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FAT POINTS ON A GENERIC ALMOST

COMPLETE INTERSECTION

MARK BUCKLES - ELENA GUARDO - ADAM VAN TUYL

We study homogeneous schemes of fat points in P
2 whose support

is either a complete intersection (CI for short) generated by two generic
forms or a CI minus a point, i.e., Xgen = {CIgen (a, b);m} and Ygen =
{CIgen (a, b) \ P;m}.

We prove that Xgrid = {CIgrid (a, b);m} whose support is on an a × b
grid and Xgen = {CIgen (a, b);m} have the same graded Betti numbers,
and hence, the same Hilbert function. Moreover, if m = 2, then Ygen =
{CIgen (a, b)\P; 2} and Ygrid = {CIgrid (a, b)\Pab; 2} have the same Hilbert
function, but they may not have the same graded Betti numbers.

Introduction.

This paper can be regarded as a continuation of [2]. Hence, we will rely on
results, de�nitions, terminology and notation that we have already set in [2]. As
in [2] we are concerned with studying the graded Betti numbers, and hence, the
Hilbert function of the fat point schemes whose support is a CI or a CI minus a
point, i.e., X = {CI (a, b);m} or Y = {CI (a, b) \ P;m}.

In this paper we focus our attention on fat point schemes whose support
is a generic CI. We show that Xgen = {CIgen (a, b);m} has the same graded
Betti numbers as Xgrid = {CIgrid (a, b);m}, and hence, as a partial intersection
Xp.i. of type (p, q) where p = (mb, (m − 1)b, (m − 2)b, . . . , 2b, b) and,
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q = (a, a, . . . , a). This connection is the content of Theorem 4.1 and Corollary
4.2. In the case that m = 2, we show that Ygen = {CIgen (a, b) \ P; 2} and
Ygrid = {CIgrid (a, b) \ Pab; 2} have the same Hilbert function (Proposition
4.4); in general, Ygen and Ygrid may not have the same graded Betti numbers.
With these results we show that the Hilbert function of Xgen = {CIgen (a, b);m}
and Ygen = {CIgen (a, b) \ P; 2} does not depend on the forms of degree a and
b that generate CIgen (a, b) but only on the numbers a, b and m.

Our paper is structured as follows. In the �rst section we set our notation.
Next, we recall what the current literature says in connection to our problem.
In the third section, we try to determine the �rst integer t such that HY(t) <�
t+2
2

�
= dimk Rt . In Section 4 we examine the homogeneous scheme Xgen =

{CIgen (a, b);m} whose support Xred = CIgen (a, b) is constructed on a generic
CI. Moreover, we discuss the connection between our problem and the Hilbert
functions of partial intersections.

Some results of this paper are part of the Ph. D. thesis of the second author
([6]).

All the results of this paper are contained in the survey [1]. We would like
to thank all those involved at Pragmatic, especially A. Ragusa, A.V. Geramita,
J. Migliore, C. Peterson and A. Bigatti, for introducing us to this problem. The
third author would also like to acknowledge his �nancial support from NSERC.

1. Preliminaries.

We �x R = k[x0, x1, x2], where k is an algebraically closed �eld of
characteristic zero.

Recall that we construct Xgrid = {CIgrid (a, b);m} by taking Xred to be
a CI generated by two �totally reducible� forms of degree a and b, that is, the
CI is given by the intersection of two sets of generic lines in P

2 as an a × b
grid. Let us consider the homogeneous scheme Ygrid = {CIgrid (a, b) \ Pi j ;m}
for some 1 ≤ i ≤ a and 1 ≤ j ≤ b. By renumbering the lines Ri or
Lj , we can always assume Pi j = Pab . We denote Ygrid �s de�ning ideal by
IYgrid

= P
m
1 ∩ · · · ∩ P

m
ab−1.

Let us describe how to construct a generic CI.

Method 1.1. To constructXred = CIgen (a, b) we pick two generic forms F and
G of degrees a and b respectively whichmeet in ab distinct points. This implies
that GCD(F, G) = 1 and {F, G} is a regular sequence. So, IX = (F, G)m . If
P ∈ Xred and IP is its de�ning ideal, then

IY = IX : (IP )
m
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is the ideal de�ning the homogeneous scheme Y = {Xred\P;m}. We denote
this scheme by Ygen .

From now on, we will simply write X or Y, when we want to mean both
Xgrid and Xgen or Ygrid and Ygen respectively.

We observe that the Hilbert function of the above schemes depends on how
the underlying CI is constructed. The following two examples with m > 1 show
that Ygrid and Ygen do not behave the same.

