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UNCERTAINTY INEQUALITY AND APPROXIMATE
INVERSION FORMULAS FOR r-WEIGHTED FOCK SPACES

F. SOLTANI

We introduce r-weighted Fock space Fr,β which generalizes some
previously known Hilbert spaces, and study the multiplication operator
Mr and its adjoint. A general uncertainty inequality of Heisenberg type
is obtained. We also consider the extremal functions for the r-difference
operator Dr on the space and obtain approximate inversion formulas.

1. Introduction

Fock space F (see [1]) is the Hilbert space of analytic functions f on C such
that

∥ f∥2
F :=

1
π

∫
C
| f (z)|2e−|z|2dxdy < ∞, z = x+ iy.

The space F is called also Segal-Bargmann space [2] and it was applied in
many works [4, 20, 21, 30]. Precisely, Chen and Zhu [4] proved an uncertainty
principle of Heisenberg type for the Fock space F ; and recently the author of
the paper [20, 21] studied the extremal functions for the difference and primitive
operators on the Fock space F . In this paper we are going to prove a generalized
uncertainty principle and to examine the theory of extremal functions in the
context of r-weighted Fock spaces.
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We introduce the weighted Fock space Fr,β , which is the set of all analytic
functions f in C, with f (z) = ∑

∞
n=0 anzrn, such that

∥ f∥2
Fr,β

:=
∞

∑
n=0

βn,r|an|2 < ∞,

where β = {βn,r} is a positive sequence so that limsupn→∞(βn,r)
−1/n = ∞.

The space Fr,β is a reproducing kernel Hilbert space (RKHS) that gives a
generalization of some Hilbert spaces of analytic functions in the complex plane
C like, the Bessel type Fock space F2,α (see [5, 26]), the Airy type Fock space
F3,ν (see [14, 23]), and the hyper-Bessel type Fock space Fr,α (see [22, 24]).

For f ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn, we define the multiplication operator

Mr f (z) := zr f (z) =
∞

∑
n=1

an−1zrn,

and its adjoint operator

LFr,β f (z) :=
∞

∑
n=0

βn+1,r

βn,r
an+1zrn.

These operators satisfy the commutation rule

[LFr,β ,Mr] =
β1,r

β0,r
I +Er,β ,

where I is the identity operator and Er,β is the operator given by

Er,β f (z) :=
∞

∑
n=1

[
βn+1,r

βn,r
− βn,r

βn−1,r
− β1,r

β0,r

]
anzrn.

Thanks to this commutation identity, we deduce the following uncertainty
inequality for the space Fr,β , that is

∥(Mr +LFr,β −a) f∥Fr,β ∥(Mr −LFr,β −b) f∥Fr,β ≥ β1,r

β0,r
∥ f∥2

Fr,β
, a,b ∈ C.

Let Dr : Fr,β → Fr,β be the r-difference operator given by

Dr f (z) :=
1
zr ( f (z)− f (0)), f ∈ Fr,β .

Building on the ideas of Saitoh et al. [16–18], we find the minimizer (denoted
by F∗

λ ,Dr
(h)) for the extremal problem:

inf
f∈Fr,β

{
λ∥ f∥2

Fr,β
+∥Dr f −h∥2

Fr,β

}
,
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where h∈Fr,β and λ > 0. We prove that the extremal function F∗
λ ,Dr

(h) is given
by

F∗
λ ,Dr

(h)(z) = ⟨h,Ψz⟩Fr,β ,

where

Ψz(w) =
∞

∑
n=0

(z)r(n+1)wrn

λβn+1,r +βn,r
, w ∈ C.

Moreover, we establish approximate inversion formulas for the r-difference op-
erator Dr on the r-weighted Fock space Fr,β . A pointwise approximate inver-
sion formulas for the operator Dr are also discussed.

The paper is organized as follows. In Section 2 we introduce the r-weighted
Fock space Fr,β . In Section 3 we establish a generalized uncertainty inequality
of Heisenberg type for the space Fr,β . In Section 4 we examine the extremal
functions for the r-difference operator Dr. Finally, in Section 5, we establish ap-
proximate inversion formulas for the operator Dr on the r-weighted Fock space
Fr,β .

