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EXTREMAL FUNCTIONS AND UNCERTAINTY PRINCIPLES
FOR FOURIER MULTIPLIERS ON THE LAGUERRE

HYPERGROUP

A. CHANA - A. AKHIIDJ - S. ARHILAS

The main purpose of this paper is to introduce the Fourier multipliers
operators on the Laguerre hypergroup and to give some new results related
to these operators as Parseval’s, Plancherel’s, Calderón’s reproducing for-
mulas and Heisenberg’s, Donoho-Stark’s uncertainty principles. Next,
using the theory of reproducing kernels we give best estimates and an in-
tegral representation of the extremal functions related to these operators.

1. Introduction

Let Hd :=Cd ×R be the (2d+1)-dimensional Heisenberg group with multipli-
cation law

(z, t)
(
z′, t ′

)
=
(
z+ z′, t + t ′− Im

(
zz′
))

,

where zz′ = ∑
d
k=0 zkz′k, is the usual positive definite Hermitian form on Cd . If

we put T = ∂

∂ t and

Z j =
∂

∂ z j
− iz̄ j

∂

∂ t
, Z j =

∂

∂ z̄ j
+ iz̄ j

∂

∂ t
, j = 1, . . . ,d,
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Then the system T,Z j,Z j forms a basis of the left invariant vector fields of hc
d ,

the complexification of the Lie algebra hd of Hd , where

∂

∂ z j
=

∂

∂x j
− i

∂

∂y j
,

∂

∂ z̄ j
=

∂

∂x j
+ i

∂

∂y j
.

Set

X j =
∂

∂x j
− iy j

∂

∂ t
, Yj =

∂

∂y j
+ ix j

∂

∂ t
, j = 1, . . . ,d.

Thus X1, . . . ,Xd ,Y1, . . . ,Yd ,T is a basis of hd . A function f on Hd is said to
be radial if it is invariant under the action of the unitary group U(d). Let

Lp
rad

(
Hd
)

:= { f ∈ Lp (Hd) : f (vz, t) = f (z, t) for all v ∈U(d)} .

The theory of harmonic analysis on Lp
rad (Hd) was developed by many au-

thors (one can consult [5, 9, 13, 14, 17, 18]). When one considers the problems
of radial functions on the Heisenberg group Hd , the underlying manifold can be
regarded as the Laguerre hypergroup K := [0,∞)×R. In [17, 18] the authors
introduced a generalized translation operator on K and established the theory of
harmonic analysis on L2 (K,dµα), where the weighted Lebesgue measure µα

on K is given by

dµα(x, t) :=
x2α+1dxdt
πΓ(α +1)

, α ≥ 0, (1)

and Γ is the Gamma function.
In their seminal papers [6, 12], Hörmander and, respectively, Mikhlin initiated
the study of boundedness of the translation invariant operators on Rd . The
translation invariant operators on Rd characterized using the classical Euclidean
Fourier transform F( f ) therefore they also known as Fourier multipliers.
Let 1 < p < ∞ and given a measurable function

m : Rd −→ C

its Fourier multiplier is the linear map Tm given for all λ ∈ Rd by the relation

F(Tm( f ))(λ ) = m(λ )F( f )(λ ) (2)

The Hörmander-Mikhlin fundamental condition gives a criterion for bounded-
ness of Fourier multiplier Tm in terms of derivatives of the symbol m, more
precisely if

∣∣∂ γ

λ
m(λ )

∣∣≲ |λ |−|γ| f or 0 ≤ |γ| ≤
[

d
2

]
+1 (3)
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Then, Tm can be extended to a bounded linear operator from Lp(Rd) into itself .
The condition (3) imposes m to be a bounded function, smooth over Rd\{0}
satisfying certain local and asymptotic behavior. Locally, m admits a singular-
ity at 0 with a mild control of derivatives around it up to order

[d
2

]
+ 1. This

singularity links to deep concepts in harmonic analysis and justifies the key
role of Hörmander-Mikhlin theorem in Fourier multiplier Lp-theory, this condi-
tion defines a large class of Fourier multipliers including Riesz transforms and
Littelwood-Paley partitions of unity which are crucial in Fourier summability or
Pseudo-differential operator.The boundedness of Fourier multipliers is useful to
solve problems in the area of mathematical analysis as Probability theory see
[11], Stochastic processus see [3],and the study of nonlinear partial differential
equations see [8].
The general theory of reproducing kernels is stared with Aronszajn’s in [1] in
1950, next the authors in [10, 15, 16] applied this theory to study Tikhonov reg-
ularization problem and they obtained approximate solutions for bounded linear
operator equations on Hilbert spaces with the viewpoint of numerical solutions
by computers. This theory has gained considerable interest in various field of
mathematical sciences especially in Engineering and numerical experiments by
using computers see [10, 16] for more information.
For its importance the theory of Fourier multipliers has been generalized in dif-
ferent sets for example in the Dunkl set [19–22], in the Sturm-Liouville hy-
pergroup [23], this paper focuses on the generalized Fourier transform on the
Laguerre hypergroup K := [0,∞)×R , more precisely we consider a system of
partial differential operator ∆1 and ∆2 defined on K := [0,+∞)× [0,+∞), by{