Example 1.2. We set a = 3, b = 4, and m = 3. Thus X = {CI (3, 4); 3}.
When we computed the Hilbert function of Ygrid using Bezout�s Theorem we
found

t : 0 1 2 3 4 5 6 7 8 9 10 11 12
HYgrid

(t) : 1 3 6 10 15 21 28 36 45 54 62 65 66 →

Using CoCoA, we found an example where the Hilbert function of Ygen is

t : 0 1 2 3 4 5 6 7 8 9 10 11 12
HYgen

(t) : 1 3 6 10 15 21 28 36 45 54 62 66 →

The Hilbert function of the two schemes agree except at d = 11. This example
demonstrates that the two different constructions may result in different Hilbert
functions.

When we tried examples of the type X = {CI (a, b); 2}, i.e., if m = 2,
our examples had the property that HYgen

(t) = HYgrid
(t) for all t . We prove this

result in Section 4.

2. Known results.

If a = 1, then Xgen = Xgrid = {CI (1, b);m} is a collection of b fat points
on a line in P

2. When we remove a point from Xred to construct Y, the resulting
scheme is simply Y = {CI (1, b − 1);m}, that is, Y is a scheme of b − 1 fat
points on line. We use Proposition 3.3 of [4] to compute the Hilbert function
of Y (see also Proposition 3.1, [2]). We can also derive a formula for HY in
the case that X = {CI (2, b);m} and the conic on which Xred is contained is
non-singular. In particular, for m = 2 we have the following result.

Proposition 2.1. Let X = {CI (2, b); 2} ⊆ P
2 with b ≥ 2 and suppose that

Xred is lying on a non-singular conic C in P
2. Let Y = {Xred \ P; 2} be a fat
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point scheme such that Yred lies on C. Then the Hilbert function of Y is given
by

HR/IY (t) =






0 t < 0
1 t = 0
3 t = 1
4t − 2 2 ≤ t ≤ b + 1
2t + 2b b + 1 < t ≤ 2b − 2
6b − 3 2b − 1 ≤ t

Proof. This follows from the more general case given in [3]. �

Remark 2.2. We can use [3] to calculate HR/IY if m is arbitrary and Y is as
above. However, the method Catalisano describes is recursive. To compute
Y = {CI (2, b) \ P;m}, it is necessary to compute the Hilbert functions of the
schemes Y1 = {CI (2, b)\ P;m−1}, Y2 = {CI (2, b)\ P;m−2}, . . . , Ym−1 =
{CI (2, b) \ P}.

To compute the Hilbert function of Ym−1 we need to �rst note that X =
{CI (2, b); 1} is a CI of simple points. Thus X has the Cayley-Bacharach
Property. Recall that a set of s points X has the Cayley-Bacharach Property
if every subset of s − 1 points has the same Hilbert function. If X = CI (2, b),
then by [5] we have

�HR/IYm−1
(t) =

�
�HR/IX(t)− 1 if t = b
�HR/IX(t) otherwise.

Remark 2.3. The above result also follows from Section 4, Theorem 4.3 of [2].

3. Comments on α(IY).

Our main goal is to compute the Hilbert function of R/IY . Rather than
trying to determine the complete Hilbert function, we decided to �nd something
even weaker, namely α(IY). In this section we describe our work on this weaker
version of the problem. Recall that if J ⊆ S = k[x0, . . . , xn] is a homogeneous
ideal, then we de�ne

α(J ) := min{t |Jt �= 0}.

Proposition 3.1. If Xgen = {CIgen (a, b);m}, with a ≤ b, then α(IX) = ma.
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Proof. Let F and G be the two forms of degree a and b (respectively) such that
GCD(F, G) = 1 and de�ne the underlying CI. Since F and G form a regular
sequence,

IX = (F, G)m = (Fm, Fm−1G, Fm−2G2, . . . , FGm−1, Gm).

Moreover, this is a list of minimal generators for IX . Now the degrees of the
generators of IX are {ma, (m −1)a +b, (m −2)a +2b, . . . , a+ (m −1)b,mb}.
Since a ≤ b, ma is the minimal element of this list. The result now follows. �

Remark 3.2. This result is true for all X = {CI (a, b);m}, regardless of the
construction of Xred . This result is used to calculate α(IY) in some cases.

Since IX ⊆ IY , we can deduce that α(IY) ≤ α(IX). Furthermore, let (P;m)
be a scheme of one fat point and let I(P;m) := (IP )

m , where IP is the prime ideal
of forms vanishing at P . A point is a trivial CI and thus α(I(P;m)) = m. Since
IY ⊆ I(P;m) , we have

(1) m = α(I(P;m)) ≤ α(IY) ≤ ma.