2. The r-Weighted Fock space

In this work r is a positive integer (r ≥ 2)and α = (α1, . . . ,αr−1) a vector having
(r−1) real components with |α|= α1 + . . .+αr−1.

We begin by recalling some results about trigonometric functions of r-order
and Bessel functions of vector index [13].

Let ωk, k = 1, . . . ,r, the r-th roots of unity

ωk = e2iπ(k−1)/r.

Let z ∈ C. A function f (z) is called r-even if

f (ωkz) = f (z), k = 1, . . . ,r.

For example, the r- hyperbolic cosine [13] given by

coshr(z) =
∞

∑
n=0

zrn

(rn)!
,

is r-even and satisfies |coshr(z)| ≤ e|z|.

We suppose now that the components of the vector α satisfy

αk ≥−1+
k
r
, k = 1, . . . ,r−1.
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The r-modified Bessel function given by

Ir,α(z) =
∞

∑
n=0

zrn

cn(r,α)
, (1)

where

cn(r,α) = rrnn!
r−1

∏
i=1

Γ(αi +n+1)
Γ(αi +1)

, (2)

is r-even and satisfies

|Ir,α(z)| ≤ e|z|
r−1

∏
i=1

Γ(αi − i/r+1)
Γ(αi + i/r)

.

We consider a sequence β = {βn,r}, with βn,r > 0, such that

limsup
n→∞

(βn,r)
−1/n = ∞.

The r-weighted Fock space Fr,β is the set of all analytic functions f in C,
with f (z) = ∑

∞
n=0 anzrn, such that

∥ f∥2
Fr,β

:=
∞

∑
n=0

βn,r|an|2 < ∞.

It is a Hilbert space when equipped with the inner product

⟨ f ,g⟩Fr,β =
∞

∑
n=0

βn,ranbn,

where f ,g ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn and g(z) = ∑

∞
n=0 bnzrn.

The set
{

zrn√
βn,r

}∞

n=0
forms a Hilbert’s basis for the space Fr,β . The function

KFr,β ,z, z ∈ C, given by

KFr,β ,z(w) :=
∞

∑
n=0

(wz)rn

βn,r
, w ∈ C,

is a reproducing kernel for the r-weighted Fock space Fr,β .

If βn,r = (rn)!, the r-weighted Fock space denoted by Fr is the set of all
analytic functions f in C, with f (z) = ∑

∞
n=0 anzrn, such that

∥ f∥2
Fr

:=
∞

∑
n=0

(rn)!|an|2 < ∞.
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This Hilbert space has the reproducing kernel

KFr,z(w) = coshr(wz), w,z ∈ C.

If βn,r = cn(r,α) = rrnn!
r−1

∏
i=1

Γ(αi +n+1)
Γ(αi +1)

, the corresponding r-weighted

Fock space is the hyper-Bessel type Fock space Fr,α introduced in [22, 24].
This Hilbert space has the reproducing kernel

KFr,α ,z(w) = Ir,α(wz), w,z ∈ C,

where Ir,α is the r-modified Bessel function given by (1).
We note that, the space F2,α is introduced by Cholewinski in [5], and the

space F3,ν is intoduced by Nemri et al. in [14], and by Soltani in [23].

For f ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn we define the operators Mr and LFr,β

on Fr,β by

Mr f (z) := zr f (z) =
∞

∑
n=1

an−1zrn, (3)

and

LFr,β f (z) :=
∞

∑
n=0

βn+1,r

βn,r
an+1zrn. (4)

The operators LFr,β and Mr satisfy the commutation rule

[LFr,β ,Mr] =
β1,r

β0,r
I +Er,β , (5)

where I is the identity operator and Er,β is the operator given by

Er,β f (z) :=
∞

∑
n=1

[
βn+1,r

βn,r
− βn,r

βn−1,r
− β1,r

β0,r

]
anzrn.

If βn,r = (rn)!, then LFr f (z) = ∆r =
dr

dzr and [∆r,Mr] = r!I +Er,β .

