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GLOBAL SOLVABILITY OF THE LAPLACE EQUATION
IN WEIGHTED SOBOLEV SPACES

B.T. BILALOV - N.P. NASIBOVA - L. SOFTOVA - S. TRAMONTANO

We consider a non-local boundary value problem for the Laplace equ-
ation in an unbounded strip, studying the weak and strong solvability of
the problem within the framework of the weighted Sobolev space W 1,p

ν

with a Muckenhoupt weight. Utilising tools from non-harmonic analy-
sis, we prove that any weak solution belonging to W 2,p

ν is also a strong
solution and satisfies the corresponding boundary conditions. It is worth
noting that such problems do not fall within the scope of the general the-
ory of elliptic equations and therefore require a specialized approach.
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1. Introduction

The classical existence and regularity theory for linear PDEs leaves untreated
many problems arising in mechanics and mathematical physics. An example
of such a model problem is the following degenerate elliptic equation studied
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by Moiseev in [14]. More precisely, he considered the following degenerate
equation in an infinite strip:

ymuxx +uyy = 0, (x,y) ∈ (0,2π)× (0,∞),

u(x,0) = f (x), x ∈ (0,2π),

u(0,y) = u(2π,y), y ∈ (0,∞),

ux(0,y) = 0, y ∈ (0,∞),

(1.1)

with m >−2 and f ∈C2,α [0,2π], where α ∈ (0,1). This problem is non-local,
and the boundary conditions are given on semi-infinite lines. Under the natural
assumption of boundedness of the solution at infinity, the author obtained the
existence and uniqueness of a classical solution and an explicit integral repre-
sentation for it, allowing the relaxation of regularity assumptions on f .

Similar boundary problems for mixed-type equations were investigated by
Frankl in his study on the transonic flow around symmetric airfoils (see [6, 7]).
Further results on the existence of classical solutions of problem (1.1) were
obtained in [2] for uniformly elliptic equations and in [10] for multidimensional
parabolic equations.

We start our studies with the case m = 0, while the degenerate problem
is a subject of further research. Our goal is twofold: to obtain strong/weak
solvability of (1.1) and to study the regularity of the solutions in new function
spaces. Our interest is focused on weighted Lebesgue spaces Lp

ν , where p ∈
(1,∞), and the weight function ν belongs to the Muckenhoupt class Ap. Since
we study problem (1.1) in an unbounded domain with respect to y, we assume
that the weight depends only on x. The Sobolev spaces are built upon functions
having distributional derivatives in some weighted x-space and integrable with
respect to y.

Starting with the existence of weak solutions in W 1,p
ν , we show that under

suitable boundary conditions, this weak solution is also strong.
Let us note that this problem cannot be treated with the classical methods

developed for linear elliptic operators. Our technique is based on spectral theory
and the approach developed in [14]. Specifically, we use biorthonormal systems
and Fourier series techniques in Banach function spaces, as described by Duffin
and Schaeffer [5] (see also [11]). This approach extends harmonic analysis
methods beyond Hilbert spaces to apply Fourier series methods (see also [3, 15,
17]).

The present paper extends some results obtained in [2, 12, 14], transitioning
from classical to generalized solutions.

In the following, we use the standard notation:

• R+ = (0,∞) and N0 = N∪{0};
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• Π = (0,2π)× (0,∞) is an unbounded strip in R2 with boundary

∂Π = J0 ∪ J∪ J2π ,

where

J = {x ∈ (0,2π), y = 0},
J0 = {x = 0, y ∈ (0,∞)},

J2π = {x = 2π, y ∈ (0,∞)};

• C∞
2π
(J) = {η(x) ∈C∞([0,2π]) : η(2π) = 0};

• The letter C indicates a positive constant, whose value may vary from line
to line.

2. Auxiliary Results

Consider the following set of test functions:

C∞
J0
(Π) =

{
ϕ ∈C∞(Π) : ϕ|J∪J2π

= 0, ∃ ξϕ > 0 such that

ϕ(x,y) = 0 ∀ (x,y) ∈ [0,2π]× [ξϕ ,∞)
}
.

(2.1)

Let ν : (0,2π)→ [0,∞] be a weight function such that ν ∈ L1(0,2π), ν(0) =
ν(2π), and |ν−1({0;∞})|= 0. For a fixed p ∈ (1,∞), we consider the weighted
Lebesgue space Lp

ν(Π), endowed with the norm:

∥u∥Lp
ν (Π) =

∫
∞

0

(∫ 2π

0
|u(x,y)|p ν(x)dx

) 1
p

dy.

The corresponding ν-weighted Sobolev space W m,p
ν (Π) is defined as the set

of all measurable functions having distributional derivatives up to order m in
Lp

ν(Π), for which the following norm is finite:

∥u∥W m,p
ν (Π) = ∑

0≤|α|≤m
∥Dαu∥Lp

ν (Π).

