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GLOBAL SOLVABILITY OF THE LAPLACE EQUATION
IN WEIGHTED SOBOLEYV SPACES

B.T. BILALOV - N.P. NASIBOVA - L. SOFTOVA - S. TRAMONTANO

We consider a non-local boundary value problem for the Laplace equ-
ation in an unbounded strip, studying the weak and strong solvability of
the problem within the framework of the weighted Sobolev space Wvl P
with a Muckenhoupt weight. Utilising tools from non-harmonic analy-
sis, we prove that any weak solution belonging to sz P is also a strong
solution and satisfies the corresponding boundary conditions. It is worth
noting that such problems do not fall within the scope of the general the-
ory of elliptic equations and therefore require a specialized approach.

Keywords: Laplace equation, infinite strip, biorthonormal systems, weak and
strong solutions, weighted Sobolev spaces.

MSC2020: Primary 35A01; Secondary 35J25; 42C05; 42C15

1. Introduction

The classical existence and regularity theory for linear PDEs leaves untreated
many problems arising in mechanics and mathematical physics. An example
of such a model problem is the following degenerate elliptic equation studied
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by Moiseev in [14]. More precisely, he considered the following degenerate
equation in an infinite strip:

ym”xx+u}y =0, (x,y) € (0727[) X (0700)7

u(r0) = (), xe(0.2m) W
(0 y)_ (271"7)))7 yG(O,OO),
”x(o Y) 0, € (va)’

with m > —2 and f € C>%[0,2x], where & € (0, 1). This problem is non-local,
and the boundary conditions are given on semi-infinite lines. Under the natural
assumption of boundedness of the solution at infinity, the author obtained the
existence and uniqueness of a classical solution and an explicit integral repre-
sentation for it, allowing the relaxation of regularity assumptions on f.

Similar boundary problems for mixed-type equations were investigated by
Frankl in his study on the transonic flow around symmetric airfoils (see [6, 7]).
Further results on the existence of classical solutions of problem (1.1) were
obtained in [2] for uniformly elliptic equations and in [10] for multidimensional
parabolic equations.

We start our studies with the case m = 0, while the degenerate problem
is a subject of further research. Our goal is twofold: to obtain strong/weak
solvability of (1.1) and to study the regularity of the solutions in new function
spaces. Our interest is focused on weighted Lebesgue spaces L}, where p €
(1,00), and the weight function v belongs to the Muckenhoupt class A,,. Since
we study problem (1.1) in an unbounded domain with respect to y, we assume
that the weight depends only on x. The Sobolev spaces are built upon functions
having distributional derivatives in some weighted x-space and integrable with
respect to y.

Starting with the existence of weak solutions in W\} P we show that under
suitable boundary conditions, this weak solution is also strong.

Let us note that this problem cannot be treated with the classical methods
developed for linear elliptic operators. Our technique is based on spectral theory
and the approach developed in [14]. Specifically, we use biorthonormal systems
and Fourier series techniques in Banach function spaces, as described by Duffin
and Schaeffer [5] (see also [11]). This approach extends harmonic analysis
methods beyond Hilbert spaces to apply Fourier series methods (see also [3, 15,
17]).

The present paper extends some results obtained in [2, 12, 14], transitioning
from classical to generalized solutions.

In the following, we use the standard notation:

* R, =(0,) and Ng =NU{0};
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 T1=(0,27) x (0,00) is an unbounded strip in R? with boundary
oIl = JyUJ U Jay,
where

J={x€(0,2m), y =0},
Jo={x=0,y€ (0,0)},
Jon ={x=2m, y € (0,0)};

* G5 () ={n(x) € c([0,2x]) : n(2m) = O};

* The letter C indicates a positive constant, whose value may vary from line
to line.

2. Auxiliary Results

Consider the following set of test functions:
Cpp () = {‘P e C*(II) : @|yup, =0, 3 &y > 0 such that

@2.1)

P(x,y) =0 ¥ (1,y) €[0,27] x [€,) }.

