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AMPLE VECTOR BUNDLES AND INTRINSIC QUADRIC

FIBRATIONS OVER IRRATIONAL CURVES

TOMMASO DE FERNEX

Let E be an ample vector bundle of rank r ≥ 2 on a smooth complex
projective variety X . This work is part of the following problem: to study and
classify the pair (X,E) assuming the existence of a regular section s ∈�(X,E)
whose zero locus Z = (s)0 is a special subvariety of X . In [2] and [11],
the case of Z quadric �bration, respectively of dimension 2 or more, over
a smooth curve is discussed under the further hypothesis that the quadric
�bration structure is induced on Z by an ample line bundle L on X . Here
the same situation is considered, and classi�cation is given assuming the
base curve to be irrational, in the more general case that the quadric �bration
structure of Z is intrinsic, i.e. not a priori induced by a polarization of X .

0. Introduction.

Several approaches in studying geometry of higher dimensional projective
varieties rely on investigation of existence of particular subvarieties. It is well
know, for instance, that, if Z is a hyperplane section or more generally, an
effective ample divisor of a projective variety X , the geometric characteristics of
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Z will determine many properties of ambient variety X . If we wish to consider a
more general case, Z having higher codimension inside X , we need a hypothesis
generalizing the concept of ample divisor. We consider the following set-up:

(∗) Set-up. X is a smooth complex projective variety of dimension n and Z
is a subvariety of X , of dimension k ≤ n − 2, which is de�ned as zero locus
of a regular section s of an ample vector bundle E over X . In particular, by
de�nition of regularity of the section s, Z is smooth and rk E = n − k.

Set-up (∗) allows us to �nd good relations between X and Z . First of all,
due to the regularity of s , the restriction of E to Z is isomorphic to the normal
bundle NZ |X , leading to the adjunction formula:

(0.1) KZ = (KX + detE)Z .

Furthermore, using also the ampleness of E, we can use an extension of
Lefschetz theorem,essentially due to Sommese [16], Proposition 1.16, case
k = 0, which states that the restriction map

(0.2) H j (g) : H j(X, Z) → H j (Z , Z),

induced by the embedding g : Z �→ X , is isomorphism for j < k and injective
with torsion free cokernel for j = k, being k = dim Z . From (0.2) we deduce
the following properties (see [11], Theorem 1.1]):

(0.3) Theorem . Let X , E and Z be as in (∗), k = dim Z , and let g : Z �→ X
be the inclusion morphism. Then

(1) H p,q(g) : H q(X, �
p
X ) → H q(Z , �

p
Z ) is isomorphism for p + q < k and

injective for p + q = k,

(2) Pic(g) : Pic(X ) → Pic(Z ) is isomorphism if k > 2 and injective with
torsion-free cokernel if k = 2,

(3) Alb(g) : Alb(Z ) → Alb(X ) is isomorphism if k ≥ 2.

Set-up (∗) has been recently introduced by Lanteri and Maeda with the
purpose of classifying the pair (X, E), assuming that the subvariety Z is a
�special� variety. In their �rst paper [9], Theorems A and B, they assume Z to
be a projective space or a quadric hypersurface. In [10] the case of geometrically
ruled surfaces over smooth curves is discussed. The case of P-bundles of
dimension ≥ 3 over smooth curves is treated in [11], Theorem B, where they
add a further hypothesis: they assume the existence of an ample line bundle H
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over X whose restriction to the subvariety Z gives it the structure (as polarized
variety) of a scroll over the base curve.

Such kind of assumption, in which a particular structure, as polarized
variety, of the subvariety Z is de�ned by restriction of a suitable polarization
of the ambient variety X , will be called here assumption of global polarization.
On the contrary, if Z has a particular structure, as polarized variety, which is not
a priori induced by an ample line bundle of X , we will say the structure of Z is
intrinsically de�ned, or intrinsic.