∆1 := ∂

∂ t ; α ≥ 0, t > 0
∆2 := ∂ 2

∂x2 +
2α+1

x
∂

∂x + x2 ∂ 2

∂ t2 , x > 0

Where α is a nonnegative number and for α = d − 1 the operators ∆2 is the
radial part of sublaplacian on the Heisenberg group Hd . The Fourier-Laguerre
transform Fα generalizing the usual Fourier transform F and it is defined on
L1

α(K) by

Fα( f )(λ ,m) =
∫
K

ϕ−λ ,m(x, t) f (x, t)dµα(x, t), for (λ ,m) ∈ K̂

where K̂ is the dual space of K, µα is the measure on K given by the relation
(1) and ϕλ ,m is the character of the hypergroup K given later. Let σ be a func-
tion in L2

α(K) and β > 0 be a positive real number, the Laguerre L2
α -multiplier

operators is defined for smooth function on K as

Tσ ,β ( f )(x, t) := F−1
α

(
σβFα( f )

)
(x, t) (4)
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where the function σβ is given by

σβ (λ ,m) := σ(βλ ,m) (5)

The operators (4) are a generalization of the classical Fourier multiplier opera-
tors given by the relation (2). The remainder of this paper is arranged as follows,
in section 2 we recall the main results concerning the harmonic analysis on the
Laguerre hypergroup, in section 3, we introduce the Laguerre L2

α -multiplier op-
erators Tσ ,β and we give for them a Plancherel’s, point- wise reproducing formu-
las and Heisenberg’s, Donoho-Stark’s uncertainty principles. The last section of
this paper is devoted to give an application of the general theory of reproducing
kernels to Fourier multiplier theory and to give best estimates and an integral
representation of the extremal functions related to the Laguerre L2

α multiplier
operators on weighted Sobolev spaces.

2. Harmonic Analysis on the Laguerre Hypergroup

In this section we set some notations and we recall some results in harmonic
analysis on the Laguerre hypergroup, for more details we refer the reader to
[5, 13, 14].
In the following we denote by
• Lp

α(K),1 ≤ p ≤ ∞, the space of measurable functions on K, satisfying

∥ f∥p,µα
:=

{
(
∫
K | f (x, t)|pdµα(x, t))

1/p < ∞, 1 ≤ p < ∞,
esssup(x,t)∈K | f (x, t)|< ∞, p = ∞.

• C∗(K) the space of continuos function on R2, even with respect to the first
variable.
• C∗,c(K) the subspace of C∗(K) formed by functions with compact support.
• L(α)

m (x) is the Laguerre function defined on [0,+∞[ by

L(α)
m (x) :=

e−
x
2 L(α)

m (x)

L(α)
m (0)

,

where L(α)
m is the Laguerre polynomial of degree m and order α given by

L(α)
m (x) =

m

∑
k=0

(−1)kΓ(m+α +1)
Γ(k+α +1)

xk

k!(m− k)!
.

• K̂ := [0,+∞)×N equipped with weighted Lebesgue measure γα given by∫
K̂

g(λ ,m)dγα(λ ,m) =
∞

∑
m=0

L(α)
m (0)

∫
R

g(λ ,m)|λ |α+1dλ .
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where dλ is the classical Lebesgue measure in R .
• Lp

α(K̂) with p ∈ [1,+∞] the space of measurable functions on K̂ satisfying

∥g∥p,γα
:=

{ (∫
K̂ |g(λ ,m)|pdγα(λ ,m)

) 1
p < ∞, 1 ≤ p < ∞,

ess sup(λ ,m)∈K̂ |g(λ ,m)|< ∞, p = ∞.

2.1. The Eigenfunctions of the Partial Differential Operators ∆1
and ∆2

For (λ ,m) ∈ K̂ we consider the following Cauchy problem

(S) :


∆1(u) = iλu,
∆2(u) =−4|λ |(m+ α+1

2 )u
u(0,0) = 1; ∂u

∂x (0,0) =
∂u
∂ t (0,0) = 0.

From [14], the Cauchy problem (S) admits a unique solution given by

ϕλ ,m(x, t) = eiλ tL(α)
m
(
|λ |x2) for (x, t) ∈K and (λ ,m) ∈ K̂,

The function ϕλ ,m is infinitely differentiable on R2, even with respect to the first
variable and we have the following important result

sup
(x,t)∈K

∣∣ϕλ ,m(x, t)
∣∣= 1. (6)

2.2. Fourier Transform on the Laguerre Hypergroup

Definition 2.1. The Fourier-Laguerre transform Fα defined on L1
α(K) by

Fα( f )(λ ,m) =
∫
K

ϕ−λ ,m(x, t) f (x, t)dµα(x, t), f or(λ ,m) ∈ K̂.