For p∈ (1,∞), we denote the Lebesgue and Sobolev spaces over the interval
(0,2π) as Lp

ν(0,2π) and W m,p
ν (0,2π), respectively, endowed with the respective

norms:

∥ f∥Lp
ν (0,2π) =

(∫ 2π

0
| f (x)|pν(x)dx

) 1
p
, ∥ f∥W m,p

ν (0,2π) =
m

∑
k=0

∥ f (k)∥Lp
ν (0,2π).
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For completeness, we define the Muckenhoupt class Ap(0,2π) of weights ν

defined on R, 2π-periodic and that satisfy the condition:

sup
I⊂R

( 1
|I|

∫
I
ν(x)dx

)( 1
|I|

∫
I
ν(x)−

1
p−1 dx

)p−1
= [ν ]p < ∞, (2.2)

where the supremum is taken over all bounded intervals I ⊂ R, (for sake of pe-
riodicity, it is enough taking I ⊂ (0,2π)) and [ν ]p is the Muckenhoupt constant
of the weight ν .

An immediate consequence of the definition (2.2) is that if ν ∈ Ap(0,2π),
then ν ,ν−1/(p−1) ∈ L1

loc (R). Moreover, the following properties hold (cf. [8]):

Lemma 2.1. Let ν ∈ Ap(0,2π), p ∈ (1,∞) :

• Inclusion property: There exists q ∈ (1, p) such that ν ∈ Aq(0,2π).

• Reverse Hölder inequality: There exists δ > 0 depending only on p and
[ν ]p such that

( 1
|I|

∫
I
ν(x)1+δ dx

) 1
1+δ ≤ Cδ

|I|

∫
I
ν(x)dx

for each interval I, where the constant Cδ does not depend on I.

For our purpose, we additionally assume that the weight satisfies the condi-
tion ν(0) = ν(2π).

The next Lemma gives a characterization of the weighted spaces that we are
going to use, and the proof follows easily from [1, Lemma 2.6].

Lemma 2.2. Let ν ∈ Ap(0,2π), with 1 < p < ∞. Then:

1. Lp
ν(0,2π)⊂ L1(0,2π) is continuously embedded.

2. C∞
0 (0,2π)= Lp

ν(0,2π), where the closure is taken with respect to the norm
in Lp

ν(0,2π).

In what follows, we need the Young-Hausdorff inequality related to the clas-
sical system of functions {1,cos(nx),sin(nx)}n∈N.

Theorem 2.3 (Young-Hausdorff [13]). Let f ∈ Lp(0,2π), 1 < p ≤ 2. Consider,
for n ∈ N0, the integrals

f c
n =

∫ 2π

0
f (x)cos(nx)dx, f s

n =
∫ 2π

0
f (x)sin(nx)dx. (2.3)
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Then { f c
n , f s

n}n∈N0 ⊆ ℓp′ where p′ = p/(p− 1), and there exists a constant C,
depending only on p, such that(

| f c
0 |p

′
+

∞

∑
n=1

(
| f c

n |p
′
+ | f s

n |p
′)) 1

p′ ≤C∥ f∥Lp(0,2π). (2.4)

Conversely, if { f c
n , f s

n}n∈N0 ⊆ ℓp, 1 < p ≤ 2, then f ∈ Lp′(0,2π), and there
exists a constant C′, depending only on p, such that

∥ f∥Lp′ (0,2π) ≤C′
(
| f c

0 |p +
∞

∑
n=1

(
| f c

n |p + | f s
n |p

)) 1
p
. (2.5)

Definition 2.4 ( [4, 16]). Let (X ,∥ · ∥) be a Banach space, {ϑn}n∈N be a vector
sequence in X and {yn}n∈N be a sequence in the dual space X∗, the pair (yn;ϑn)
is a biorthonormal system if and only if

(ym;ϑn) = δmn, ∀m,n ∈ N,

where (·, ·) denotes the duality pairing and δmn is the Kronecker delta:

δmn =

{
1 if m = n,
0 if m ̸= n.

If (X ,(·, ·)) is an Hilbert space, the definition of biorthonormal system is the
same, just replacing the duality pairing with his inner product.

Neither the sequence {yn} nor {ϑn} is required to be orthonormal: it is
easy to exhibit an example of biorthonormal system that is not orthonormal
(see {ys

n}n∈N in the next). The sequences {yn} and {ϑn} are called biorthog-
onal bases if they are complete in the corresponding space. In this case, each
sequence {yn} and {ϑn} spans the space (or a dense subspace if the space is
infinite-dimensional).

We introduce the following systems of functions:

yc
0 = 1, yc

n(x) = cos(nx), ys
n(x) = xsin(nx), n ≥ 1, (2.6)

ϑ
c
0 (x) =

2π − x
2π2 , ϑ

c
n (x) =

2π − x
π2 cos(nx), ϑ

s
n(x) =

1
π2 sin(nx), n ≥ 1. (2.7)

Then the sequences

{yn}n∈N0 := {yc
n,y

s
n}n∈N0 , {ϑn}n∈N0 := {ϑ

c
0 ,ϑ

c
n ,ϑ

s
n}n∈N, (2.8)



598 B.T. BILALOV - N.P. NASIBOVA - L. SOFTOVA - S. TRAMONTANO

indeed form a biorthonormal system in L2(0,2π). More precisely, for any func-
tion f ∈ L2(0,2π) the linear continuous operator ( f ;ϑ) acts on L2(0,2π) as