Recall thatYgrid ⊆ Xgrid is constructed by removing a point P from the support
of Xgrid . If we consider Xgrid = {CIgrid (a, b);m}, then we can improve
the lower bound (1) signi�cantly, and in some cases, completely determine
α(IYgrid

). The point P lies at the point of intersection of two lines R and L
that form the basis of the grid. Suppose that L is one of the b lines and R is
one of the a lines that form the underlying CI that is the support of Xgrid . If we
remove the points on L from the support of Xgrid , we get a new scheme

XL = {CIgrid (a, b) \ {P}P∈L;m} = {CIgrid (a, b − 1);m}.

Moreover, XL is a subscheme of Ygrid , and thus α(IXL
) ≤ α(IYgrid

).

Proposition 3.3. Let Xgrid = {CIgrid (a, b);m}, with a ≤ b, be a scheme of fat
points constructed on a grid. If b = a, then

m(a − 1) < α(IYgrid
) ≤ ma.

Otherwise, if b > a, then
α(IYgrid

) = ma.

Proof. If b = a, then b − 1 = a − 1 < a, and hence α(IXL
) = m(a − 1). On

the other hand, if b > a, then b−1 ≥ a, and thus α(IXL
) = ma. The inequality

α(IXL
) ≤ α(IYgrid

) ≤ α(IXgrid
) and the fact that α(IXgrid

) = ma now give the
desired result. �
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Remark 3.4. In [1], we formulated the following conjecture:

Conjecture 3.5. The results of Proposition 3.3. do not depend upon the
construction of X = {CI (a, b);m}. In particular, if b > a, then α(IY) = α(IX).

In this paper we prove this conjecture in the case m = 2. See Proposi-
tion 4.8. See [7] for any m.

Since the bound α(IY) ≤ α(IX) always holds, regardless of the construc-
tion, we can ask if there are conditions that force α(IY) < α(IX). The following
proposition gives one such necessary condition.

Proposition 3.6. Suppose X = {CI (a, a);m}, a > 1 and m > a2 − a − 1.
Then α(IY) < α(IX).

Proof. To show that α(IY) < α(IX) = ma, we only need to show that there is
a nonzero element of degree ma − 1 in IY . Suppose we can show that degY <�
(ma−1)+2

2

�
= dimk Rma−1 . For any zero dimensional scheme Z ⊆ P

n , it is
well known that HZ (t) ≤ deg Z for all t . This implies that HY(ma − 1) ≤
degY < dimk Rma−1, and thus, (IY)ma−1 �= 0, as desired.

A simple calculation shows that

degY <

�
(ma − 1)+ 2

2

�

⇔
m2a2

2
+

ma2

2
−

m2

2
−

m

2
<

m2a2

2
+

ma

2

⇔ ma2 − ma − (m2 + m) < 0

⇔ a2 − a − (m + 1) < 0

By hypothesis, a is a positive integer within this bound, and thus, the conclusion
follows. �

Remark 3.7. We require the hypothesis a > 1 to exclude the case that X is a

single fat point. For m = 1, we have that 1 < a < 1+
√
9

2
= 2. There is no

positive integer within this interval. For m = 2, we have that 1 < a < 1+
√
13

2
≈

2.302. The only positive integer in this interval is a = 2. We found that the
Hilbert functions of X = {CI (2, 2); 2} and Y = {CI (2, 2)\P22; 2} (using both
constructions) are

HX : 1 3 6 10 12 →
HY : 1 3 6 9 →

In this case, α(IY) = 3 < 4 = α(IX).
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4. Results on Xgen = {CIgen(a, b);m}.

In this section we will prove some results concerning the Hilbert function
of Xgen = {CIgen (a, b);m}.

Let Xgrid = {CIgrid (a, b);m} be a homogeneous fat point scheme whose
support Xred = CIgrid (a, b) is an a × b grid, and let Xgen = {CIgen (a, b);m}
be a homogeneous fat point scheme whose support is a generic CI of type (a, b).
With the above notation

Theorem 4.1. Xgrid and Xgen have the same graded Betti numbers.

Proof. We know that if F and G are the two irreducible forms of degree a and
b (respectively) that de�ne a CI (a, b), then from Proposition 3.1

(Fm, Fm−1G, Fm−2G2, . . . , FGm−1, Gm)

is a list of minimal generators for IXgen
.

The degrees of the generators of IXgen
are {ma, (m − 1)a + b, (m − 2)a +

2b, . . . , a + (m − 1)b,mb}, so the Hilbert-Burch matrix A(Xgen) of Xgen is:









F 0 0 . . . 0
G F 0 . . . 0
0 G F . . . 0
...