Some basic properties of this transform are as follows, for the proofs, we
refer the reader to [4, 15].

Proposition 2.2.

(1) For every f ∈ L1
α(K) we have

∥Fα( f )∥
∞,γα

≤ ∥ f∥1,µα
. (7)

(2)(Inversion formula) For f ∈
(
L1

α ∩L2
α

)
(K) such that Fα( f )∈ L1

α(K̂) we have

f (x, t) =
∫
K̂

ϕλ ,m(x, t)Fα( f )(λ ,m)dγα(λ ,m), a.e (x, t) ∈K. (8)
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(3) (Parseval formula) For all f ,g ∈ L2
α(K) we have∫

K
f (x, t)g(x, t)dµα(x, t) =

∫
K̂
Fα( f )(λ ,m)Fα(g)(λ ,m)dγα(λ ,m) (9)

In particular we have
∥ f∥2,µα = ∥Fα( f )∥2,γα

. (10)

(4) (Plancherel theorem) The Laguerre-Bessel transform Fα can be extended to
an isometric isomorphism from L2

α(K) into L2
α(K̂).

2.3. The Translation Operators on the Laguerre Hypergroup

Definition 2.3. Let f ∈C∗,c(K). For all (x, t) and (y,s) in K, for α > 0 we put

τ
(x,t)
α f (y,s) =

α

π

∫ 2π

0

∫ 1

0
f (⟨x,y⟩r,θ ,s+ t + xyr sinθ)r

(
1− r2)α−1

drdθ ,

where ⟨x,y⟩r,θ :=
√

x2 + y2 +2xyr cosθ . The operators τ
(x,t)
α , are called gener-

alized translation operators on K.

The following proposition summarizes some properties of the translation
operators see [14, 18].

Proposition 2.4. For all (x, t),(y,s) ∈K, f ∈C∗(K) we have:

(1)
τ
(x,t)
α ( f )(y,s) = τ

(y,s)
α ( f )(x, t). (11)

(2) ∫
K

τ
(x,t)
α ( f )(y,s)dµα(y,s) =

∫
K

f (y,s)dµα(y,s). (12)

(3) for f ∈ Lp
α(K) with p ∈ [1;+∞] τ

(x,t)
α ( f ) ∈ Lp

α(K) and we have∥∥∥τ
(x,t)
α ( f )

∥∥∥
p,µα

≤ ∥ f∥p,µα
. (13)

(4) For f ∈ L1
α(K), τ

(x,t)
α ( f ) ∈ L1

α(K) and we have

Fα

(
τ
(x,t)
α ( f )

)
(λ ,m) = ϕλ ,m(x, t)Fα( f )(λ ,m), ∀(λ ,m) ∈ K̂. (14)

By using the generalized translation, we define the generalized convolution
product of f ,g ∈ S∗(K) by

( f ∗α g)(x, t) =
∫
K

τ
(x,t)
α ( f̃ )(y,s)g(y,s)dµα(y,s),

with f̃ (y,s) = f (y,−s). This convolution is commutative, associative and its
satisfies the following properties see [13, 14].
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Proposition 2.5.

(1)(Young’s inequality) for all p,q,r ∈ [1;+∞] such that: 1
p +

1
q = 1+ 1

r and for
all f ∈ Lp

α(K),g ∈ Lq
α(K) the function f ∗α g belongs to the space Lr

α(K) and
we have

∥ f ∗α g∥r,µα
≤ ∥ f∥p,µα

∥g∥q,µα
(15)

(2) For f ,g ∈ L2
α(K) the function f ∗α g belongs to L2

α(K) if and only if the
function Fα( f )Fα(g) belongs to L2

α(K̂) and in this case we have

Fα ( f ∗α g) = Fα( f )Fα(g). (16)

(3) For f ,g ∈ L2
α(K) then we have∫

K
| f ∗α g(x, t)|2 dµα(x, t) =

∫
K̂
|Fα( f )(λ ,m)|2 |Fα(g)(λ ,m)|2 dγα(λ ,m),

(17)
where both integrals are simultaneously finite or infinite.

3. Fourier Multipliers on the Laguerre Hypergroup

The main purpose of this section is to introduce the Laguerre L2
α -multiplier

operators on K and to establish for them Calderon’s reproducing formulas and
some uncertainty principles.

3.1. Calderon’s Reproducing Formulas for the Laguerre Multiplier
operators

Definition 3.1. Let σ ∈ L2
α(K̂) and β > 0, the Laguerre L2

α -multiplier operators
are defined for smooth functions on K as

Tσ ,β ( f )(x, t) := F−1
α

(
σβFα( f )

)
(x, t), (18)

where the function σβ is given by

σβ (λ ,m) := σ(βλ ,m),

for all (λ ,m) ∈ K̂.
By a simple change of variable we find that for all β > 0,σβ ∈ L2

α(K̂) and

∥∥σβ

∥∥
2,γα

=
1

β
α+2

2
∥σ∥2,γα

. (19)
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Remark 3.2. According to the relation (16) we find that

Tσ ,β ( f )(x, t) =
(
F−1

α

(
σβ

)
∗α f

)
(x, t), (20)

where

F−1
α

(
σβ

)
(x, t) =

1
β α+2F

−1
α (σ)

(
x√
β
,

t
β

)
. (21)

We give some properties of the Laguerre L2
α -multiplier operators.