Let v: (0,27) — [0, 0] be a weight function such that v € L'(0,27), v(0) =

v(2r), and |v=!({0;00})| = 0. For a fixed p € (1,), we consider the weighted
Lebesgue space LY (1), endowed with the norm:

oo 2r 1
g = [ ([ el viw)dx)” a
0 0

The corresponding v-weighted Sobolev space Wy’ (I1) is defined as the set
of all measurable functions having distributional derivatives up to order m in
LY (1), for which the following norm is finite:

lullwrrqry =Y, D%l my-

0<|a|<m

For p € (1,0), we denote the Lebesgue and Sobolev spaces over the interval
(0,27) as L} (0,27) and Wy, "*(0,27), respectively, endowed with the respective
norms:

2m 1 m
Moz = ([ 1F@PvEa)"s flweroan = & 1Pl
k=0
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For completeness, we define the Muckenhoupt class A, (0,27) of weights v
defined on R, 27-periodic and that satisfy the condition:

sup (|}|/Iv(x) dx) (|}|/Iv(x)_ﬁll dx)p_l = [V]p <o, 2.2)

where the supremum is taken over all bounded intervals I C R, (for sake of pe-
riodicity, it is enough taking I C (0,27)) and [V], is the Muckenhoupt constant
of the weight v.

An immediate consequence of the definition (2.2) is that if v € A,(0,27),
then v, v~ 1/(P=1) ¢ LlloC (R). Moreover, the following properties hold (cf. [8]):

Lemma 2.1. Let v € A,(0,27), p € (1,00) :
* Inclusion property: There exists g € (1, p) such that v € A4(0,27).

» Reverse Holder inequality: There exists 6 > 0 depending only on p and
[V]p such that

(77 v ) ™ < 2 [viaan

for each interval I, where the constant Cg does not depend on 1.

For our purpose, we additionally assume that the weight satisfies the condi-
tion v(0) = v(2x).

The next Lemma gives a characterization of the weighted spaces that we are
going to use, and the proof follows easily from [1, Lemma 2.6].

Lemma 2.2. Let v € A,(0,27), with 1 < p < eo. Then:
1. L(0,27) C L'(0,27) is continuously embedded.

2. C3(0,2m) = LY(0,27), where the closure is taken with respect to the norm
in Ly (0,27).

In what follows, we need the Young-Hausdorff inequality related to the clas-
sical system of functions {1,cos(nx),sin(nx) },eN.

Theorem 2.3 (Young-Hausdorff [13]). Let f € L”(0,27), 1 < p < 2. Consider,

for n € Ny, the integrals

o= [T rweosmydr, = [ fsinmdx. @)
0 0
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Then {f5, fa}nen, € ¢y where p' = p/(p—1), and there exists a constant C,
depending only on p, such that

1
7

(1617 + X (517 +1£17)) 7 < Clfllerom- (24)
n=1

Conversely, if {f5, fi}nen, C€p, 1 < p <2, then f € LY (0,27), and there

exists a constant C', depending only on p, such that
(e} L
P
1 lloom <C (1517 + X (517 +1517)) " 2.5)
n=1

Definition 2.4 ( [4, 16]). Let (X, || -||) be a Banach space, {%, },en be a vector
sequence in X and {y, } e be a sequence in the dual space X*, the pair (y,;9,)
is a biorthonormal system if and only if

(ym; 19n) - amna Vm,n c N7

where (-,-) denotes the duality pairing and &, is the Kronecker delta:

P 1 ifm=n,
"o if m #n.

If (X,(-,-)) is an Hilbert space, the definition of biorthonormal system is the
same, just replacing the duality pairing with his inner product.

Neither the sequence {y,} nor {3,} is required to be orthonormal: it is
easy to exhibit an example of biorthonormal system that is not orthonormal
(see {y} }nen in the next). The sequences {y,} and {®,} are called biorthog-
onal bases if they are complete in the corresponding space. In this case, each
sequence {y,} and {¥,} spans the space (or a dense subspace if the space is
infinite-dimensional).