( f ;ϑ) =
∫ 2π

0
f (x)ϑ(x)dx

providing the pairing necessary to verify biorthonormality conditions. Direct
calculations show that the sequences (2.9) are biorthonormal, that is:

(yc
k;ϑ

c
n ) = δkn, (ys

k;ϑ
s
n) = δkn,

(ys
k;ϑ

c
n ) = 0, (yc

k;ϑ
s
n) = 0

(2.9)

forming a biorthonormal system in L2(0,2π) according to Definition 2.4. More-
over, (2.6) forms a Riesz basis in L2(0,2π) (cf. [14]), meaning we can expand
any function f ∈ L2(0,2π) in a biorthonormal series of the form

f (x) = ( f ;ϑ
c
0 )y

c
0(x)+

∞

∑
n=1

(
( f ;ϑ

c
n )y

c
n(x)+( f ;ϑ

s
n)y

s
n(x)

)
. (2.10)

Our goal is to extend this theory to weighted Lebesgue spaces.

Theorem 2.5. Let ν ∈ Ap(0,2π) with p ∈ (1,∞) and ν(0) = ν(2π). Then the
system (2.6) forms a basis in Lp

ν(0,2π).

Proof. First, we need to show that (2.6) is a minimal system. To achieve this, it
is sufficient to prove that (2.7) is a biorthonormal system to (2.6) in Lp

ν(0,2π).
Let us observe that the functional bϑ c

n
(·) = (ϑ c

n ; ·), n ∈ N0 is uniformly
bounded in Lp

ν(0,2π). Indeed, for any f ∈ Lp
ν(0,2π), using the uniform bound-

edness of the system {ϑn} and Hölder’s inequality, we obtain:

|bϑ c
n
( f )| ≤ 2

π

∫ 2π

0
| f (x)|ν(x)

1
p ν(x)−

1
p dx

≤ 2
π

(∫ 2π

0
| f (x)|pν(x)dx

) 1
p
(∫

J
ν(x)−

p′
p dx

) 1
p′

≤ 4∥ f∥Lp
ν (0,2π)[ν ]

1
p
p ∥ν∥

− 1
p

L1(0,2π)
≤C∥ f∥Lp

ν (0,2π).

(2.11)

This implies that bϑ c
n
(·) ∈

(
Lp

ν(0,2π)
)∗ for all n ∈ N0.

Furthermore, using (2.9), we have:

bϑ c
n
(yc

k) = δkn, bϑ c
n
(ys

k) = 0 ∀ k,n ∈ N.

Similarly, it can be shown that bϑ s
n
(·) ∈ (Lp

ν(0,2π))∗ and satisfies

bϑ s
n
(ys

k) = δkn, bϑ s
n
(yc

k) = 0, ∀k,n ∈ N.
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This proves the biorthogonality of (2.7) and (2.6) in Lp
ν(0,2π), thereby estab-

lishing the minimality of (2.6) in Lp
ν(0,2π).

Next, we need to demonstrate that (2.6) is also complete in Lp
ν(0,2π). By

density arguments and Lemma 2.2, it suffices to show that any function in
C∞

0 (0,2π) can be approximated by linear combinations of functions from the
system (2.6) in the space Lp

ν(0,2π).

Let f ∈C∞
0 (0,2π), we define

g(x) =
2π − x

π2 f (x), g ∈C∞
0 (0,2π).

For all n ∈ N, we take the biorthogonal coefficients of f :

( f ;ϑ
c
0 ) =

1
2π2

∫ 2π

0
f (x)(2π − x)dx =

1
2
(g;1) =

1
2

g0,

( f ;ϑ
c
n ) =

1
π2

∫ 2π

0
f (x)(2π − x)cos(nx)dx = (g; cos(nx)) = gc

n,

( f ;ϑ
s
n) =

1
π2

∫ 2π

0
f (x)sin(nx)dx =

1
π2 ( f ; sin(nx)) =

1
π2 f s

n .

(2.12)

Integrating by parts twice using the regularity of f , we obtain the bounds:

|( f ;ϑ
c
n )| ≤

1
n2

∫ 2π

0

∣∣g′′(x)cos(nx)
∣∣dx ≤ C

n2 ,

|( f ;ϑ
s
n)| ≤

1
n2π2

∫ 2π

0

∣∣ f ′′(x)sin(nx)
∣∣dx ≤ C

n2 .

(2.13)

These estimates guarantee the total convergence of the biorthonormal series:

F(x) = ( f ;ϑ
c
0 )+

∞

∑
n=1

(
( f ;ϑ

c
n )cos(nx)+( f ;ϑ

s
n)xcos(nx)

)
, (2.14)

and also uniform convergence by the Weierstrass theorem.
According to the results of [14], the system (2.9) forms a basis in L2(0,2π),

and hence F = f . By Lemma 2.2, it also follows that (2.14) converges to f in
Lp

ν(0,2π), and therefore, (2.9) is a basis in Lp
ν(0,2π). To confirm this, consider

the projectors:

Sn,m( f )(x) =
n

∑
k=0

( f ;ϑ
c
k )y

c
k(x)+

m

∑
k=1

( f ;ϑ
s
n)y

s
k(x)

=
1
2

g0 +
n

∑
k=1

gc
k cos(kx)+

x
π2

m

∑
k=1

f s
k sin(kx).