Proposition 3.3. (i) For every σ ∈ L2
α(K̂), and f ∈ L1

α(K), the function Tσ ,β ( f )
belongs to L2

α(K), and we have∥∥Tσ ,β ( f )
∥∥

2,µα

≤ 1

β
α+2

2
∥σ∥2,γα

∥ f∥1,µα
.

(ii) For every σ ∈ L∞
α(K̂), and for every f ∈ L2

α(K), the function Tσ ,β ( f ) belongs
to L2

α(K), and we have∥∥Tσ ,β ( f )
∥∥

2,µα

≤ ∥σ∥∞,γα
∥ f∥2,µα

(22)

(iii) For every σ ∈ L2
α(K̂), and for every f ∈ L2

α(K), then Tσ ,β ( f )∈ L∞
α(K), and

we have

Tσ ,β ( f )(x, t) =
∫
K̂

σ(βλ ,m)ϕλ ,m(x, t)Fα( f )(λ ,m)dγα(λ ,m) (23)

and ∥∥Tσ ,β ( f )
∥∥

∞,µα

≤ 1

β
α+2

2
∥σ∥2,γα

∥ f∥2,µα
.

Proof. (i) By the relations (15),(20) we find that∥∥Tσ ,β ( f )
∥∥2

2,µα

=
∥∥F−1

α

(
σβ

)
∗α f

∥∥2
2,µα

≤ ∥ f∥2
1,µα

∥∥F−1
α

(
σβ

)∥∥2
1,µα

Plancherel’s formula (10) and the relation (19) gives the desired result.
(ii) Is a consequence of Plancherel’s formula (10).
(iii) By using the relations (10), (15),(19) and (3.3) we find that∥∥Tσ ,β ( f )

∥∥
∞,µα

≤ 1

β
α+2

2
∥σ∥2,γα

∥ f∥2,µα

on the other hand the relation (22) follows from inversion formula (8).

In the following result, we give Plancherel’s and pointwise reproducing in-
version formula for the Laguerre L2

α -multiplier operators.
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Theorem 3.4. Let σ ∈ L2
α(K̂) satisfying the admissibility condition:∫

∞

0

∣∣σβ (λ ,m)
∣∣2 dβ

β
= 1, (λ ,m) ∈ K̂. (24)

(i) (Plancherel formula) For all f in L2
α(K), we have∫

K
| f (x, t)|2dµα(x, t) =

∫
∞

0

∥∥Tσ ,β ( f )
∥∥2

2,µα

dβ

β
. (25)

(ii) (First calderón’s formula) Let f ∈ L1
α(K) such that Fα( f ) ∈ L1

α(K̂) then we
have

f (x, t) =
∫

∞

0

(
Tσ ,β ( f )∗α F−1

α (σβ )
)
(x,−t)

dβ

β
, a.e. (x, t) ∈K.

Proof. (i) By using Fubini’s theorem and the relations (17) and (20) we find that∫
∞

0

∥∥Tσ ,β ( f )
∥∥2

2,µα

dβ

β
=
∫

∞

0

[∫
K

∣∣Tσ ,β ( f )(x, t)
∣∣2 dµα(x, t)

]
dβ

β

=
∫

∞

0

[∫
K

∣∣F−1
α

(
σβ

)
∗α f (x, t)

∣∣2 dµα

]
dβ

β

=
∫

∞

0

[∫
K̂
|Fα( f )(λ ,m)|2 dγα

]∣∣σβ (λ ,m)
∣∣2 dβ

β

the admissibility condition (24) and Plancherel’s formula (10) gives the desired
result.
(ii) Let f ∈ L1

α(K) such that Fα( f ) ∈ L1
α(K̂), by Fubini’s theorem and the rela-

tions (8),(9),(14) and the admissibility condition (24) we find the result

To establish the second Calderon’s reproducing formula for the Laguerre
L2

α -multiplier operators, we need the following technical result.

Proposition 3.5. Let σ ∈ L2
α(K̂)∩L∞

α(K̂) satisfy the admissibility condition (24)
then the function defined by

Φγ,δ (λ ,m) =
∫

δ

γ

∣∣σβ (λ ,m)
∣∣2 dβ

β

belongs to L2
α(K̂)∩L∞

α(K̂) for all 0 < γ < δ < ∞.

