush almost
complete 4× 4 grid G �. The following theorem generalizes the previous one in
the natural way.

Theorem 5.5. Suppose F ∈ k[x ] ⊆ k[x , y] has distinct roots x1, x2, . . . , xM

and H ∈ k[y] ⊆ k[x , y] has distinct roots y1, y2, . . . , yN . Let G � = {(xi , yj )
such that i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , N} and i and j are not both
simultaneously 1}. If M ≥ N and N, M ≥ 2, then the following polynomials
generate IZ � :

g1 = (y − y1)
2(y − y2)

2 . . . (y − yN )
2

g2 = (x − x1)
2(x − x2)

2 . . . (x − xM)
2

g3 = (y − y1)(y − y2) . . . (y − yN )(x − x1)(x − x2) . . . (x − xM )
g4 = (y − y1)(y − y2)

2(y − y3)
2 . . . (y − yN )

2(x − x2) . . . (x − xM)
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g5 = ((y2− y1)x + (x2−x1)y + (x1y1−x2 y2))((y3− y1)x + (x3−x1)y
+(x1y1 − x3 y3)) . . . ((yN − y1)x + (xN − x1)y + (x1y1 − xN yN ))
(y − y2)(y − y3) . . . (y − yN )(x − x2)(x − x3) . . . (x − xM)

In particular, {g1, g2, g3, g4, g5} is a Gröbner Basis for IZ � .

Proof. Obvious. �

Theorem 5.6. If M > N, the generators {g1, g2, g3, g4, g5} in the previous
corollary can be homogenized to give a set of generators {h1, h2, h3, h4, h5} for
IZ which are a minimal set of generators.

Proof. After homogenizing g1, g2, g3, g4, and g5, we obtain the following
generators for IZ .

h1 = (y − y1z)
2(y − y2z)

2 . . . (y − yN z)2

h2 = (x − x1z)
2(x − x2z)

2 . . . (x − xM z)2

h3 = (y − y1z)(y − y2z) . . . (y − yN z)(x − x1z)(x − x2z). . .(x − xM z)
h4 = (y− y1z)(y− y2z)

2(y− y3z)
2 . . .(y− yN z)2(x −x2z). . .(x −xM z)

h5 = ((y2− y1)x +(x2−x1)y+(x1 y1−x2y2)z)((y3− y1)x +(x3−x1)y
+(x1y1−x3y3)z) . . . ((yN − y1)x +(xN −x1)y+(x1y1−xN yN )z)
(y − y2z)(y − y3z) . . . (y − yN z)(x − x2z)(x − x3z) . . . (x − xM z)

The degrees of h1, h2, h3, h4 and h5 are 2N , 2M , N + M , N + M + (N − 2),
and N + M + (M − 3) respectively. We want to show that {h1, h2, h3, h4, h5}
is unshortenable. In other words, we want to show for each i , hi /∈ Hi if Hi is
the ideal generated by {h1, h2, h3, h4, h5} − {hi }. Suppose h1 ∈ (h2, h3, h4, h5).
Then h1 = p2h2 + p3h3 + p4h4 + p5h5 for some homogeneous polynomials
p2, p3, p4 and p5. But (x − x2z) is a factor of p2h2 + p3h3 + p4h4 +

p5h5 and is not a factor of h1. So h1 /∈ (h2, h3, h4, h5). Similarly, h2 /∈

(h1, h3, h4, h5) since any homogeneous element in (h1, h3, h4, h5) has (y− y2z)
as a factor, but h2 does not. h5 /∈ (h1, h2, h3, h4) since any homogeneous
element in (h1, h2, h3, h4) vanishes on (x1, y1, 1) and h5 does not. Suppose
h4 ∈ (h1, h2, h3, h5). Since M > N , deg(h4) ≤ deg(h5). So h4 = p1h1 +

p2h2 + p3h3 + k5h5 for some k5 ∈ K and some p1, p2, p3 ∈ k[x , y, z]. k5 must
be 0 since otherwise k5h5 is not 0 at (x1, y1, 1) and h4 − p1h1 − p2h2 − p3h3 is.
This is a contradiction. So h4 = p1h1 + p2h2 + p3h3.