(2.15)



600 B.T. BILALOV - N.P. NASIBOVA - L. SOFTOVA - S. TRAMONTANO

Due to the orthogonality of the trigonometric system, the Lp
ν(0,2π)-norm of

(2.15) can be estimated as:

∥Sn,m( f )∥Lp
ν (0,2π) ≤

∥∥∥1
2

g0 +
n

∑
k=1

gc
k cos(kx)

∥∥∥
Lp

ν (0,2π)
+

2
π

∥∥∥ m

∑
k=1

f s
k sin(kx)

∥∥∥
Lp

ν (0,2π)
.

In the first term, we have a partial sum of the Fourier series for g∈ Lp
ν(0,2π),

while in the second term, we have the corresponding partial sum for f ∈Lp
ν(0,2π).

Since the trigonometric system forms a basis in Lp
ν(0,2π) if and only if ν ∈

Ap(0,2π) (cf. [9]), we obtain:

∥Sn,m( f )∥Lp
ν (0,2π) ≤C

(
∥g∥Lp

ν (0,2π)+∥ f∥Lp
ν (0,2π)

)
≤ c∥ f∥Lp

ν (0,2π)

where we have used that |g(x)| ≤C| f (x)| for x ∈ (0,2π). The last estimate holds
for all n,m ∈ N, with a constant independent of f . This implies that the projec-
tors {Sn,m} are uniformly bounded in Lp

ν(0,2π) and hence, the system (2.9)
forms a basis in Lp

ν(0,2π).

3. Solvability results

Let us consider the following non-local problem for the Laplace equation, writ-
ten in formal way:

∆u(x,y) = 0 for a.e. (x,y) ∈ Π

u(0,y) = u(2π,y) for a.e. y ∈ (0,∞)

u(x,0) = f (x) for a.e. x ∈ (0,2π)

ux(0,y) = h(y) for a.e. y ∈ (0,∞)

(3.1)

where we initially suppose that f ∈ L1(0,2π) and h ∈ L1(R+).
By weighted strong solution of (3.1), we mean a function u ∈W 2,p

ν (Π) with
ν ∈ L1(0,2π), verifying the partial differential equation in (3.1) and the bound-
ary conditions almost everywhere.

Let ϕ ∈ C∞
J0
(Π) be a test function from the class in (2.1), with support

in the bounded rectangle Πξϕ
= (0,2π)× (0,ξϕ) for some ξϕ > 0. Multiply-

ing the equation in (3.1) with ϕ, integrating over Π, and applying the Gauss-
Ostrogradsky theorem, we obtain:

0 =
x

Π

∆u(x,y)ϕ(x,y)dxdy =
x

Πξϕ

∆u(x,y)ϕ(x,y)dxdy

=−
x

Πξϕ

∇u(x,y)∇ϕ(x,y)dxdy+
∫

∂Πξϕ

ϕ(x,y)
∂u(x,y)

∂nnn
dl
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where nnn is the outer normal to ∂Πξϕ
and ξϕ depends on the support of ϕ.

Applying the boundary conditions of (3.1) and taking into account that on
J0 we have nnn = (−1,0), we obtain:

x

Π

∇u∇ϕ dxdy =−
∫

∞

0
ϕ(0,y)h(y)dy, ∀ϕ ∈C∞

J0
(Π).

This permits us to give the following notion of a weak solution.

Definition 3.1. A function u ∈W 1,p
ν (Π), p ∈ (1,∞), is a weak solution of (3.1)

if it is differentiable in the distributional sense and satisfies:
x

Π

∇u∇ϕ dxdy+
∫

∞

0
ϕ(0,y)h(y)dy = 0,

u(0,y) = u(2π,y), y ∈ (0,∞),

u(x,0) = f (x), x ∈ (0,2π),

(3.2)

for each ϕ ∈C∞
J0
(Π).

Theorem 3.2. Let ν ∈ Ap(0,2π), 1 < p < ∞ and let f ∈W 1,p
ν (0,2π) such that

f (0) = f (2π) = 0 and h ∈ L1(R+). If problem (3.2) has a weak solution u ∈
W 1,p

ν (Π) then it is unique.

Proof. To prove the uniqueness of the weak solution of (3.2), it suffices to show
that the homogeneous problem:

x

Π

∇u∇ϕ dxdy = 0, ϕ ∈C∞
J0
(Π),

u(0,y) = u(2π,y), y ∈ (0,∞),

u(x,0) = 0, x ∈ (0,2π),

(3.3)

has only the trivial solution.
For any bounded domain Πξ , we have (as in (2.11))

∥u∥W 1,1(Πξ )
≤C∥u∥W 1,p

ν (Πξ )
< ∞,

with a constant C =C(p,∥ν∥L1(0,2π), [ν ]p).