Proof. Using Hölder’s inequality for the measure dβ

β
, we get

∣∣Φγ,δ (λ ,m)
∣∣2 ≤ log(δ/γ)

∫
δ

γ

∣∣σβ (λ ,m)
∣∣4 dβ

β
, (λ ,m) ∈ K̂.
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Then using Fubini’s theorem, we obtain∥∥Φγ,δ

∥∥2
2,γα

≤ log(δ/γ)∥σ∥2
∞,γα

∫
δ

γ

∥σ∥2
2,γα

dβ

β

by using the relation (19) we find that∥∥Φγ,δ

∥∥2
2,γα

≤ log(δ/γ)∥σ∥2
∞,γα

∥σ∥2
2,γα

∫
δ

γ

dβ

β α+3 < ∞

So Φγ,δ belongs to L2
α(K̂), furthermore by the relation (24) we get

∥∥Φγ,δ

∥∥
∞,γα

≤
1 therefore Φγ,δ belongs to L2

α(K̂)∩L∞
α(K̂).

Theorem 3.6. (Second Calderón’s formula). Let f ∈ L2
α(K),σ ∈ L2

α(K̂) ∩
L∞

α(K̂) satisfy the admissibility condition (3.7) and 0 < γ < δ < ∞. Then the
function

fγ,δ (x, t) =
∫

δ

γ

(
Tσ ,β ( f )∗α F−1

α (σβ )
)
(x,−t)

dβ

β
, (x, t) ∈K

belongs to L2
α(K) and satisfies

lim
(γ,δ )→(0,∞)

∥∥ fγ,δ − f
∥∥

2,µα

= 0 (26)

Proof. By a simple computation we find that

fγ,δ (x, t) =
∫
K̂

Φγ,δ (λ ,m)ϕλ ,m(x, t)Fα( f )(λ ,m)dγα(λ ,m),

by proposition (3.5) we have Φγ,δ ∈ L∞
α(K̂) then we have fγ,δ ∈ L2

α(K) and

Fα

(
fγ,δ

)
(λ ,m) = Φγ,δ (λ ,m)Fα( f )(λ ,m)

on the other hand by Plancherel’s formula (10) we find that

lim
(γ,δ )→(0,∞)

∥∥ fγ,δ − f
∥∥2

2,µα

= lim
(γ,δ )→(0,∞)

∫
K̂
|Fα( f )(λ ,m)|2

(
1−Φγ,δ (λ ,m)

)2 dγα

by using the admissibility condition (24), the relation (26) follows from the
dominated convergence theorem.

3.2. Uncerainty Principles for the Laguerre L2
α -Multiplier opera-

tors

The main purpose of this subsection is to establish Heisenberg’s and Donoho-
Stark’s uncertainty principles for the the Laguerre L2

α -multiplier operators Tσ ,β .
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3.2.1. Heisenberg’s uncertainty principle for Tσ ,β

In [2], using method based on ultracontractive properties of the semigroups
generated by the differential operator L given by

L :=−(
∂ 2

∂x2 +
2α +1

x
∂

∂x
+ x2 ∂ 2

∂ t2 )

the authors proved the following Heisenberg’s inequality for Fα , there exist a
positive constant c such that for all f ∈ L2

α(K) we have

∥ f∥2
2,µα

≤ c∥|(x, t)|K f∥2,µα

∥∥∥∥|(λ ,m)|
1
2

K̂
Fα( f )

∥∥∥∥
2,γα

(27)

where | · |K and | · |K̂ are the homogeneous norms given by |(x, t)|K =
(
x4 +4t2

) 1
4

and |(λ ,m)|K̂ = 4|λ |(m+ α+1
2 ).The main purpose of this subsection is to gen-

eralize the inequality (3.10) for the Laguerre multipliers Tσ ,β .

Theorem 3.7. There exist a positive constant c such that for all f ∈ L2
α(K) we

have

∥ f∥2
2,µα

≤ c
∥∥∥∥|(λ ,m)|

1
2

K̂
Fα( f )

∥∥∥∥
2,γα

[∫
∞

0

∥∥|(x, t)|KTσ ,β ( f )
∥∥2

2,µα

dβ

β

] 1
2

Proof. Suppose that
∥∥∥∥|(λ ,m)|

1
2

K̂
Fα( f )

∥∥∥∥
2,γα

+
∫

∞

0

∥∥|(x, t)|KTσ ,β ( f )
∥∥2

2,µα

dβ

β
< ∞,

by using the relation (27) we have∫
K
|Tσ ,β ( f )(x, t)|2dµα(x, t)≤ c

∥∥|(x, t)|KTσ ,β ( f )
∥∥

2,µα

∥∥∥∥|(λ ,m)|
1
2

K̂
σβFα( f )

∥∥∥∥
2,γα

, integrating over ]0,+∞[ with respect to measure dβ

β
and we get∫

∞

0

[∫
K
|Tσ ,β ( f )(x, t)|2dµα(x, t)

]
dβ

β
≤ c

∫
∞

0

∥∥|(x, t)|KTσ ,β ( f )
∥∥

2,µα

∥∥∥∥|(λ ,m)|
1
2
K̂

σβFα( f )
∥∥∥∥

2,γα

dβ

β
,

by using Plancherel’s formula for Tσ ,β . (25) and Schwartz’s inequality and the
admissibility condition (24) gives the desired result.