...
... . . .

...

0 0 0 . . . G









and the degree matrix ∂A(Xgen) of Xgen is the following









a 2a − b . . . ma − (m − 1)b
b a . . . (m − 1)a − (m − 2)b

2b − a b . . . (m − 2)a − (m − 3)b
...

... . . .
...

mb − (m − 1)a (m − 1)b − (m − 2)a . . . b









.

The syz-degrees are of type (m − k)a + (k + 1)b for 0 ≤ k ≤ m − 1, and hence
Xgen has a resolution of type

(2) 0 →

m�

t=1

OP2 (−bt ) →

m�

t=0

OP2 (−at )→ OP2 → OXgen
→ 0

where a0 = ma, at = (m − t + 1)b + (t − 1)a, and bt = (m − t + 1)b + ta, for
t = 1, . . . ,m.

From Proposition 3.2 in [2], Xgen and Xgrid have the same graded Betti
numbers. �
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Corollary 4.2. Xgen and Xgrid have the same Hilbert function.

Before proving the main theorem of this section, we need the following
result.

Lemma 4.3. Let Z = {P1, . . . , Ps} be a set of s distinct points of P
2 lying on a

curve C. Let

X = {(Pi ; 2)|i = 1, . . . , s}

be a scheme of double points of degree 3s whose support is Z . Then there exists
a subscheme X

� of X contained in C of degree 2s.

Proof. We can reduce the problem to the case s = 1. In this case we can assume
that P is the origin. Now suppose that the curve C is de�ned by g(x , y)+y = 0,
where g(x , y) contains terms of degree greater than or equal to two. If IX and
IC are the de�ning ideals of X and C respectively, then

IX� = IC + IX = (y, x 2)

and it de�nes a subscheme of X of degree 2. �

The following theorem shows that the Hilbert function of any scheme of
double points whose support is a CI minus a point does not depend on how the
underlying complete intersection is constructed.

Theorem 4.4. Ygrid = {CIgrid (a, b) \ Pab; 2} and Ygen = {CIgen (a, b) \ P; 2}
have the same Hilbert function.

Proof. For a = 1 we can use [4] and for a = 2 we can see [3].
Let us suppose a ≥ 3. It is enough to prove that

�HR/IYgen
(t) =

�
�HR/IXgen

(t)− 1 if t = a + 2b − 2, 2a + b − 2, a + 2b − 3
�HR/IXgen

(t) otherwise

Since the support of Xgen is a generic CI (a, b) de�ned by two irreducible forms
F and G of degrees a and b respectively, we can �nd a form H de�ning a curve
of degree a + b − 2 that passes through all the points of CI (a, b) but not P .
The form GH then de�nes a curve of degree a + 2b − 2 that passes through all
the points of Xgen with multiplicity at least two but with multiplicity less than
two through P .

Thus we have

(3) �HR/IYgen
(a + 2b − 2) ≤ �HR/IXgen

(a + 2b − 2)− 1.
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The form FH de�nes a curve of degree 2a + b − 2 that passes through all the
points of Xgen with multiplicity at least two but with multiplicity less than two
through P . We have

(4) �HR/IYgen
(2a + b − 2) ≤ �HR/IXgen

(2a + b − 2)− 1.

From (3) and (4) and since deg (Ygen) = deg (Xgen) − 3, if we show that the
only permissible value for which we can �nd a form L ∈ (IYgen

)t \ (IXgen
)t is

exactly t = a + 2b − 3, then we get the desired result.
By Lemma 4.3, we do not need to check for t ≤ 2a + b − 2.
If 2b − 1 ≤ 2a + b − 2, then �HXgen

(t) = a + 2b − t − 1 for
2a+b−1 ≤ t ≤ a+2b−3. Hence, for such a t , it takes on the values b−a to
2, decreasing by one at each step. If we consider �HYgen

(t �) = �HXgen
(t �) − 1

for a suitable t � ∈ {2a + b − 1, . . . , a + 2b − 4}, then using [8] there exists a
curve C of degree b − a − k for a suitable k ∈ {1, . . . , b − a − 2} that contains
a scheme Z ⊂ Xgen of degree (b − a − k)(3a + 2k + 1).

Let Z ∗ be the scheme de�ned by the ideal IZ∗ = (IC, F). From Bèzout�s
theorem, |Z ∗| = a(b − a − k) and a subscheme of Xgen whose support is Z ∗

has degree at most 3a(b − a − k). But

3a(b − a − k) < (b − a − k)(3a + 2k + 1) ⇔ 2k + 1 > 0.