∂h4
∂y
(x1, y1, 1) �= 0, but

∂ (p1h1+p2h2+p3h3)
∂y

(x1, y1, 1) = 0. This is a contradiction. So h4 /∈ (h1, h2, h3, h5)
if M > N .

Now consider the possibility that h3 ∈ (h1, h2, h4, h5). If M �= 3, then
deg(h5) > deg(h3). Also the deg(h2) > deg(h3). So h3 ∈ (h1, h2, h4, h5)
implies h3 = p1h1+p4h4. (y−y2z)

2 appears in the factorization of p1h1+p4h4,
but not in h3. This is a contradiction. If M = 3, then N = 2 since M > N . So
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h3 = L1h1 + k4h4 + k5h5 for some k4, k5 ∈ K and L1 ∈ (k[x , y, z])1 . k5 must
be 0 since otherwise k5h5 does not vanish at (x1, y1, 1) and h3 − L1h1 − k4h4
does. So h3 = L1h1 + k4h4.

∂k4h4
∂y

(x1, y1, 1) �= 0, but ∂ (h3−L1h1)
∂y

(x1, y1, 1) = 0.
This is a contradiction. So h3 /∈ (h1, h3, h4, h5). �

Theorem 5.7. If M = N, {g1, g2, g3, g5} generate IZ � and can be homogenized
to give a set of generators {h1, h2, h3, h5} for IZ which are a minimal set of
generators.

Proof. The polynomial yg5 has leading term x 2N−2 yN , but after division by g3
we get a polynomial F = yg5 + pg3 (p is determined during the division al-
gorithm) which has leading term x N−1y2N−1 . Consequently, {g1, g2, g3, g5, F}

is a Gröbner basis for IZ � . Since F ∈ (g1, g2, g3, g5), {g1, g2, g3, g5} generate
IZ � . The corresponding homogeneous polynomials h1, h2, h3, h5 generate IZ ,
and in fact they are an unshortenable set of generators.

Any element of (h2, h3, h5) has (x − x2z) as a factor, but h1 does not, i.e.
h1 /∈ (h2, h3, h5).

Similarly, h2 /∈ (h1, h3, h5) since (y − y2z) is a factor of every element in
(h1, h3, h5), but is not a factor of h2. h5 /∈ (h1, h2, h3) since any element of
(h1, h2, h3) vanishes on (x1, y1, 1), but h5 does not. Suppose h3 ∈ (h1, h2, h5).
If N ≥ 3, h3 ∈ (h1, h2, h5) implies h3 = k1h1 + k2h2 + k5h5 for some constants
k1, k2 , and k5 (if N > 3, k5 will be 0). k5 = 0 since h3−k1h1−k5h5 vanishes on
(x1, y1, 1) and h5 does not. So h3 = k1h1 + k2h2, which is contradictory since
h3−k1h1 has (y−y1z) as a factor and k2h2 does not. If N = 2, h3 ∈ (h1, h2, h5)
implies h3 = k1h1 + k2h2 + L5h5 for some k1, k2 ∈ K and L5 ∈ (k[x , y, z])1 .
k1 = 0 since (x − x2z) is a factor of h3 − k2h2 − L5h5 but is not a factor of
k1h1. k2 = 0 since (y − y2z) is a factor of h3 − k1h1 − L5h5 but is not a factor
of k2h2. This is a contradiction since there is no orm L5 is h3 = L5h5. So
h3 /∈ (h1, h2, h5). �

The previous two theorems give us enough information to �nd the minimal
free resolution of IZ , since we know both the Hilbert function and a minimal set
of generators for IZ (see also [11] and [12]).
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aux singularités hyperquartiques de P

5 , J. Alg. Geom., 1 (1992), pp. 411�426.

[4] J. Alexander - A. Hirschowitz, La méthode d�Horace éclatée: application á
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