In [11], Theorem A, Lanteri and Maeda prove also a theorem for the
P-bundle case without the assumption of global polarization, but only in the
case of irrational base curve. In the recent paper [1], Andreatta and Occhetta
consider the more general case of intrinsic P-bundles without restrictions on the
dimension of the base B , but their result (ibid, Corollary 4.4) concerns just the
case of B minimal in the sense of Mori, i.e. KB numerically effective. The case
of Z quadric �bration over a smooth curve is treated, respectively, in [2] if Z is
a surface and [11], Theorem C, if dim Z ≥ 3. In both cases global polarization
is required.

In view of the described considerations and results, it is natural to ask
whether this extra assumption of global polarization could be avoided also in
the last case above cited, i.e. when Z is a quadric �bration over a smooth curve
B . the aim of this work is to answer this question when B is an irrational curve.
The result splits into the following two theorems, depending on whether dim Z
is 2 or more.

Theorem A. Let X , E and Z be as in (∗). Assume that Z is a conic �bration
over an irrational smooth curve B. Let π : Z → B the corresponding �bration.
Then π extends to a morphism α : X → B. Moreover, if Z is geometrically
ruled over B , then

(0) α : X → B is a Pn−1 -bundle over B and EF
∼= OP(1)

⊕(n−2) for every �ber
F.

Otherwise the pair (X, E) comes into one of the following cases:

(1) α : X → B is a Pn−1-bundle over B and EF
∼= OP(2) ⊕ OP(1)

⊕(n−3) for
every �ber F ,

(2) α : X → B is a quadric �bration over B and EF
∼= OQ(1)

⊕(n−2) for every
smooth �ber F ,

(3) α : X → B factor through a Pn−1 -bundle �bration ψ : X → S, where S
is a ruled surface over B, EG

∼= OP(1)
⊕(n−2) for every �ber G of ψ , and
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ψ |Z : Z → S is a birational morphism contracting at least one (−1)-curve
of Z .

Theorem B. Let X , E and Z be as in (∗). Assume that Z is a quadric �bration
of dimension ≥ 3 over an irrational smooth curve B. Let π : Z → B the
corresponding �bration. Then π extends to a morphism α : X → B. Moreover,
if Z is a P1 × P1-bundle over B with trivial monodromy, then

(0) α : X → B factors through a Pn−2-bundle �bration γ : X → S, where S
is a geometrically ruled surface over B , and EF

∼= OP(1)
⊕(n−3) for every

�ber G of γ .

Otherwise the pair (X, E) comes into one of the following cases:

(1) α : X → B is a Pn−1-bundle over B and EF
∼= OP(2)⊕OP(1)

⊕(n−k−1) for
every �ber F ,

(2) α : X → B is a quadric �bration over B and EF
∼= OQ(1)

⊕(n−k) for every
smooth �ber F .

(0.4) Remark. Case (0) of Theorem A is [10]. In cases (0), (1) and (2) of
Theorem A and (1) and (2) of Theorem B, a posteriori there exists an ample
line bundle on X inducing on Z its structure of quadric �bration over B . The
effectiveness of the theorems is clear in all but case (3) of Theorem A, which
looks uncertain.

(0.5) Remark. Theorems A and B hold also if B ∼= P1, if we assume that the
morphism π : Z → B extends to a morphism α : X → B .

In section 1, after giving basic notations, we review some properties of
quadric �brations. Section 2 contains a sketch of the proves of Theorems A and
B and the preliminary results we will need. The proofs of the two theorems can
be found in the last two sections, respectively.
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1. Quadric �brations over smooth curves.

Notation. In this paper we work over the complex �eld C. Smooth projective
varieties are brie�y called manifolds. A polarized manifold is a pair (X, H )
consisting of a manifold X and an ample line bundle L on it. We use almost
interchangeably divisors and line bundles on manifolds; consequently tensor
product between line bundles is often denoted additively.