This is always true for any k ∈ {1, . . . , b − a − 2}. This contradicts the
irreducibility of F .

Analogously, if 2b − 1 > 2a + b − 2, then �HXgen
(t) = a + 2b − t − 1

for 2b ≤ t ≤ a + 2b − 3. Hence, for such t , it takes on the values a − 1
to 2 decreasing by one at each step. However, �HYgen

(t) �= �HXgen
(t) − 1

for 2a + b − 1 ≤ t ≤ 2b − 2, otherwise we will not have an O -sequence.
By Lemma 4.3, we do not need to check for t ≤ 2b − 2. If we consider
�HYgen

(t �) = �HXgen
(t �)− 1 for a suitable t � ∈ {2b − 1, . . . , a + 2b − 4}, then

using [8] there exists a curve C
� of degree a −k for a suitable k ∈ {1, . . . , a−2}

that contains a scheme Z � ⊂ Xgen of degree (a − k)(2b − a + 2k + 1).
Let Z be the subscheme of Xgen de�ned by the ideal IZ = (IC� , F).

Applying Bezout�s theorem, |Z | = a(a − k) and a subscheme of Xgen whose
support is Z has degree at most 3a(a − k). But

3a(a − k) < (a − k)(2b − a + 2k + 1)⇔ 2a < 2b + 2k + 1.

But since this is always true for any k ∈ {1, . . . , a − 2}, we have a contradiction
for the irreducibility of F . This proves the theorem. �
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Remark 4.5. In general, Ygen and Ygrid have different graded Betti numbers,
as we show in the next example.

Example 4.6. Let us consider Ygen = {CIgen (2, 4) \ P; 2} and Ygrid =
{CIgrid (2, 4) \ P24; 2}. Using [3] we get

0 → OP2 (−9)⊕ O
2
P2
(−7) →

→ OP2 (−4)⊕ O
2
P2
(−6)⊕ OP2 (−7) → OP2 → OYgen

→ 0

Using Proposition 4.7 in [2], we get

0 → OP2 (−9)⊕ O
2
P2
(−7)⊕ OP2 (−8) →

→ OP2 (−4)⊕ O
2
P2
(−6)⊕ OP2 (−7)⊕ OP2 (−8) → OP2 → OYgrid

→ 0

Remark 4.7. The formulas of Section 4 in [2] and Theorem 4.4 give us explicit
formulas for the Hilbert function of Ygen = {CIgen (a, b) \ P; 2} for any a and
b with a ≤ b.

We conclude this section by using the above result to show that Conjecture
3.5 is true if m = 2.

Proposition 4.8. Let X = {CI (a, b); 2} and let Y = {CI (a, b) \ P; 2}. If
a < b, then

α(IX) = α(IY) = 2a.

Proof. We only need to prove that �HR/IY(2a − 1) = 2a = �HR/IX(2a − 1).
We can use Theorem 4.4 to compute �HR/IY(2a − 1). There are two cases to
consider, a+1 = b and a +1 < b. We will show the second case since the �rst
is similar.

To show that �HR/IY(2a − 1) = 2a, we only need to show that 2a − 1 �=
2a+b−2, a+2b−3, or a+2b−2. If this is the case, then �HR/IY(2a−1) =
�HR/IX (2a−1) as desired. Indeed, if 2a−1 = 2a+b−2, then b = −1 which
is clearly a contradiction. If 2a − 1 = a + 2b − 3, then a = 2b − 2. But since
a < b − 1, then 2b − 2 < b − 1. But this can only happen if b < 1 which is
again a contradiction. A similar argument shows that 2a − 1 �= a + 2b − 2. �
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Remark 4.9. A CI of type (a, b) in P
2 is always generated by two homoge-

neous forms F and G of degree a and b (respectively) such that GCD(F, G) =
1. The CI that we constructed via the two methods, as described in [2] and
in this paper, are �extremal� in the sense that in one case F and G are totally
reducible, i.e., the product of linear forms, and in the other case, F and G are
irreducible forms.

If the CI (a, b) is generated by two forms such that one of F and G is
irreducible and the other reducible, from Theorem 4.1 and Corollary 4.2 we
can say that also in this case the graded Betti numbers, and hence, the Hilbert
function of a homogeneous scheme of fat points for any m, do not depend on
how the underlying CI is constructed. In the same case, if the support is a
CI minus a point, from Theorem 4.4 we can say that the Hilbert function of
a scheme of double points does not depend on the geometry of the support.
However, by Remark 4.5, if Y is a scheme of fat points whose support is a CI
minus a point, then the graded Betti numbers depend on how we construct the
CI.
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