If βn,r = cn(r,α) = rrnn!
r−1

∏
i=1

Γ(αi +n+1)
Γ(αi +1)

, then LFr,α is the hyper-Bessel

operator [7, 12, 13] given by

Br,α =
dr

dzr +
a1

z
dr−1

dzr−1 + . . .+
ar−1

zr−1
d
dz
, α = (α1, . . . ,αr−1),

where

ar−k =
k

∑
j=1

(−1)k− j

( j−1)!(k− j)!

r−1

∏
i=1

(rαi + j), k = 1, . . . ,r−1,
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and

[Br,α ,Mr] = rr
r−1

∏
i=1

(αi +1)I +Er,β .

We note that, when r = 2, we obtain the classical Bessel operator [5, 26]

B2,α =
d2

dz2 +
2α +1

z
d
dz
, α >−1/2,

and we have
[B2,α ,M2] = 4(α +1)I +4z

d
dz
.

When r = 3, α1 =−2/3 and α2 = ν −1/3, we obtain the generalized Airy
operator [8, 14]

B3,ν =
d3

dz3 +
3ν

z
d2

dz2 −
3ν

z2
d
dz
, ν > 0,

and we have

[B3,ν ,M3] = 3(3ν +2)I +18(ν +1)z
d
dz

+9z2 d2

dz2 .

In the next of this paper, we suppose that the sequence {βn,r} satisfies the
condition

βn+1,r

βn,r
− βn,r

βn−1,r
≥ β1,r

β0,r
, n ≥ 1. (6)

The condition (6) is verified in the precedent three cases: in the Bessel type
Fock space F2,α , in the Airy type Fock space F3,ν and in the hyper-Bessel type
Fock space Fr,α .

3. The generalized uncertainty principle

Heisenberg [10] demonstrated that the position and momentum of a particle can
not be determined simultaneously with arbitrary precision.This principle has
been formulated by the following inequality

σxσp ≥
h

4π
,

where h represents Planck’s constant and σx, σp signify the errors of the posi-
tion and the momentum of the particle respectively. There exist many similar
uncertainty principles, in quantum physics and in mathematics [3, 4, 6, 11, 25–
27]. In this section we are going to prove a generalized uncertainty principle for
the r-weighted Fock space Fr,β .
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We define the Hilbert space U
(1)

r,β as the space of all f ∈ Fr,β with f (z) =
∑

∞
n=0 anzrn such that

∥ f∥2
U

(1)
r,β

:=
∞

∑
n=0

βn+1,r|an|2 < ∞.

We define the Hilbert space U
(2)

r,β as the space of all f ∈ Fr,β with f (z) =
∑

∞
n=0 anzrn such that

∥ f∥2
U

(2)
r,β

:= β1,r|a0|2 +
∞

∑
n=1

(βn,r)
2

βn−1,r
|an|2 < ∞.

By condition (6) we obtain the inequality

∥ f∥
U

(2)
r,β

≤ ∥ f∥
U

(1)
r,β
.

Therefore, we have the continuous inclusion U
(1)

r,β ⊆ U
(2)

r,β .

In this section we establish an uncertainty inequality of Heisenberg type for
the space Fr,β . We will use the following three lemmas.

Lemma 3.1. The operators Mr and LFr,β satisfy the following properties.

(i) Dom(Mr) = U
(1)

r,β and Dom(LFr,β ) = U
(2)

r,β .

(ii) For f ∈ U
(1)

r,β and g ∈ U
(2)

r,β , we have ⟨Mr f ,g⟩Fr,β = ⟨ f ,LFr,β g⟩Fr,β .

Proof. Let f ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn. From (3) and (4) we have

∥Mr f∥2
Fr,β

=
∞

∑
n=0

βn+1,r|an|2 = ∥ f∥2
U

(1)
r,β

,

and

∥LFr,β f∥2
Fr,β

=
∞

∑
n=1

(βn,r)
2

βn−1,r
|an|2 = ∥ f∥2

U
(2)

r,β

−β1,r| f (0)|2.

Consequently Dom(Mr) = U
(1)

r,β and Dom(LFr,β ) = U
(2)

r,β .