3.2.2. Donoho-Stark’s uncertainty principle for Tσ ,β

Building on the ideas of Donoho and Stark In [4], the main purpose of this
subsection is to give an uncertainty inequality of concentration type in L2

θ
(K)

where L2
θ
(K) is the space of measurables functions on ]0,+∞[×K such that

∥ f∥2,θα
=

[∫
∞

0
∥ f (β , .)∥2

2,µα

dβ

β

] 1
2

.
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We denote by θα the measure defined on ]0,+∞[×K by

dθα(β ,(x, t)) = dµα(x, t)⊗
dβ

β
,

Definition 3.8. [4] (i) Let E be a measurable subset of K, we say that the func-
tion f ∈ L2

α(K) is ε-concentrated on E if

∥ f −1E f∥2,µα
≤ ε∥ f∥2,µα

, (28)

where 1E is the indicator function of the set E.
(ii) Let F be a measurable subset of ]0,+∞[×K, we say that the function Tσ ,β ( f )
is ρ-concentrated on F if

∥Tσ ,β ( f )−1FTσ ,β ( f )∥2,θα
≤ ρ∥Tσ ,β ( f )∥2,θα

. (29)

We have the following result

Theorem 3.9. Let f ∈ L2
α(K) and σ ∈ L2

α(K̂)∩L1
α(K̂) satisfying the admissi-

bility condition (24), if f is ε-concentrated on E and Tσ ,β ( f ) is ρ-concentrated
on F then we have

∥σ∥1,γα
(µ(E))

1
2

[∫
F

dθα(β ,(x, t))
β 4α+4

] 1
2

≥ 1− (ε +ρ).

Proof. Let f ∈ L2
α(K) and σ ∈ L2

α(K̂)∩L∞
α(K̂) satisfying (24) and assume that

µα(E)< ∞ and
∫

F
dθα (β ,(x,t))

β 4α+4 < ∞.
According to the relations (28),(29) we have

∥Tσ ,β ( f )−1FTσ ,β (1E f )∥2,θα
≤ ρ∥Tσ ,β ( f )∥2,θα

+∥Tσ ,β ( f −1E f )∥2,θα
,

by Plancherel’s relation (25) we get

∥Tσ ,β ( f )−1FTσ ,β (1E f )∥2,θα
≤ (ε +ρ)∥ f∥2,µα

So we get

∥Tσ ,β ( f )∥2,θα
≤ |Tσ ,β ( f )−1FTσ ,β (1E f )∥2,θα

+∥1FTσ ,β (1E f )∥2,θα

≤ (ε +ρ)∥ f∥2,µα
+∥1FTσ ,β (1E f )∥2,θα

, (30)

on the other hand by the relation (23) we have

|Tσ ,β (1E f )|2 ≤ 1
β 4α+4 ∥ f∥2

2,µα
∥σ∥2

1,γα
µ(E),
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so we find that

∥1FTσ ,β (1E f )∥2,θα
≤ ∥ f∥2,µα

∥σ∥1,γα
(µ(E))

1
2

[∫
F

dθα(β ,(x, t))
β 4α+4

] 1
2

, (31)

by the relations (30),(31) we deduce that

∥Tσ ,β ( f )∥2,θα
≤ ∥ f∥2,µα

[
(ε +ρ)+∥σ∥1,γα

(µ(E))
1
2

[∫
F

dθα(β ,(x, t))
β 4α+4

] 1
2
]

Plancherel’s formula (3.8) for Tσ ,β gives the desired result.

4. Extremal Functions Associated with the Laguerre L2
α -Multiplier oper-

ators

In the following, we study the extremal function associated to the Laguerre-
Bessel L2

α -multiplier operators.

Definition 4.1. . Let ψ be a positive function on K̂ satisfying the following
conditions

1
ψ

∈ L1
α(K̂) (32)

and
ψ(λ ,m)≥ 1, (λ ,m) ∈ K̂. (33)

We define the Sobolev-type space Hψ(K) by

Hψ(K) =
{

f ∈ L2
α(K) :

√
ψFα( f ) ∈ L2

α(K̂)
}

provided with inner product

⟨ f ,g⟩ψ =
∫
K̂

ψ(λ ,m)Fα( f )(λ ,m)Fα(g)(λ ,m)dγα(λ ,m),

and the norm
∥ f∥ψ =

√
⟨ f , f ⟩ψ .