We introduce the following systems of functions:

yo=1, y.(x)=cos(nx), yi(x)=uxsin(nx), n>1, (2.6)
¢ 2T —x . 2T —x s |
B (x) = EYa Oy (x) = = cos(nx), ¥ (x) = =) sin(nx), n>1. (2.7)

Then the sequences

{yn}neNo = {ﬁJi}ner {1-9n}n€No = {1967 19;; ﬂ;}neN; (28)
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indeed form a biorthonormal system in L*(0,27). More precisely, for any func-
tion f € L?(0,27) the linear continuous operator (f; 1) acts on L*(0,27) as

)= [ o ar

providing the pairing necessary to verify biorthonormality conditions. Direct
calculations show that the sequences (2.9) are biorthonormal, that is:

(yk’ n) 6kn7 (yk’ ) 6/{117
uoy) =0,  (:d)=0

forming a biorthonormal system in L*(0,27) according to Definition 2.4. More-
over, (2.6) forms a Riesz basis in L*>(0,27) (cf. [14]), meaning we can expand
any function f € L?(0,27) in a biorthonormal series of the form

2.9

F) = (£:06)y +Z(f FAEGME). @10

Our goal is to extend this theory to weighted Lebesgue spaces.

Theorem 2.5. Let v € A,(0,27) with p € (1,00) and v(0) = v(27). Then the
system (2.6) forms a basis in L})(0,27).

Proof. First, we need to show that (2.6) is a minimal system. To achieve this, it
is sufficient to prove that (2.7) is a biorthonormal system to (2.6) in L} (0,27).

Let us observe that the functional by.(-) = (¥5;-), n € No is uniformly
bounded in L} (0,27). Indeed, for any f € L}(0,27), using the uniform bound-
edness of the system {3, } and Holder’s inequality, we obtain:

boc(PI < 2 [ @IV V(o) ds

T Jo

21 1 , L/
S 7217</O |f(x)|l’v(x)dx) p(/JV(X)_%dx>p (211)
1 _1
S 4HfHL€<O.,27'C) [V]g HvHLll(’o’zn.) S C||f”L€(027c)

This implies that by (-) € (L}(0,27))" for all n € No.
Furthermore, using (2.9), we have:

boc (Vi) = &, boc(3) =0 VkneN,
Similarly, it can be shown that by, (-) € (L}(0,27))* and satisfies

bys(V}) = 8, bos(05) =0, Vk,neN.
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This proves the biorthogonality of (2.7) and (2.6) in L} (0,27), thereby estab-
lishing the minimality of (2.6) in L} (0,27).

Next, we need to demonstrate that (2.6) is also complete in L} (0,27). By
density arguments and Lemma 2.2, it suffices to show that any function in
Ci(0,2m) can be approximated by linear combinations of functions from the
system (2.6) in the space L} (0,27).

Let f € Cy(0,27), we define

2T —x
ﬂz

8(x) = ),  geCG(0,27).

For all n € N, we take the biorthogonal coefficients of f :

1 1
(f1%) =53 f(X)(27f—X)dx=§(g;1)=§go,
(f399) :% A f(x) (27 — x) cos(nx) dx = (g;cos(nx)) = g, (2.12)
(f105) = 7:2 7 p(x)sin(ux) dx = %( Fosin(ny)) = % I

Integrating by parts twice using the regularity of f, we obtain the bounds:

1 2= C
—/ |g" (x) cos(nx) | dx < o

n? Jo

[(fs ) <

(2.13)
1

n?m?

/M | £ (x) sin(nx)| dx < <
0

n2’

[(f3 )] <

These estimates guarantee the total convergence of the biorthonormal series:
F(x) = (f;95) + Z ( :9¢) cos(nx) + (f; ﬂ,f)xcos(nx)), (2.14)

and also uniform convergence by the Weierstrass theorem.

According to the results of [14], the system (2.9) forms a basis in L>(0,27),
and hence F = f. By Lemma 2.2, it also follows that (2.14) converges to f in
L4(0,27), and therefore, (2.9) is a basis in L} (0,27). To confirm this, consider
the projectors:

Z F30)yi(x Z
’; k=1 (2.15)
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Due to the orthogonality of the trigonometric system, the L% (0,27 )-norm of
(2.15) can be estimated as:

—H ka sin(kx)

l n
IS lugoom < || 360+ X gicostho)],

LC(O,Zn)'

In the first term, we have a partial sum of the Fourier series for g € L}(0,27),
while in the second term, we have the corresponding partial sum for f € L} (0,27).
Since the trigonometric system forms a basis in L} (0,27) if and only if v €
Ap(0,27) (cf. [9]), we obtain:

[Snm ()22 0.27) < C(||8||L€(0,27r) + ”fHL’V’(o,zn)) <cllfllezo2m)

where we have used that |g(x)| < C|f(x)| forx € (0,27). The last estimate holds
for all n,m € N, with a constant independent of f. This implies that the projec-
tors {S,n} are uniformly bounded in L% (0,27) and hence, the system (2.9)
forms a basis in L} (0,27). O

3. Solvability results

Let us consider the following non-local problem for the Laplace equation, writ-
ten in formal way:

Au(x,y) =0 fora.e. (x,y

~—

ell
0,00)
0,2m)
0,0)

3.1

u(0,y) =u(2m,y) forae.ye
(x) forae. x €

u(x,0) = f(x
u(0,y) = h(y) forae.ye

—~ o~ o~

where we initially suppose that f € L'(0,27x) and i € L'(R,).

By weighted strong solution of (3.1), we mean a function u € W\% P(TT) with
v € L'(0,2x), verifying the partial differential equation in (3.1) and the bound-
ary conditions almost everywhere.

Let ¢ € C7(TI) be a test function from the class in (2.1), with support
in the bounded rectangle I1g, = (0,27) x (0,&y) for some &y > 0. Multiply-
ing the equation in (3.1) with ¢, integrating over I1, and applying the Gauss-
Ostrogradsky theorem, we obtain:

0= fIAu x,y)Q(x,y)dxdy = fJAu x,¥)@(x,y) dxdy
I,

— —fj Vu(x,y)Veo(x,y) dxdy+/ (x,y) aug;,y) dl

ng,
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where n is the outer normal to 8H§¢ and &, depends on the support of ¢.
Applying the boundary conditions of (3.1) and taking into account that on
Jo we have n = (—1,0), we obtain:

[[vuvody =~ [“pOht)dy, Vo eCim).
I1

This permits us to give the following notion of a weak solution.

Definition 3.1. A function u € Wvl"p(H), p € (1,00), is a weak solution of (3.1)
if it is differentiable in the distributional sense and satisfies:

ﬂ VuVedxdy + /0 @(0,y)h(y)dy =0,

M(Oy)z u(2m,y), y € (0,00),
u(x,0) = f(x), x € (0,27),

for each ¢ € C7 (IT).

3.2)

Theorem 3.2. Let v € A,(0,27), 1 < p < oo and let f € Wy?(0,27) such that
f(0) = f(2m) = 0 and h € L'(R). If problem (3.2) has a weak solution u €
W, P (1) then it is unique.

Proof. To prove the uniqueness of the weak solution of (3.2), it suffices to show
that the homogeneous problem:

H VuVedxdy =0, ¢ <Cy(I0),
M(O y)=u(2m,y),  y€(0,00), (3.3)
u(x,0) = x € (0,2m),

has only the trivial solution.
For any bounded domain Hg, we have (as in (2.11))

lelhwig) < Cllllyrog,y <=

with a constant C = C(p, [|V||11(0.27): [V]p)-

Thus, u has a trace u* on the upper boundary Je ={(x,&): x€(0,2m)},
and by the absolute continuity on lines of the Sobolev functions W', we have:

€ du(x
F0 =t 8) = [

u®(x) =0, fora.e. x € (0,2m).

3.4)
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It follows that u® € L%(0,27), and moreover, the estimate:
141l 250.22) < € llullyypo - (3.5)

is valid, with a constant c¢g depending only on & and p.
To write the developing in series of the solution of (3.3), we calculate the
biorthonormal coefficients of u(x,y) as in (2.12). These coefficients are given

by:

1 27
uh(y) = ('3 95) = 5 /O W () (27 — x) dx,
u,(v) = (5 0,) = % /27r W (x) (2w — x) cos(nx) dx, (3.6)
0
1 2
0) = (019 = = [ w@)sin(rya.

Thus, the biorthonormal series rapresentation of u is:
u(x,y) = ug(y) + Z ( )cos(nx) +u, (y )xsin(nx)). (3.7)

It follows directly from (3.5) and the initial condition in (3.3) that [|w”{| 15 ¢ o)
vanishes as y — 07. Consequently, we have u§(0) = u5(0) = u;,(0) = 0.