Let X be a manifold. The restriction of a vector bundle E (resp. of a divisor
D) on X to a subvariety Y ⊂ X is denoted with EY (resp. DY ). The numerical
class of a curve C ⊂ X is denoted with [C]. If α : X → Y is a morphism over
an algebraic variety,

N1(X/Y ) := (Z1(X/Y )/≡) ⊗ R

is the real vector space generated by α-relative 1-cycles modulo numerical
equivalence, ρ(X/Y ) := dim N1(X/Y ) is the Picard number of X over Y , and
N E (X/Y ) is the (closed and convex) cone of α-relative curves. We write brie�y
N1(X ), ρ(X ) and N E (X ) if Y is a point.

If V is a closed convex cone in Rn , a subcone W ⊂ V is called extremal
if it is so in the sense of convexity. A polyhedral extremal subcone is called an
extremal face. A one dimensional subcone is called a ray. A ray R of N E (X/Y )
is said to be negative if it has negative intersection with KX . The length of a
negative extremal ray R of N E (X/Y ) is the integer number

l(R) := min{−KX · C | C is a rational curve, [C]∈ R}.

If α : X → Y is a Fano-Mori contraction, we identify N E (X/Y ) with the
relative extremal face of N E(X ). We refer to [14] and [7] for a complete review
of the properties of the cone of curves on a manifold, in particular as references
for Mori�s Cone Theorem and Kawamata�s Contraction Theorem.

(1.1) Quadric �brations. Even though the de�nition of quadric �bration usu-
ally given in literature concerns polarized manifolds, we prefer to repeat here the
same de�nition just for manifolds, leaving the choice of polarization to be taken
freely. We say that a manifold X is a quadric �bration over an algebraic variety
Y if there exist a surjection π : X → Y and an ample line bundle L on X such
that any �ber F of π is isomorphic to a quadric hypersurface Q ⊂ Pk+1 , where
k = dim X − dimY , and L induces OQ(1) on it. A quadric �bration whose
�bers are 1-dimensional is called conic �bration.



208 TOMMASO DE FERNEX

Proposition (1.1.1). Let α : X → Y be a quadric �bration. Then there exists a
very ample line bundle L inducing the quadric �bration structure on X .

Proof. Let L0 be any ample line bundle de�ning the quadric �bration structure
on X , and take the push-out F := α∗L0. Pick a very ample line bundle A on
Y . Then F ⊗ A⊗m is generated by global sections for m suf�ciently large, i.e.
there is a surjection

O
⊕N
Y → F ⊗ A⊗m → 0.

By twisting with A, we get

A⊕N → F ⊗ A⊗(m+1) → 0.

Thus, we �nd the following �ber-wise embeddings:

X �→ PY (F ) ∼= PY (F ⊗ A⊗(m+1)) �→ PY (A
⊗N ).

Then, de�ne L as the restriction to X , via the above embeddings, of the
tautologic line bundle of PY (A

⊗N ). �

(1.2) Conic �brations over curves. Let X be a conic �bration over a smooth
curve B . Then any singular �ber F0 splits in a couple of distinct lines with self
intersection -1. In particular, we can express X as a geometrically ruled surface
X0, of base B , blown-up at points belonging to different �bers.

The contrary is also true, i.e. any blow-up of a geometrically ruled surface
at points belonging to different �bers is a conic �bration. Indeed, if F is a �ber,
the line bundle

L := −KX + mF

is ample for suf�ciently large m and induces on all �bers their embeddings as
plane conics. Thus, Theorem A may be equivalently reformulated for irrational
ruled surfaces whose reducible �bers consist exactly of two components.

(1.3) Quadric �brations of dimension ≥ 3 over curves. Let X be a quadric
�bration of dimension ≥ 3 over a smooth curve B . It is a well known fact that
all its singular �bers are reduced and irreducible (e.g. see [8], pag. 461).