Thus, u has a trace uξ on the upper boundary Jξ = {(x,ξ ) : x ∈ (0,2π)},
and by the absolute continuity on lines of the Sobolev functions W 1,1, we have:

uξ (x) := u(x,ξ ) =
∫

ξ

0

∂u(x,y)
∂y

dy,

u0(x) = 0, for a.e. x ∈ (0,2π).

(3.4)
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It follows that uξ ∈ Lp
ν(0,2π), and moreover, the estimate:

∥uξ∥Lp
ν (0,2π) ≤ cξ∥u∥W 1,p

ν (Π)
, (3.5)

is valid, with a constant cξ depending only on ξ and p.
To write the developing in series of the solution of (3.3), we calculate the

biorthonormal coefficients of u(x,y) as in (2.12). These coefficients are given
by:

uc
0(y) = (uy;ϑ

c
0 ) =

1
2π2

∫ 2π

0
uy(x)(2π − x)dx,

uc
n(y) = (uy;ϑ

c
n ) =

1
π2

∫ 2π

0
uy(x)(2π − x)cos(nx)dx,

us
n(y) = (uy;ϑ

s
n) =

1
π2

∫ 2π

0
uy(x)sin(nx)dx.

(3.6)

Thus, the biorthonormal series rapresentation of u is:

u(x,y) = uc
0(y)+

∞

∑
n=1

(
uc

n(y)cos(nx)+us
n(y)xsin(nx)

)
. (3.7)

It follows directly from (3.5) and the initial condition in (3.3) that ∥uy∥Lp
ν (0,2π)

vanishes as y → 0+. Consequently, we have uc
0(0) = uc

n(0) = us
n(0) = 0.

For any ψ(y) ∈ C∞
0 (R+), the functions ϕn(x,y) = ψ(y)sin(nx) belong to

C∞
J0
(Π). Moreover, ∂u

∂y ∈ L1(Πξ ) (see [13]), the functions {uc
n,u

s
n}n∈N0 are dif-

ferentiable, and
dus

n(y)
dy

=
1

π2

∫ 2π

0

∂u(x,y)
∂y

sin(nx)dx.

Multiplying both sides by ψ ′(y), integrating in y over R+, using the fact that u
solves problem (3.3) and taking into account that ψ(0) = 0, we obtain∫

∞

0

dus
n(y)
dy

ψ
′(y)dy =

1
π2

x

Π

∂u(x,y)
∂y

ψ
′(y)sin(nx)dxdy

=
1

π2

x

Π

∂u
∂y

∂ϕn

∂y
dxdy =− 1

π2

x

Π

∂u
∂x

∂ϕn

∂x
dxdy

=− n
π2

x

Π

∂u(x,y)
∂x

ψ(y)cos(nx)dxdy

=− n2

π2

x

Π

u(x,y)ψ(y)sin(nx)dxdy

=−n2
∫

∞

0
us

n(y)ψ(y)dy.

(3.8)
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To estimate the Lp-norms of the coefficients, we calculate:

|us
n(y)|p ≤

1
π2p

(∫ 2π

0
|u(x,y)|dx

)p

=
1

π2p

(∫ 2π

0
|u(x,y)|ν(x)

1
p ν(x)−

1
p dx

)p

≤ 1
π2p

(∫ 2π

0
ν(x)−

p′
p dx

) p
p′
∫ 2π

0
|u(x,y)|pν(x)dx,

and hence,
∥us

n∥Lp(R+) ≤C∥u∥Lp
ν (Π),

with a constant =C(p,∥ν∥L1(0,2π), [ν ]p).

In a similar way, we establish that dus
n

dy ∈ Lp(R+). Moreover, direct calcu-
lations show that the second derivative of us

n exists in the distributional sense.
Precisely,

∫
∞

0

d2us
n(y)

dy2 ψ(y)dy =
1

π2

x

Π

∂ 2u(x,y)
∂y2 ψ(y)sin(nx)dxdy

=− 1
π2

x

Π

∂u(x,y)
∂y

ψ
′(y)sin(nx)dxdy

= n2
∫

∞

0
us

n(y)ψ(y)dy,

which implies d2us
n

dy2 = n2us
n for almost each y ∈ R+, and us

n ∈W 2,p(R+).

Hence, for all n ∈ N, the functions us
n solve:

d2us
n(y)

dy2 = n2us
n(y) for a.e. y ∈ R+

us
n(0) = 0 lim

y→∞
|u(x,y)|= 0.

(3.9)

Since we are looking for bounded solutions, we consider general solution of
the form us

n(y) = ae−ny. It is easy to see that the initial condition in (3.9) gives
a = 0, which means (3.9) has only trivial solution. Hence us

n(y) = 0.
In order to calculate the coefficients uc

n we use similar reasoning, defining
the functions

φ0(x,y) =
1

2π2 ψ(y)(2π − x), φn(x,y) =
1

π2 ψ(y)(2π − x)cos(nx)

for any choice of ψ ∈C∞
0 (R+).