For any y(y) € C5(R;), the functions @, (x,y) = y/(y)sin(nx) belong to
C5; (IT). Moreover, 3—;‘, € L'(ITg) (see [13]), the functions {u, u},}nen, are dif-
ferentiable, and

sin(nx) dx.

duy(y) _ 1 /2” du(x,y)
dy — wlJo dy
Multiplying both sides by y’(y), integrating in y over R, using the fact that u
solves problem (3.3) and taking into account that y(0) = 0, we obtain

/0 dudy( ( jj Julx y y) sin(nx) dxdy
=15 aa(i" iy == [ G o
fj ulx y y) cos(nx) dxdy (3.8)

- jju(x,y>w<y> sin(nv) dxdy
II
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To estimate the LP-norms of the coefficients, we calculate:

P < ([ eyt
— 71:12[)(/02” |u(x,y)|v(x)%v(x)_% dx)p
< /OM V() ) /02”| () PY()dx,

wllr e,y < Cllull o

and hence,

with a constant = C(p, [ V|11 (0,27)» [v]p).

In a similar way, we establish that < " € L?(R;). Moreover, direct calcu-
lations show that the second derivative of u;, exists in the distributional sense.
Precisely,

© d’u} d%u(x
/0 dyz( ) = ff y y) sin(nx) dxdy
fj ulx y y) sin(nx) dxdy
=nZ/0 )W) d

which implies dyz" = n?u$ for almost each y € R, and u}, € W>P(R ).

Hence, for all n € N, the functions u;, solve:

d2 K
L"Q(y) = n’us(y) forae. ye R,
dy (3.9)

u,(0)=0 lim |u(x,y)| = 0.
y—reo

Since we are looking for bounded solutions, we consider general solution of
the form u,(y) = ae™™. It is easy to see that the initial condition in (3.9) gives
a = 0, which means (3.9) has only trivial solution. Hence u} (y) = 0.

In order to calculate the coefficients u;, we use similar reasoning, defining
the functions

05.3) = 503 VO 2T ), 9u(r) = o W) (27 —) cos(n)

for any choice of y € C'(R.).
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Calculations similar to those above, and using the boundary conditions of
(3.3), give

/Omczuc?)()) o2 jj auxy )(27m — x) dxdy
*Jfaua%dd _ Haua%

s ([ avorar-o

From the Fundamental Lemma of Calculus of Variations, it follows:

=0 = uy(y)=ay+b>b.

Since uf € LP(R, ), it is necessary that a = b = 0.
On the other hand, for all n € N, we have:

/o Mduj’)() ) jf (27 — x) cos(nx) ¥ (v) dxdy

- H % a¢n _H o a% (3.10)

ff (cos nx)+ (2w —x)n sin(nx)) v (y)dxdy.

From the boundary conditions of (3.3), the definition of ¢,, it follows:

27
iz Iulx,)) cos(nx)dx = nu) (y)
= Jo dx
1 (2% du(x,y) G-1D)
- ) o . _ s _2.c
2 o o (2 — x)nsin(nx) dx = nu, (y) — n-u,(y).

Combining (3.10) and (3.11), keeping in mind that u}(y) =0 for y € R,
and arguing as above, we obtain:

/Ooo (duj}(,y)ll’l()’) + (n2uc (y) — nuf,(y)) ll’(y)) dy =0,

which implies (after integrating by parts the first term):

/0°° ( - dz:iz@ Ul (y) — nui(y)) y(y)dy=0.
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From the Fundamental Lemma of Calculus of Variations, it follows that u,
solves the following problem

dus(y) 5,
0 =n-uS(y) forae yeR, 3.12)

u;(0)=0

n

where we used the result that ) = 0. Hence, this problem has only the trivial

solution in W2 (R..), that is, uS(y) = 0 for all y € R and any n € N.
Consequently, all biorthonormal coefficients of u”(x) are equal to zero for

almost each x € (0,27), and hence u(x,y) = 0 for almost each (x,y) e I1. [

Concerning the question of existence of weak solutions of (3.2), we study
the particular case when /& = 0.

Theorem 3.3. Let v € A,(0,27) with1 < p <ecand f € W, 7 (0,27) such that
f(0) = f(2m) = 0. Then the problem

f VuVedxdy=0 V¢ eCp(I)
w0) = uCmy)  ve (0. G-
u(x,0) = f(x) x€(0,27)

has a unique solution satisfying the estimate:
HuHWv‘AP(H) < CHfHW‘}‘I’(o’M)-

Proof. Let u € Wy”(IT) and {u’(y),u’(y) nen, be the biorthonormal coeffi-
cients of u(x,y) with respect to the system (2.6). Consider the biorthonormal
series (3.7) related to u. Since problem (3.13) is not homogeneous, we obtain:

w(x) = /Oy augi_’f)d‘c =u(x,y)— f(x) forae.xe (0,2m).