Proposition 4.2. Let σ be a function in L∞
α(K̂). Then the Laguerre-Bessel L2

α

multiplier operators Tσ ,β are bounded and linear from Hψ(K) into L2
α(K) and

we have for all f ∈Hψ(K)∥∥Tσ ,β ( f )
∥∥

2,µα

≤ ∥σ∥∞,γα
∥ f∥ψ . (34)

Proof. By using the relations (10),(22),(33) we get the result
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Definition 4.3. Let η > 0 and let σ be a function in L∞
α(K̂). We denote by

⟨ f ,g⟩ψ,η the inner product defined on the space Hψ(K) by

⟨ f ,g⟩ψ,η =
∫
K̂

(
ηψ(λ ,m)+

∣∣σβ (λ ,m)
∣∣2)Fα( f )(λ ,m)Fα(g)(λ ,m)dγα(λ ,m),

and the norm
∥ f∥ψ,η =

√
⟨ f , f ⟩ψ,η

In the following results, we show that the norm ∥ · ∥ψ,η can be expressed
in function of the norm of the Hilbert space Hψ(K) and the norm of Laguerre-
Bessel L2

α -multiplier operators. Moreover, we show the equivalence between
the norms ∥ · ∥ψ,η and ∥ · ∥ψ .

Proposition 4.4. Let σ be a function in L∞
α(K̂) and f ∈Hψ(K) then

(i) the norm ∥ · ∥ψ,η satisfies

∥ f∥2
ψ,η = ∥ f∥2

ψ +
∥∥Tσ ,β ( f )

∥∥2
2,µα

.

(ii) The norms ∥ · ∥ζ ,η and ∥ · ∥ζ are equivalent and we have

√
η∥ f∥ψ ≤ ∥ f∥ψ,η ≤

√
η +∥σ∥2

∞,γα
∥ϕ∥ζ ,η .

Proof. the results follows from Plancherel’s formula (10)and the relation (34).

Theorem 4.5. Let σ ∈ L∞
α(K̂) the Sobolev-type space

(
Hψ(K)

)
,⟨·, ·⟩ψ,η is a

reproducing kernel Hilbert space with kernel

Kψ,η((x, t),(y,s)) =
∫
K̂

ϕλ ,m(x, t)ϕ−λ ,m(y,s)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2 dγα(λ ,m),

that is
(i) For all (y,s) ∈K, the function (x, t) 7→ Kψ,η ((x, t),(y,s) belongs to Hψ(K).
(ii) For all f ∈Hψ(K) and (y,s) ∈K, we have the reproducing property

f (y,s) =
〈

f ,Kψ,η(·,(y,s))
〉

ψ,η
.

Proof. (i) Let (y,s) ∈K, from the relations (6),(32) we have the function

g(y,s) : (λ ,m)−→
ϕ−λ ,m(y,s)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2
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belongs to L1
α(K̂)∩L2

α(K̂). Hence the function Kψ,η is well defined and by the
inversion formula (8), we obtain

Kψ,η((x, t),(y,s)) = F−1
α (g(y,s))(x, t)

by Plancherel’s theorem for Fα we find that Kψ,η(·,(y,s)) belongs to L2
α(K)

and we have

Fα(Kψ,η(·,(y,s)))(λ ,m) =
ϕ−λ ,m(y,s)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2 (35)

by the relations (6),(7),(35) we find that

∥
√

ψFα(Kψ,η(·,(y,s)))∥2,γα
≤ 1

η2

∥∥∥∥ 1
ψ

∥∥∥∥
1,γα

< ∞,

this prove that for every (y,s) ∈ K the function (x, t) 7→ Kψ,η ((x, t),(y,s) be-
longs to Hψ(K).
(ii) By using the relation (35) we find that for all f ∈Hψ(K) ,

⟨ f ,Kψ,η (·,(y,s)⟩ψ,η ==
∫
K̂

ϕλ ,m(y,s)Fα( f )(λ ,m)dγα(λ ,m),

inversion formula (8) gives the desired result.

By taking σ a null function and η = 1 we find the following result

Corollary 4.6. The Sobolev-type space
(
Hψ(K)

)
,⟨·, ·⟩ψ) is a reproducing ker-

nel Hilbert space with kernel

Kψ((x, t),(y,s)) =
∫
K̂

ϕλ ,m(x, t)ϕ−λ ,m(y,s)
ηψ(λ ,m)

dγα(λ ,m).

The main result of this section can be stated as follows

Theorem 4.7. Let σ ∈ L∞
α(K̂) and β > 0, for any h ∈ L2

α (K) and for any η > 0,
there exist a unique function f ∗

η ,β ,h where the infimum

inf
f∈Hψ (K)

{
η∥ f∥2

ψ +
∥∥h−Tσ ,β ( f )

∥∥2
2,µα

}
(36)

is attained. Moreover the extremal function f ∗
η ,β ,h is given by

f ∗
η ,β ,h(y,s) =

∫
K

h(x, t)Θη ,β ((x, t),(y,s))dµα(x, t),

where Θη ,β is given by

Θη ,β ((x, t),(y,s)) =
∫
K̂

σβ (λ ,m)ϕλ ,m(x, t)ϕ−λ ,m(y,s)
ηψ(λ ,m)+ |σβ (λ ,m)|2

dγα(λ ,m)



550 A. CHANA - A. AKHIIDJ - S. ARHILAS

Proof. The existence and the unicity of the extremal function f ∗
η ,β ,h satisfying

(36) is given in [7, 10, 15, 16], furthermore f ∗
η ,β ,h is given by

f ∗
η ,β ,h(y,s) = ⟨h,Tσ ,β (Kψ,η (·,(y,s))⟩µα

, by inversion formula (8) and the relation (35) we get

Tσ ,β (Kψ,η (·,(y,s))(x, t) =
∫
K̂

σβ (λ ,m)ϕλ ,m(x, t)ϕλ ,m(y,s)
ηψ(λ ,m)+ |σβ (λ ,m)|2

dγα(λ ,m)

= Θη ,β ((x, t),(y,s))

and the proof is complete.