Proposition (1.3.1). Let X be as above. Then ρ(X ) = 2 or 3, the case ρ = 3
occurring if and only if X is a P1 × P1-bundle over B with trivial monodromy.
In particular, if ρ = 3, then X admits two distinct P1-bundle �brations over
geometrically ruled surfaces S1 and S2. Both the surfaces Si are ruled over B .
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Proof. The morphism π : X → B is a Fano-Mori contraction. It is enough to
control the dimension of N1(X/B), since, by Kawamata�s Contraction Theorem,

ρ(X ) = ρ(B) + ρ(X/B).

If dim X ≥ 4, then ρ(F) = 1 for every �ber of π , hence ρ(X/B) = 1.
So, consider the case dim X = 3. Let F ∼= P1 × P1 be a smooth �ber,

and C1, C2 ⊂ F two lines belonging, respectively, to the two rulings of F . If
there exists a singular �ber F0, we can move the Ci �atly through smooth �bers
making them degenerate into F0. Numerical equivalence is maintained and
ρ(F0) = 1, thus we conclude that ρ(X/B) = 1. Analogously, if X is a P1 ×P1-
bundle over B with non-trivial monodromy, then, by a turn along a suitable path
γ ⊂ B with base-point p, we return on F = α−1(p) with an automorphism
inverting the two rulings. Hence C1 ≡ C2 , implying ρ(X/B) = 1.

Conversely, assume X to be a P1 × P1-bundle over B with trivial mon-
odromy. Let L be a very ample line bundle inducing the quadric �bration struc-
ture on X , and take two general divisor D1 and D2 in the linear system |L|.
Then, for general �ber F , the intersection D1 ∩ D2 ∩ F consists of two points
q1 and q2 that don�t belong to a same line of F . Starting from one of these
�bers, select a ruling and pick up the two lines l1 and l2 , belonging to such
ruling and passing, respectively, through q1 and q2. De�ne in this way

Y :=
�

li ⊂F

F general

(l1 ∪ l2).

It is well-de�ned due to the triviality of the monodromy, and its Zariski closure
Y in X is a divisor inducing OP1×P (2,0) on each �ber. Therefore, Y · C1 = 0
and Y · C2 = 2, implying ρ(X/B) = 2. In particular, the numerical classes
of C1 and C2 generate two negative extremal rays of the cone of curves of X .

�

2. Preliminary results.

The basic idea for proving the theorems is inspired to the proof of [11,
Theorem A]. Here is a sketch. Step by step, we report the results we will apply.

Firstly, we want to extend the �bration structure of Z over B to the whole
X . It is here that we use the irrationality of B . As remarked in (0.5), if we
assume the statement of the following proposition, Theorems A and B hold also
if B is rational.
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Proposition (2.1). Let X, E and Z be as in the assumptions of Theorems A or
B. Then the morphism π : Z → B extends to a morphism α : X → B.

Proof. By (0.3.1)

�
h0(�1

X ) = h0(�1
Z ) = q(Z ) > 0

h0(�2
X ) ≤ h0(�2

Z ) = pg(Z ) = 0.

Therefore, the Albanese map α : X → Alb(X) is a morphism with connected
�bers over a curve (of genus q = q(Z )). Since π coincides with the Albanese
map of Z modulo isomorphism of the base curve B , by functoriality and
isomorphism (0.3.3) we conclude that α is extension of π to X . �

Secondly, we focus on a general �ber of the morphism α, leading the
problem to the situation already considered in [9]. Here are the theorems we
will apply:

Theorem (2.2). ([9], Theorem A, case n − r = 1). Let X, E and Z as in (∗)
and assume that Z ∼= P1 . Then the pair (X, E) is one of the following:

(1) (Pn, OP(1)
⊕(n−1)),

(2) (Pn, OP(2) ⊕ OP(1)
⊕(n−2)),

(3) (Qn, OQ(1)
⊕(n−1)),

(4) X = PP1 (F ) for some vector bundle F of rank n on P1 and E ∼=�n−1
j=1 (H ⊗ β∗

OP1 (bj )), where H stands for the tautologic bundle of F

and β : X → P1 is the bundle projection.