It is easy to see that ¥ € L} (0,27) for a.e. y € R, . Moreover
1 2022y = I4C23) = FO)llp02m) = O @5 y — 07
Our goal is to prove that the series

u(x,y) =up(y)+ Z ( )cos(nx) +u, (y)xsin(nx)) (3.14)

with
up (y) = (w:97), 1, (y) = (u:9;),
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is a solution of (3.3).

First of all, note that the total convergence in L} (IT) follows analogously to
the convergence of (2.14).

By formally deriving (3.14) and arguing as above, we obtain the following
problems:

d*u (y
) i) yert

u, (0) = (f39,) n=102,....
Due to the boundedness of u;, as y — oo, the unique solution of problem (3.15)
is:

(3.15)

uy(y) = (f3 %)™,

By similar arguments applied to {uS}, we obtain:

d2 c
;‘;2@) = nzuﬁ(y) —nuy(y) forae. yeR,

uy(0) = (f:9) n=0,1,...

If n =0, it follows easily that ug = (f;35). For n € N, the solutions vanish-
ing as y — oo are:

(3.16)

u (y) = (f:07)e™™ + y(f U,)e ™.

Thus, the series development of u(x,y) becomes:

gk

) = (F596) + X ((F595)+ 53(750) cos(m)e ™

3
Il
—_

(3.17)
Z (f;9)xsin(nx)e ™.
n=1
Calculating the derivative with respect to x, we obtain
=Y ((f:09)+ y (f:0;))nsin(nx)e™™
n=1
+ ) (f: ;) (sin(nx) +xncos(nx)) e ™
n=1 (3.18)

i ((f 193 f 05)n— 7y(f ) )Sil’l(l’lx) e

n=

+ ) (f30))xncos(nx)e ™ =:v(x,y) + w(x,y).

Sl

—_

n
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We need to show the convergence of this series in LY (IT).
Let us start with w(x,y); the series v(x,y) can be treated in a similar manner.
By (2.3) and (3.6), we have

1

= £ xcos(nx)e ™.

n

gk

Z fi0)xncos(nx) e =

n=1

Let 6 be as in Lemma 2.1, and take @ = 1+ &, so that o’ = % is the conjugate
of a. Applying Holder’s inequality for f € L} (0,27) and Lemma 2.1, we obtain

/Ozn\f(X)!”v(x)dx< C(/02”|f(x)\"“'dx)“l’ (3.19)

where C = C(p, [V]p, IV||11(0.27))- In order to estimate the norm of w, we con-
sider the following two cases:

. Here, p1=po’ >2, pi€(1,2),and p/p} > 1. Then, by (3.19),
for any fixed y € R, we get

2 ﬁ
W) ymy <€ [ o) d)
oo i oo
<c( T Igpemi)h <c e
n=1 n=1

where the last inequality holds since p/p} > 1. Integrating with respect
to y and using Holder’s inequality for sequence, we obtain:

jf lw(x,y)|Pv(x)dxdy < CZ |fr/lc|p/0 e dy
I n=1

oo

2‘ c(i w) (L)’

n=1"

p

(3.20)

for any B > 1, where the constant C depends on v and p.

Let g € (1, p) be as in Lemma 2.1, and take r = p/q. Then 1 < r < p and
by Holder’s inequality, we have:

2T 2 o1 1
/ \f’\’dx:/ Vv dx
0 0
1

21 . a1 21 L
< (/ v‘ﬁdx) ! (/ ]f’\”vdx>q
0 0

< C||f/||lrj\j(072ﬂ:)

(3.21)
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where C depends on [v], and p.

Chosen 8 > 1 such that §; = p > p > 2 and 1 < ] < r. By the bound-
edness of (0,27), we have

'l 61 0.2y < CIF 0 22)- (3.22)
Using (3.20), (3.21), and (3.22), we obtain

Wllpam < CIF g (02m) = Cllf M|z 0.27)

<l Nlzo2m) < C||f||wvlﬁl’(o,2n)'

. Taking @ = 146 with 0 < 6 < p/(2 — p), it follows that

p1 = pa’ > 2. The arguments proceed similarly, obtaining the bounded-
ness of the L} norms via the norm of f.