On the other hand for f ∈U
(1)

r,β and g ∈U
(2)

r,β with f (z) = ∑
∞
n=0 anzrn and g(z) =

∑
∞
n=0 bnzrn, we have

⟨Mr f ,g⟩Fr,β =
∞

∑
n=1

βn,ran−1bn =
∞

∑
n=0

βn+1,ranbn+1 = ⟨ f ,LFr,β g⟩Fr,β .

The lemma is proved.
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We define the Hilbert space S
(1)

r,β as the space of all f ∈ Fr,β with f (z) =
∑

∞
n=0 anzrn such that

∥ f∥2
S

(1)
r,β

:=
∞

∑
n=0

(βn+1,r)
2

βn,r
|an|2 < ∞.

We define the Hilbert space S
(2)

r,β as the space of all f ∈ Fr,β with f (z) =
∑

∞
n=0 anzrn such that

∥ f∥2
S

(2)
r,β

:=
(β1,r)

2

β0,r
|a0|2 +

∞

∑
n=1

(βn,r)
3

(βn−1,r)2 |an|2 < ∞.

By condition (6) we obtain the inequalities

∥ f∥
S

(2)
r,β

≤ ∥ f∥
S

(1)
r,β
, ∥ f∥

U
(1)

r,β
≤

√
β0,r

β1,r
∥ f∥

S
(1)

r,β
.

Therefore, we have the continuous inclusions S
(1)

r,β ⊆ S
(2)

r,β and S
(1)

r,β ⊆ U
(1)

r,β .

Lemma 3.2. We have Dom(LFr,β Mr) = S
(1)

r,β and Dom(MrLFr,β ) = S
(2)

r,β .

Proof. From (3) and (4) we have

LFr,β Mr f (z) =
∞

∑
n=0

βn+1,r

βn,r
anzrn, MrLFr,β f (z) =

∞

∑
n=1

βn,r

βn−1,r
anzrn.

Therefore

∥LFr,β Mr f∥2
Fr,β

=
∞

∑
n=0

(βn+1,r)
2

βn,r
|an|2 = ∥ f∥2

S
(1)

r,β

,

and

∥MrLFr,β f∥2
Fr,β

=
∞

∑
n=1

(βn,r)
3

(βn−1,r)2 |an|2 = ∥ f∥2
S

(2)
r,β

− (β1,r)
2

β0,r
| f (0)|2.

Consequently Dom(LFr,β Mr) = S
(1)

r,β and Dom(MrLFr,β ) = S
(2)

r,β .

Lemma 3.3. [See [9], Proposition 2.1]. Let A and B be self-adjoint operators
on a Hilbert space H , then

∥(A−a) f∥H ∥(B−b) f∥H ≥ 1
2
|⟨[A,B] f , f ⟩H | ,

for all f ∈ Dom([A,B]) and all a,b ∈ C.
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Theorem 3.4. Let f ∈ Fr,β . For all a,b ∈ C, we have

∥(Mr +LFr,β −a) f∥Fr,β ∥(Mr −LFr,β −b) f∥Fr,β ≥ β1,r

β0,r
∥ f∥2

Fr,β
. (7)

Proof. Let f ∈ Fr,β . First the inequality (7) is true for f /∈ S
(1)

r,β . Now, let A

and B be the operators defined for f ∈ S
(1)

r,β by

A := (Mr +LFr,β ) f , B := i(Mr −LFr,β ) f .

By (5), Lemma 3.1 and Lemma 3.2, the operators A and B possess the following
properties.

(i) A∗ = A and B∗ = B,

(ii) [A,B] =−2i[Mr,LFr,β ] = 2i(
β1,r

β0,r
I +Er,β ),

(iii) Dom([A,B]) = S
(1)

r,β .
Thus, the inequality (7) follows from Lemma 3.3 and the fact that

⟨Er,β f , f ⟩Fr,β ≥ 0.

This completes the proof of the theorem.

In particular cases we obtain.

Remark 3.5. If f ∈ Fr and a,b ∈ C, we have

∥(Mr +∆r −a) f∥Fr∥(Mr −∆r −b) f∥Fr ≥ r!∥ f∥2
Fr
.