Theorem (2.3). ([9], Theorem B). Let X, E and Z as in (∗) and assume that
Z ∼= Qk with k ≥ 2. Then the pair (X, E) is one of the following:

(1) (Pn, OP(2) ⊕ OP(1)
⊕(n−k−1) ),

(2) (Qn, OQ(1)
⊕(n−k) ),

(3) X = PP1 (F ) for some vector bundle F of rank n on P1 and E ∼=�n−2
j=1 (H ⊗ β∗

OP1 (bj )), where H stands for the tautologic bundle of F

and β : X → P1 is the bundle projection.

Subsequently, when we need to extend our analysis from general �ber to
all the �bers of α, we will use the following semi-continuity property of the
�-genus. Let (X, H ) be a polarized manifold of dimension n. Its �-genus is
de�ned by

�(X, H ) := n + H n − h0(X, OX (H )).

Proposition (2.4). ([4], Corollary 1.10). �(X, H ) ≥ 0.
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Proposition (2.5). ([4], Propositions 2.1 and 2.2).
(1) (X, H ) ∼= (Pn, OP(1)) if and only if H n = 1 and �(X, H ) = 0.
(2) X is isomorphic to a (non-necessarily smooth) hyperquadric Q of Pn+1

and H ∼= OQ(1) if and only if H n = 2 and �(X, H ) = 0.

Let α : X → Y be surjective proper �at morphism between reduced
and irreducible varieties of dimension, respectively, n and m. Note that α is
equidimensional. Assume that every �ber of α is reduced and irreducible. Let
L be a line bundle on X which is ample relative to α, brie�y said α-ample, i.e.
such that its restriction to every �ber is an ample line bundle. Let F = α−1(p)
stand for the �ber over p ∈ Y . Then

Theorem (2.6). ([4], Theorem 5.2). Ln−m
F is a continuous function of p ∈ Y ,

and �(F, LF ) is a lower-semi-continuous function of p ∈ Y .

Remark (2.6.1). Let Y be a smooth curve and X a reduced and irreducible
variety. Then any surjective morphism α : X → Y is a �at morphism (e.g. see
[6], Chapter III, Proposition 9.7).

In the last part of the proof of Theorem B, we will analyze the cone of
curves of X in comparison with the one of Z . The idea is to prove that such
cones have a common negative extremal ray, and to use this property in order to
extend some �bration structure of Z to X . But, to start with, we need to show
that N E (X ) and N E (Z ) are actually subcones of the same real vector space.
This is guaranteed by the following

Lemma (2.7). Let X and Z be as in (∗), and assume dim Z ≥ 3. Then
N1(X ) ∼= N1(Z ).

Proof. By (0.2), H 2(X, Z) ∼= H 2(Z , Z). Recall that, on the Picard groups,
numerical and homological equivalence coincide (e.g. see [5], Proposition 3.1).
Then, taking quotients with respect to numerical equivalence, isomorphism
Pic(X ) ∼= Pic(Z ) (0.3.2) still induces an isomorphism between the numerical
equivalence class groups. So, by tensoring with R and using duality, we get
N1(X ) ∼= N1(Z ). �

We will identify N1(X ) and N1(Z ) via the isomorphism above. Through
such identi�cation we can look at N E (Z ) as a subcone of N E (X ). The will use
following two properties.

Theorem (2.8). ([17], Theorem 1.1). Let R be a negative extremal ray on a
manifold X, γ : X → W its contraction, E := Exc( f ) the locus of the points
of the curves belonging to R, Ew a general �ber of γ |E . Then

dim E + dim Ew ≥ X − 1 + l(R).
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Lemma (2.9). ([3], Lemma 1.4). Let Z be a smooth irreducible subvariety of
a manifold X , and assume that the inclusion induces an isomorphism N1(Z ) ∼=

N1(X ). Let R be a negative extremal ray in N E (X ) and let γ X : X → Y be the
corresponding contraction. Then the restriction γ X |Z of γ X to Z is a non-�nite
morphism if and only if R is an extremal ray in N E (Z ) as well. In this case, if
R is also negative in N E (Z ), denote by γ Z the relative contraction of Z ; then
γ X |Z factors through γ Z and a �nite morphism.