Theorem 4.8. σ ∈ L∞
α(K̂) and h ∈ L2

α (K) then the function f ∗
η ,β ,h satisfies the

following properties

Fα( f ∗
η ,β ,h)(λ ,m) =

σβ (λ ,m)

ηψ(λ ,m)+ |σβ (λ ,m)|2
Fα(h)(λ ,m) (37)

and

∥ f ∗
η ,β ,h∥ψ ≤ 1√

2η
∥h∥2,µα

.

Proof. Let (y,s) ∈K then the function

k(y,s) : (λ ,m)−→
σβ (λ ,m)ϕ−λ ,m(y,s)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2
belongs to L2

α(K̂)∩L1
α(K̂) and by inversion formula (8) we get

Θη ,β ((x, t),(y,s)) = F−1
α (k(y,s))(x, t)

using Plancherel’s theorem and Parseval’s relation (9) we get Θη ,β (·,(y,s)) ∈
L2

α(K) and

f ∗
η ,β ,h(y,s) =

∫
K̂

σβ (λ ,m)

ηψ(λ ,m)+ |σβ (λ ,m)|2
Fα(h)(λ ,m)dγα(λ ,m)

on the other hand the function

F : (λ ,m)−→
σβ (λ ,m)Fα(h)(λ ,m)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2
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belongs to L1
α(K̂)∩L∞

α(K̂), by inversion formula (8), Plancherel’s theorem we
find that f ∗

η ,β ,h belongs to L2
α(K) and

Fα( f ∗
η ,β ,h)(λ ,m) = F(λ ,m)

on the other hand we have

|Fα( f ∗
η ,β ,h)(λ ,m)|2 ≤ 1

2ηψ(λ ,m)
|Fα(h)(λ ,m)|2

by Plancherel’s formula (10) we find that

∥ f ∗
η ,β ,h∥ψ ≤ 1√

2η
∥h∥2,µα

.

Theorem 4.9. (Third Calderón’s formula) Let σ ∈ L∞
α(K̂) and f ∈Hψ(K) then

the extremal function given by

f ∗
η ,β ,h(y,s) =

∫
K
Tσ ,β ( f )(x, t)Θη ,β ((x, t),(y,s))dµα(x, t),

satisfies
lim

η→0+

∥∥∥ f ∗
η ,β − f

∥∥∥
2,µα

= 0 (38)

moreover we have f ∗
η ,β −→ f uniformly when η −→ 0+.

Proof. f ∈ Hψ(K), we put h = Tσ ,β ( f ) and f ∗
η ,β ,h = f ∗

η ,β in the relation (37)
we find that

Fα( f ∗
η ,β ,h − f )(λ ,m) =

−ηψ(λ ,m)Fα( f )(λ ,m)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2 (39)

therefore∥∥∥ f ∗
η ,β − f

∥∥∥2

ψ

=
∫
K̂

η2 (ψ(λ ,m))3

ηψ(λ ,m)+ |σβ (λ ,m)|2
|Fα( f )(λ ,m)|2 dγα(λ ,m)

On the other hand we have

η2 (ψ(λ ,m))3

ηψ(λ ,m)+ |σβ (λ ,m)|2
|Fα( f )(λ ,m)|2 ≤ ψ(λ ,m) |Fα( f )(λ ,m)|2 (40)

the result (38) follows from (40) and the dominated convergence theorem. Now,
for all f ∈Hψ(K) we have Fα( f ) ∈ L2

α(K̂)∩L1
α(K̂) and by using the relations

(8), (39) we find that

f ∗
η ,β (y,s)− f (y,s) =

∫
K̂

−ηψ(λ ,m)Fα( f )(λ ,m)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2 ϕλ ,m(y,s)dγα(λ ,m)
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and ∣∣∣∣∣−ηψ(λ ,m)Fα( f )(λ ,m)

ηψ(λ ,m)+
∣∣σβ (λ ,m)

∣∣2 ϕλ ,m(y,s)

∣∣∣∣∣≤ |Fα( f )(λ ,m)| (41)

By using the relation (41) and the dominated convergence theorem we deduce
that

lim
η→0+

∣∣∣ f ∗η ,β (y,s)− f (y,s)
∣∣∣= 0

which completes the proof of the theorem.
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