And, if f ∈ Fr,α and a,b ∈ C, we have

∥(Mr +Br,α −a) f∥Fr,α∥(Mr −Br,α −b) f∥Fr,α ≥ rr
r−1

∏
i=1

(αi +1)∥ f∥2
Fr,α

.

4. The r-difference operator

Tikhonov regularization in statistics is the method of ridge regression. In gen-
eral, this method related to the Levenberg-Marquardt algorithm for solving non-
linear least squares problems. Tikhonov regularization has been invented inde-
pendently in many different contexts. It became widely known from its applica-
tion to integral equations [28, 29].
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Let H be a Hilbert space, and let T : Fr,β → H be a bounded linear oper-
ator from Fr,β into H . Let λ > 0. We denote by ⟨., .⟩λ ,Fr,β

the inner product
defined on the space Fr,β by

⟨ f ,g⟩λ ,Fr,β
:= λ ⟨ f ,g⟩Fr,β + ⟨T f ,T g⟩H .

The two norms ∥.∥Fr,β and ∥.∥λ ,Fr,β
are equivalent. In particular, we have

| f (z)| ≤ ∥ f∥λ ,Fr,β

[
KFr,β ,z(z)

λ

]1/2

, f ∈ Fr,β , z ∈ C.

Then the space Fr,β , equipped with the norm ∥.∥λ ,Fr,β
has a reproducing kernel

Kλ ,Fr,β ,z. Therefore, we have the functional equation

(λ I +T ∗T )Kλ ,Fr,β ,z = KFr,β ,z, z ∈ C, (8)

where I is the unit operator and T ∗ : H −→ Fr,β is the adjoint of T .

For any h ∈ H and for any λ > 0, we define the extremal function F∗
λ ,T (h)

by
F∗

λ ,T (h)(z) = ⟨h,T Kλ ,Fr,β ,z⟩H , z ∈ C.

Then by (8) we deduce that

F∗
λ ,T (h)(z) = ⟨T ∗h,Kλ ,Fr,β ,z⟩Fr,β

= ⟨T ∗h,(λ I +T ∗T )−1KFr,β ,z⟩Fr,β

= ⟨(λ I +T ∗T )−1T ∗h,KFr,β ,z⟩Fr,β .

Hence
F∗

λ ,T (h)(z) = (λ I +T ∗T )−1T ∗h(z), z ∈ C. (9)

The extremal function F∗
λ ,T (h) is the unique solution (see [16], Theorem 2.5,

Section 2) of the Tikhonov regularization problem

inf
f∈Fr,β

{
λ∥ f∥2

Fr,β
+∥T f −h∥2

H

}
.

Let Dr be the r-difference operator defined for f ∈ Fr,β by

Dr f (z) :=
1
zr ( f (z)− f (0)).

For f ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn we have

Dr f (z) :=
∞

∑
n=0

an+1zrn. (10)
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From (6), the operator Dr maps continuously from Fr,β into Fr,β , and

∥Dr f∥Fr,β ≤

√
β0,r

β1,r
∥ f∥Fr,β .

Building on the ideas of Saitoh [16–18] we examine the extremal function
associated with the r-difference operator Dr.

Theorem 4.1. (i) For f ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn, we have

D∗
r f (z) =

∞

∑
n=1

βn−1,r

βn,r
an−1zrn, D∗

r Dr f (z) =
∞

∑
n=1

βn−1,r

βn,r
anzrn.

(ii) For any h ∈ Fr,β and for any λ > 0, the problem

inf
f∈Fr,β

{
λ∥ f∥2

Fr,β
+∥Dr f −h∥2

Fr,β

}
has a unique extremal function given by

F∗
λ ,Dr

(h)(z) = ⟨h,Ψz⟩Fr,β ,

where

Ψz(w) =
∞

∑
n=0

(z)r(n+1)wrn

λβn+1,r +βn,r
, w ∈ C.