3. Proof of Theorem A.

By Proposition (2.1), the morphism π : Z → B extends to a morphism
α : X → B . Note that α is a �at morphism (2.6.1). Unless otherwise speci�ed,
throughout all the section F will denote a general �ber of α. F is a smooth �ber
and, if sF ∈ �(EF ) is the restriction of the section s to F ,

f := (sF )0 = F ∩ Z

is a general �ber of π . In particular, f is isomorphic to P1. Note that the pair
(F, EF ) satis�es the hypothesis of Theorem (2.1). We will use this property
later. We split our investigation in two parts, depending on whether ρ(X ) is 2 or
more.

First part:. ρ(X ) = 2.

Claim (3.1). Every �ber of α is irreducible and reduced.

Proof. First of all, note that, if there is a non-reduced component of a �ber
of α : X → B , then, by restricting to Z , we would �nd a non-reduced
component of a �ber of π : Z → B , but we know that this doesn�t happen.
Now, assume F to be a reducible �ber of α: write F = A ∪ B . Since
OA(A + B) ∼= OA(F) ∼= OA, A and B are two effective divisors inducing
dual (and non-trivial, by connectedness of F ) line bundles on A:

OA(A) ∼= OA(−B).

Therefore A, B and KX are linear independent divisors, in contradiction with
ρ(X ) = 2. �

We are ready to analyze the possibilities given by Theorem (2.2) for the
pair (F, EF ). We remark that, a posteriori of the following arguments, for every
smooth �ber F of α the pair (F, EF ) must come into the same case of Theorem
(2.2).
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(3.2) Assume (F, EF ) to be as in the �rst case on Theorem (2.2). In order to
apply the �-genus semi-continuity argument to α : X → B , the �rst step is to
�nd a line bundle on X whose restriction to the smooth �bers of α is isomorphic
to OP(1). Let U ⊂ B be the locus of the smooth �bers of α:

U = {p ∈ B|Fp = α−1(p) is a smooth �ber},

and V = α−1(U ) ⊂ X . Then α|V : V → U is a Pn−1-bundle over U . Tsen�s
Theorem gives the vanishing of the étale cohomology group H 2(Uet ,Gm ) [13],
Chapter III, 2.22(d), thus, at least in the étale topology, V is the projectivization
of a vector bundle on U . We apply Hilbert�s Theorem ([13], Chapter III,
Proposition 4.9) to conclude that produces, in the Zariski topology, a line bundle
H0 on V which induces OP(1) on the �bers. Then such line bundle H0 extends
to a line bundle H on X . It is easy to see that H is α-ample using the fact that all
the �bers of α are reduced and irreducible. Let F0 any �ber of α. By Proposition
(2.4) and Theorem (2.6), �(F0, HF0

) = 0 and H n−1
F0

= 1. We conclude, using

Proposition (2.5), that α : X → B is a Pn−1 -bundle and EF
∼= OP(1)

⊕(n−1) for
every �ber. This gives case (0) of Theorem A. Note, in particular, that all the
�bers of π must be smooth. Conversely, if Z has not singular �bers, then (X, E)
is as above by [10].

(3.3) Assume now (F, EF ) to be as in (2.2.2), and de�ne

(3.3.1) L := −KX − detE.

Then LF = −KF − detEF
∼= OP(1). Moreover, L is α-ample. Proceeding as

in the second part of (3.2), we conclude that α : X → B is a Pn−1 -bundle and,
this time, EF

∼= OP(2)⊕OP(1)
⊕(n−3) for every �ber. This is case (1) of Theorem

A. The same kind of computations shows that, if (F, EF ) is as in (2.2.3) and we
de�ne L as in (3.3.1), then (X, E) comes into case (2) of Theorem A. In fact,
the line bundle L + mF is ample for m suf�ciently large, and it induces on X
the quadric �bration structure over B .