604 B.T. BILALOV - N.P. NASIBOVA - L. SOFTOVA - S. TRAMONTANO

Calculations similar to those above, and using the boundary conditions of
(3.3), give∫

∞

0

duc
0(y)
dy

ψ
′(y)dy =

1
2π2

x

Π

∂u(x,y)
∂y

ψ
′(y)(2π − x)dxdy

=
x

Π

∂u
∂y

∂φ0

∂y
dxdy =−

x

Π

∂u
∂x

∂φ0

∂x
dxdy

=
1

2π2

∫
∞

0

(∫ 2π

0

∂u(x,y)
∂x

dx
)

ψ(y)dy = 0.

From the Fundamental Lemma of Calculus of Variations, it follows:

d2uc
0

dy2 = 0 =⇒ uc
0(y) = ay+b.

Since uc
0 ∈ Lp(R+), it is necessary that a = b = 0.

On the other hand, for all n ∈ N, we have:∫
∞

0

duc
n(y)
dy

ψ
′(y)dy =

1
π2

x

Π

∂u
∂y

(2π − x)cos(nx)ψ
′(y)dxdy

=
x

Π

∂u
∂y

∂φn

∂y
dxdy =−

x

Π

∂u
∂x

∂φn

∂x
dxdy

=
1

π2

x

Π

∂u
∂x

(
cos(nx)+(2π − x)nsin(nx)

)
ψ(y)dxdy.

(3.10)

From the boundary conditions of (3.3), the definition of φn, it follows:

1
π2

∫ 2π

0

∂u(x,y)
∂x

cos(nx)dx = nus
n(y)

1
π2

∫ 2π

0

∂u(x,y)
∂x

(2π − x)nsin(nx)dx = nus
n(y)−n2uc

n(y).
(3.11)

Combining (3.10) and (3.11), keeping in mind that us
n(y) = 0 for y ∈ R+,

and arguing as above, we obtain:∫
∞

0

(
duc

n(y)
dy

ψ
′(y)+

(
n2uc

n(y)−nus
n(y)

)
ψ(y)

)
dy = 0,

which implies (after integrating by parts the first term):∫
∞

0

(
− d2uc

n(y)
dy2 +n2uc

n(y)−nus
n(y)

)
ψ(y)dy = 0.
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From the Fundamental Lemma of Calculus of Variations, it follows that uc
n

solves the following problem
d2uc

n(y)
dy2 = n2uc

n(y) for a.e. y ∈ R+

uc
n(0) = 0

(3.12)

where we used the result that us
n = 0. Hence, this problem has only the trivial

solution in W 2,p(R+), that is, uc
n(y) = 0 for all y ∈ R+ and any n ∈ N.

Consequently, all biorthonormal coefficients of uy(x) are equal to zero for
almost each x ∈ (0,2π), and hence u(x,y) = 0 for almost each (x,y) ∈ Π.

Concerning the question of existence of weak solutions of (3.2), we study
the particular case when h = 0.

Theorem 3.3. Let ν ∈ Ap(0,2π) with 1 < p < ∞ and f ∈W 1,p
ν (0,2π) such that

f (0) = f (2π) = 0. Then the problem
x

Π

∇u∇ϕ dxdy = 0 ∀ϕ ∈C∞
J0
(Π)

u(0,y) = u(2π,y) y ∈ (0,∞)

u(x,0) = f (x) x ∈ (0,2π)

(3.13)

has a unique solution satisfying the estimate:

∥u∥W 1,p
ν (Π)

≤ c∥ f∥W 1,p
ν (0,2π)

.

Proof. Let u ∈ W 1,p
ν (Π) and {uc

n(y),u
s
n(y)}n∈N0 be the biorthonormal coeffi-

cients of u(x,y) with respect to the system (2.6). Consider the biorthonormal
series (3.7) related to u. Since problem (3.13) is not homogeneous, we obtain:

uy(x) =
∫ y

0

∂u(x,τ)
dτ

dτ = u(x,y)− f (x) for a.e. x ∈ (0,2π).

It is easy to see that uy ∈ Lp
ν(0,2π) for a.e. y ∈ R+. Moreover

∥uy∥Lp
ν (0,2π) = ∥u(·,y)− f (·)∥Lp

ν (0,2π) → 0 as y → 0+.

Our goal is to prove that the series

u(x,y) = uc
0(y)+

∞

∑
n=1

(
uc

n(y)cos(nx)+us
n(y)xsin(nx)

)
(3.14)

with
uc

n(y) = (u;ϑ
c
n ), us

n(y) = (u;ϑ
s
n),
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is a solution of (3.3).
First of all, note that the total convergence in Lp

ν(Π) follows analogously to
the convergence of (2.14).

By formally deriving (3.14) and arguing as above, we obtain the following
problems: 

d2us
n(y)

dy2 = n2us
n(y) y ∈ R+

us
n(0) = ( f ;ϑ s

n) n = 1,2, . . . .
(3.15)

Due to the boundedness of us
n as y → ∞, the unique solution of problem (3.15)

is:
us

n(y) = ( f ;ϑ
s
n)e

−ny.