Proof. (i) If f ,g ∈ Fr,β with f (z) = ∑
∞
n=0 anzrn and g(z) = ∑

∞
n=0 bnzrn, then

⟨Dr f ,g⟩Fr,β =
∞

∑
n=0

βn,ran+1bn =
∞

∑
n=1

βn−1,ranbn−1 = ⟨ f ,D∗
r g⟩Fr,β ,

where

D∗
r g(z) =

∞

∑
n=1

βn−1,r

βn,r
bn−1zrn.

And therefore

D∗
r Dr f (z) =

∞

∑
n=1

βn−1,r

βn,r
anzrn.

(ii) We put h(z) = ∑
∞
n=0 hnzrn and F∗

λ ,Dr
(h)(z) = ∑

∞
n=0 fnzrn. From (9) we

have (λ I +D∗
r Dr)F∗

λ ,Dr
(h)(z) = D∗

r h(z). By (i) we deduce that

f0 = 0, fn =
βn−1,rhn−1

λβn,r +βn−1,r
, n ≥ 1.
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Thus

F∗
λ ,Dr

(h)(z) =
∞

∑
n=0

βn,rhn

λβn+1,r +βn,r
zr(n+1) = ⟨h,Ψz⟩Fr,β , (11)

where

Ψz(w) =
∞

∑
n=0

(z)r(n+1)wrn

λβn+1,r +βn,r
, w ∈ C.

The theorem is proved.

If Fr,β is the r-weighted Fock space Fr. For f ∈Fr with f (z) = ∑
∞
n=0 anzrn

we have

D∗
r f (z) =

∞

∑
n=1

(rn− r)!
(rn)!

an−1zrn, D∗
r Dr f (z) =

∞

∑
n=1

(rn− r)!
(rn)!

anzrn.

And for any h ∈ Fr and for any λ > 0, one has

F∗
λ ,Dr

(h)(z) = ⟨h,Ψz⟩Fr ,

where

Ψz(w) =
∞

∑
n=0

(z)r(n+1)wrn

λ (rn+ r)!+(rn)!
.

If Fr,β is the hyper-Bessel type Fock space Fr,α . For f ∈ Fr,α with f (z) =
∑

∞
n=0 anzrn we have

D∗
r f (z) =

∞

∑
n=1

cn−1(r,α)

cn(r,α)
an−1zrn,

D∗
r Dr f (z) =

∞

∑
n=1

cn−1(r,α)

cn(r,α)
anzrn,

being cn(r,α) the constants given by (2). And for any h ∈ Fr,α and for any
λ > 0, one has

F∗
λ ,Dr

(h)(z) = ⟨h,Ψz⟩Fr,α ,

where

Ψz(w) =
∞

∑
n=0

(z)r(n+1)wrn

λcn+1(r,α)+ cn(r,α)
.



UNCERTAINTY INEQUALITY AND APPROXIMATE INVERSION FORMULAS . . . 435

5. Approximate inversion formulas

In this section we establish the estimate properties of the extremal function
F∗

λ ,Dr
(h)(z), and we deduce approximate inversion formulas for the r-difference

operator Dr. These formulas are the analogous of Calderón’s reproducing for-
mulas for the Fourier type transforms [15, 19]. A pointwise approximate inver-
sion formulas for the operator Dr are also discussed.

The extremal function F∗
λ ,Dr

(h) given by (11) satisfies the following proper-
ties.

Lemma 5.1. If λ > 0 and h ∈ Fr,β , then

(i) |F∗
λ ,Dr

(h)(z)| ≤ 1
2
√

λ
(KFr,β ,z(z))

1/2∥h∥Fr,β ,

(ii) |DrF∗
λ ,Dr

(h)(z)| ≤
√

β0,r
4λβ1,r

(KFr,β ,z(z))
1/2∥h∥Fr,β ,

(iii) ∥F∗
λ ,Dr

(h)∥Fr,β ≤ 1
2
√

λ
∥h∥Fr,β .

Proof. Let λ > 0 and h ∈ Fr,β with h(z) = ∑
∞
n=0 hnzrn. From (11) we have

|F∗
λ ,Dr

(h)(z)| ≤ ∥Ψz∥Fr,β ∥h∥Fr,β .