Considering all the series in the expressions for u, u,, and u,, we can esti-
mate their norms, similarly. Unifying these estimates, we obtain:

H”||W‘}=P(n) < CHfHWv"”(O,Zn:)’

where C is independent of f. Moreover, direct calculations verify that u satisfies
the differential equation in (3.13) in the weak sense.

Finally, to verify that u satisfies the boundary conditions in (3.13), we ex-
amine the trace operators 6y, 6z, and 6; that are the trace operators on Jy,Jox
and J respectively.

Let us show that Oyu = f. Since u € W!(IT), then 8;u € L' (0,27), hence
we need to prove only that 8;u = f almost everywhere on J. Consider, for all
m € N, the partial sums

m
u (x,y) = ug(y Z ( )cos(nx) +u, (y )xsin(nx)) (x,y) el
and taking the trace on J, we obtain:
0,u™(x) = u™(x,0)

= (7:0)+ X ((£505) cosue) + (1 9esin()) = 5,(1)(2)

where the last expression is the projector of f with respect to system (2.7).
Hence, by Theorem 2.5, we have:

Tim {185 (f) = fllzg0.2m) = mlifﬂm||elum — fllzz02m) =0
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The convergence also holds with respect to the norm in L' (0,27).
On the other hand, by the classical theory,

. m_ _
”111313”91” 6JMHLI(O,zn) 0

and hence 6;u = f almost everywhere on J.
It is easy to check that ¥ (0,y) = u"(2m,y) for all y > 0 and m € N, and
arguing as above, we can obtain that 6y,u = 6, u. O

The following result gives a necessary condition under which the weak so-
lution of (3.13) is also a strong one.
Theorem 3.4. Let the conditions of Theorem 3.3 hold. Then any function that
is a weak solution of (3.13) and belongs to sz P(T1) is a strong solution of
Au(x,y) =0 for a.e. (x,

y) €
u(y)ln = u()ln, forae.ye (0, )
u(x,0) = f(x) fora.e. x € (0,27)

u(0,y) =0 fora.e. y € (0,00).

Proof. Forany n(x) € C5;(J) and y(y) € Ci’ (R4, we consider the test function

(3.23)

o(x,y) = y(y)n(x) € Cy ().

Integrating by parts, we obtain:

o 27
0= H VuVedxdy = / / (s Qs + 1y @y ) dxdly
o 0 0

z/owl//(y)(/omum’(x)dx> dy+ | n </ uy ¥ (y dy)dx (3.24)
—=1(0) | w)u0)dy~ [ paudsdy.

The function v is a test function, so supp y(y) C [0,&] for some & > 0. Then
we can write (3.24) in the form

§
[ otxnaudsay = -n(0) [ u(0.0)w()dy. (3.25)
I 0
Consider the following systems of functions:
{nn(x) }nENO = {r’(L) =1, 775 = cos(nx), nz = Sin(nx)}n€N> (3.26)
cos(2mn sin(27n
{Wn(¥) Fnen, = {wo =Ly, = (éy) v, = (gy)} ., (3.27)
neN
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and the corresponding modified ones:

Tin(x) = x(27 —x)Nu(x) € C5(J),
U(y) = y(& = y)w(y) € G ([0,&]).

Taking the test function in (3.24) in the form

Gnn (X,y) = T (x) W (y) € C5' ()

for any m,n € Ny, we obtain
27 13
/ (/ lf/n(y)Audy> x(2w —x)@(x)dx = 0. (3.28)
0 0
Since u € W, " (I1), it follows that Au € L' (IT) and

:
F(x):= /0 () Audy € L' (0,27).

Then, by the Lebsgue theorem, (3.28) implies F(x) = 0 for almost each
x € J, and hence Au = 0 for almost each (x,y) € I1¢. Due to the arbitrariness of
&, it follows that
Au=0 forae. (x,y) €Il

From (3.25), we obtain

| a0 wi)dy =0
for all y € C7°([0,20)), and hence

u(0,y)=0 forae. y>D0.
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