By similar arguments applied to {uc
n}, we obtain:

d2uc
n(y)

dy2 = n2uc
n(y)−nus

n(y) for a.e. y ∈ R+

uc
n(0) = ( f ;ϑ c

n ) n = 0,1, . . .
(3.16)

If n = 0, it follows easily that uc
0 = ( f ;ϑ c

0 ). For n ∈N, the solutions vanish-
ing as y → ∞ are:

uc
n(y) = ( f ;ϑ

c
n )e−ny +

1
2

y( f ;ϑ
s
n)e−ny.

Thus, the series development of u(x,y) becomes:

u(x,y) = ( f ;ϑ
c
0 )+

∞

∑
n=1

(
( f ;ϑ

c
n )+

1
2

y( f ;ϑ
s
n)
)

cos(nx)e−ny

+
∞

∑
n=1

( f ;ϑ
s
n)xsin(nx)e−ny.

(3.17)

Calculating the derivative with respect to x, we obtain

ux(x,y) =−
∞

∑
n=1

(
( f ;ϑ

c
n )+

1
2

y( f ;ϑ
s
n)
)
nsin(nx)e−ny

+
∞

∑
n=1

( f ;ϑ
s
n)
(

sin(nx)+ xncos(nx)
)

e−ny

=
∞

∑
n=1

(
( f ;ϑ

s
n)− ( f ;ϑ

c
n )n−

1
2

y( f ;ϑ
s
n)n

)
sin(nx)e−ny

+
∞

∑
n=1

( f ;ϑ
s
n)xncos(nx)e−ny =: v(x,y)+w(x,y).

(3.18)



LAPLACE EQUATION IN WEIGHTED SOBOLEV SPACES 607

We need to show the convergence of this series in Lp
ν(Π).

Let us start with w(x,y); the series v(x,y) can be treated in a similar manner.
By (2.3) and (3.6), we have

w(x,y) =
∞

∑
n=1

( f ;ϑ
s
n)xncos(nx)e−ny =

1
π2

∞

∑
n=1

f ′n
c xcos(nx)e−ny.

Let δ be as in Lemma 2.1, and take α = 1+δ , so that α ′ = 1+δ

δ
is the conjugate

of α. Applying Hölder’s inequality for f ∈ Lp
ν(0,2π) and Lemma 2.1, we obtain∫ 2π

0
| f (x)|pν(x)dx ≤C

(∫ 2π

0
| f (x)|pα ′

dx
) 1

α ′
(3.19)

where C = C(p, [ν ]p,∥ν∥L1(0,2π)). In order to estimate the norm of w, we con-
sider the following two cases:

• p ≥ 2 : Here, p1 = pα ′ > 2, p′1 ∈ (1,2), and p/p′1 > 1. Then, by (3.19),
for any fixed y ∈ R+, we get

∥w(·,y)∥p
Lp

ν (0,2π)
≤C

(∫ 2π

0
|w(x,y)|p1 dx

) p
p1

≤C
( ∞

∑
n=1

| f ′n
c|p′1e−np′1y

) p
p′1 ≤C

∞

∑
n=1

| f ′n
c|pe−npy

where the last inequality holds since p/p′1 > 1. Integrating with respect
to y and using Hölder’s inequality for sequence, we obtain:
x

Π

|w(x,y)|pν(x)dxdy ≤C
∞

∑
n=1

| f ′n
c|p

∫
∞

0
e−npy dy

=C
∞

∑
n=1

| f ′n
c|p

n
≤C

( ∞

∑
n=1

1
nβ ′

) 1
β ′
( ∞

∑
n=1

| f ′n
c|pβ

) 1
β

≤C∥ f ′∥p
L(pβ )′ (0,2π)

(3.20)

for any β > 1, where the constant C depends on ν and p.

Let q ∈ (1, p) be as in Lemma 2.1, and take r = p/q. Then 1 < r < p and
by Hölder’s inequality, we have:∫ 2π

0
| f ′|r dx =

∫ 2π

0
| f ′|

p
q ν

1
q ν

− 1
q dx

≤
(∫ 2π

0
ν
− 1

q−1 dx
) q−1

q
(∫ 2π

0
| f ′|pν dx

) 1
q

≤C∥ f ′∥r
Lp

ν (0,2π)

(3.21)
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where C depends on [ν ]q and p.

Chosen β > 1 such that β1 = pβ > p ≥ 2 and 1 < β ′
1 < r. By the bound-

edness of (0,2π), we have

∥ f ′∥
Lβ ′1 (0,2π)

≤C∥ f ′∥Lr(0,2π). (3.22)

Using (3.20), (3.21), and (3.22), we obtain

∥w∥Lp
ν (Π) ≤C∥ f ′∥

Lβ ′1 (0,2π)
≤C∥ f ′∥Lr(0,2π)

≤C∥ f ′∥Lp
ν (0,2π) ≤C∥ f∥W 1,p

ν (0,2π)
.

• 1 < p < 2 : Taking α = 1+ δ with 0 < δ < p/(2− p), it follows that
p1 = pα ′ > 2. The arguments proceed similarly, obtaining the bounded-
ness of the Lp

ν norms via the norm of f .