Using the fact that (x+ y)2 ≥ 4xy we obtain

∥Ψz∥2
Fr,β

=
∞

∑
n=0

βn,r

[
|z|r(n+1)

λβn+1,r +βn,r

]2

≤ 1
4λ

∞

∑
n=0

|z|2r(n+1)

βn+1,r
≤ 1

4λ
KFr,β ,z(z).

This gives (i).

On the other hand, from (10) and (11) we have

DrF∗
λ ,Dr

(h)(z) =
∞

∑
n=0

βn,rhn

λβn+1,r +βn,r
zrn = ⟨h,Φz⟩Fr,β , (12)

where

Φz(w) =
∞

∑
n=0

(wz)rn

λβn+1,r +βn,r
.

Then
|DrF∗

λ ,Dr
(h)(z)| ≤ ∥Φz∥Fr,β ∥h∥Fr,β .

And by (6) we deduce that

∥Φz∥2
Fr,β

=
∞

∑
n=0

βn,r

[
|z|rn

λβn+1,r +βn,r

]2

≤ 1
4λ

∞

∑
n=0

|z|2rn

βn+1,r
≤ β0,r

4λβ1,r
KFr,β ,z(z).
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This gives (ii).

Finally, from (11) we have

∥F∗
λ ,Dr

(h)∥2
Fr,β

=
∞

∑
n=1

βn,r

[
βn−1,r|hn−1|

λβn,r +βn−1,r

]2

.

Then we obtain

∥F∗
λ ,Dr

(h)∥2
Fr,β

≤ 1
4λ

∞

∑
n=1

βn−1,r|hn−1|2 =
1

4λ
∥h∥2

Fr,β
,

which gives (iii) and completes the proof of the lemma.

We establish approximate inversion formulas for the operator Dr.

Theorem 5.2. If λ > 0 and h ∈ Fr,β , then

(i) lim
λ→0+

∥DrF∗
λ ,Dr

(h)−h∥Fr,β = 0,

(ii) lim
λ→0+

∥F∗
λ ,Dr

(Drh)−h0∥Fr,β = 0, where h0(z) = h(z)−h(0).

Proof. Let λ > 0 and h ∈ Fr,β with h(z) = ∑
∞
n=0 hnzrn. From (12) we have

DrF∗
λ ,Dr

(h)(z)−h(z) =
∞

∑
n=0

−λβn+1,rhn

λβn+1,r +βn,r
zrn. (13)

Therefore

∥DrF∗
λ ,Dr

(h)−h∥2
Fr,β

=
∞

∑
n=0

βn,r

[
λβn+1,r|hn|

λβn+1,r +βn,r

]2

Again, by dominated convergence theorem and the fact that

βn,r

[
λβn+1,r|hn|

λβn+1,r +βn,r

]2

≤ βn,r|hn|2,

we deduce (i).

Finally, from (10) and (11) we have

F∗
λ ,Dr

(Drh)(z)−h0(z) =
∞

∑
n=1

−λβn,rhn

λβn,r +βn−1,r
zrn. (14)

So, one has

∥F∗
λ ,Dr

(Drh)−h0∥2
Fr,β

=
∞

∑
n=1

βn,r

[
λβn,r|hn|

λβn,r +βn−1,r

]2

.
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Using the dominated convergence theorem and the fact that

βn,r

[
λβn,r|hn|

λβn,r +βn−1,r

]2

≤ βn,r|hn|2,

we deduce (ii).

We deduce pointwise approximate inversion formulas for the r-difference
operator Dr.

Theorem 5.3. If λ > 0 and h ∈ Fr,β , then

(i) lim
λ→0+

DrF∗
λ ,Dr

(h)(z) = h(z),

(ii) lim
λ→0+

F∗
λ ,Dr

(Drh)(z) = h0(z).

Proof. Let h ∈ Fr,β with h(z) = ∑
∞
n=0 hnzrn. From (13) and (14), by using the

dominated convergence theorem and the fact that

λβn+1,r|hn|
λβn+1,r +βn,r

|z|rn,
λβn,r|hn|

λβn,r +βn−1,r
|z|rn ≤ |hn||z|rn,

we obtain (i) and (ii).
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