Considering all the series in the expressions for u, ux, and uy, we can esti-
mate their norms, similarly. Unifying these estimates, we obtain:

∥u∥W 1,p
ν (Π)

≤C∥ f∥W 1,p
ν (0,2π)

,

where C is independent of f . Moreover, direct calculations verify that u satisfies
the differential equation in (3.13) in the weak sense.

Finally, to verify that u satisfies the boundary conditions in (3.13), we ex-
amine the trace operators θ0, θ2π , and θJ that are the trace operators on J0,J2π

and J respectively.
Let us show that θJu = f . Since u ∈ W 1,1(Π), then θJu ∈ L1(0,2π), hence

we need to prove only that θJu = f almost everywhere on J. Consider, for all
m ∈ N, the partial sums

um(x,y) = uc
0(y)+

m

∑
n=1

(
uc

n(y)cos(nx)+us
n(y)xsin(nx)

)
(x,y) ∈ Π

and taking the trace on J, we obtain:

θJum(x) = um(x,0)

= ( f ;ϑ
c
0 )+

m

∑
n=1

(
( f ;ϑ

c
n )cos(nx)+( f ;ϑ

s
n)xsin(nx)

)
= Sm( f )(x)

where the last expression is the projector of f with respect to system (2.7).
Hence, by Theorem 2.5, we have:

lim
m→∞

∥Sm( f )− f∥Lp
ν (0,2π) = lim

m→+∞
∥θJum − f∥Lp

ν (0,2π) = 0.
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The convergence also holds with respect to the norm in L1(0,2π).
On the other hand, by the classical theory,

lim
m→∞

∥θJum −θJu∥L1(0,2π) = 0

and hence θJu = f almost everywhere on J.
It is easy to check that um(0,y) = um(2π,y) for all y > 0 and m ∈ N, and

arguing as above, we can obtain that θJ0u = θJ2π
u.

The following result gives a necessary condition under which the weak so-
lution of (3.13) is also a strong one.

Theorem 3.4. Let the conditions of Theorem 3.3 hold. Then any function that
is a weak solution of (3.13) and belongs to W 2,p

ν (Π) is a strong solution of
∆u(x,y) = 0 for a.e. (x,y) ∈ Π

u(y)|J0 = u(y)|J2π
for a.e. y ∈ (0,∞)

u(x,0) = f (x) for a.e. x ∈ (0,2π)

ux(0,y) = 0 for a.e. y ∈ (0,∞).

(3.23)

Proof. For any η(x)∈C∞
2π
(J) and ψ(y)∈C∞

0 (R+), we consider the test function

ϕ(x,y) = ψ(y)η(x) ∈C∞
J0
(Π).

Integrating by parts, we obtain:

0 =
x

Π

∇u∇ϕ dxdy =
∫

∞

0

∫ 2π

0
(uxϕx +uyϕy)dxdy

=
∫

∞

0
ψ(y)

(∫ 2π

0
uxη

′(x)dx
)

dy+
∫ 2π

0
η(x)

(∫
∞

0
uyψ

′(y)dy
)

dx

=−η(0)
∫

∞

0
ψ(y)ux(0,y)dy−

∫
Π

ϕ∆udxdy.

(3.24)

The function ψ is a test function, so suppψ(y) ⊂ [0,ξ ] for some ξ > 0. Then
we can write (3.24) in the form

x

Πξ

ϕ(x,y)∆udxdy =−η(0)
∫

ξ

0
ux(0,y)ψ(y)dy. (3.25)

Consider the following systems of functions:

{ηn(x)}n∈N0 = {η
c
0 = 1, η

c
n = cos(nx), η

s
n = sin(nx)}n∈N, (3.26)

{ψn(y)}n∈N0 =

{
ψ

c
0 = 1, ψ

c
n =

cos(2πny)
ξ

, ψ
s
n =

sin(2πny)
ξ

}
n∈N

, (3.27)
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and the corresponding modified ones:

η̃n(x) = x(2π − x)ηn(x) ∈C∞
0 (J),

ψ̃n(y) = y(ξ − y)ψn(y) ∈C∞
0 ([0,ξ ]).

Taking the test function in (3.24) in the form

ϕ̃mn(x,y) = η̃m(x)ψ̃n(y) ∈C∞
0 (Πξ )

for any m,n ∈ N0, we obtain∫ 2π

0

(∫
ξ

0
ψ̃n(y)∆udy

)
x(2π − x)ϕ(x)dx = 0. (3.28)

Since u ∈W 2,p
ν (Π), it follows that ∆u ∈ L1(Π) and

F(x) :=
∫

ξ

0
ψ̃n(y)∆udy ∈ L1(0,2π).

Then, by the Lebsgue theorem, (3.28) implies F(x) = 0 for almost each
x ∈ J, and hence ∆u = 0 for almost each (x,y) ∈ Πξ . Due to the arbitrariness of
ξ , it follows that

∆u = 0 for a.e. (x,y) ∈ Π.

From (3.25), we obtain ∫
∞

0
ux(0,y)ψ(y)dy = 0

for all ψ ∈C∞
0 ([0,∞)), and hence

ux(0,y) = 0 for a.e. y > 0.
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