(3.4) Now, let (F, EF ) be as in (2.2.4). We are going to show that this case, that
is expected to give the last case of Theorem A, cannot occur in this situation,
assuming ρ(X ) = 2.

Remember that f = F ∩ Z ∼= P1 by generality of F . Let β : F → P1

denote the bundle projection and G be a �ber of β . If

sG ∈ �(G, EG) ∼= �(Pn−2, OP(1)
⊕(n−2))
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is the restriction of the section s to G , then

(3.4.1) f ∩ G = (sG)0 �= φ.

Therefore f ∩ G is either a point or all f . Since the event f contained in some
G would contradict (3.4.1) if we change G , the intersection f ∩ G must be a
point. In other words, f is a section of β : F → P1.

Let C ⊂ Z be a section of π : Z → B . For general �ber f , consider the
intersection point p = f ∩ C and the �ber G p of β containing p. Letting f
vary among general �bers of π , de�ne

Y :=
�

p= f ∩C
f general

G p.

Its Zariski closure Y in X is a divisor of X . Then Y is linearly independent
from KX and F , as we can check by intersecting with a line l contained in a
�ber G of β and with a smooth �ber f of π .

Second part:. ρ(X ) ≥ 3.

Using the adjunction formula (0.1), we see that KX + det E is not numer-
ically effective. Therefore the pair (X, E) satis�es the hypothesis of a result of
Maeda [12] that gives a list of admissible cases for (X, E). If we impose the
condition ρ(X ) ≥ 3, only two of these cases survive, and we have:

Theorem (3.5). [12, Theorem, case ρ(X ) ≥ 3]. Let E be an ample vector
bundle of rank n − 2 on a manifold X of dimension n such that KX + detE is
not nef. Assume moreover ρ(X ) ≥ 3. Then (X, E) is one of the following:

(1) X is a Pn−2 -bundle over a smooth surface S and EG
∼= OP(1)

⊕(n−2) for
every �ber G of ψ : X → S,

(2) there is an effective divisor E on X such that (E, EE ) ∼= (Pn−1,

OP(1)
⊕(n−2) and OX (E)|E

∼= OP(−1).

(3.6) Assume (X, E) to be as in (3.5.1). For every �ber G of ψ , let

sG ∈ �(G, EG) ∼= �(Pn−2, OP(1)
⊕(n−2))

be the restriction of s to G . Then

g := (sG)0 = Z ∩ G
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is a non-empty linear subspace of G . Actually, g can be just a point or line of G .
Therefore ψ |Z : Z → S is a generically one to one surjection whose positive
dimensional �bers are (−1)-curve of Z . A priori ψ |Z could be an isomorphism,
but

ρ(S) = ρ(X ) − 1 ≤ ρ(Z ) − 1

implies that at least one (−1)-curves of Z is contracted by ψ . This is case (3)
of Theorem A.

(3.7) Assume now (X, E) to be as in (3.5.2). This is the last admissible case.
Then X is the blow-up at a point q of a manifold X � , and E is the exceptional
divisor (see [15]). Let σ : X → X � denote the contraction morphism. [10,
Lemma 5.1] tells us that, in this situation, there exists an ample vector bundle
E

� on X � such that

(3.7.1) E ∼= σ ∗
E

� ⊗ OX (−E).

Let s � ∈ �(X �, E
�) be the section corresponding to s ∈ �(X, E) via isomorphism

(3.7.1), and Z � := (s �)0 . By construction, Z � = σ (Z ). If

sE ∈ �(E, EE ) ∼= �(Pn−1, OP(1)
⊕(n−2))

is the restriction of s to E ,

e := (sE )0 = Z ∩ E

is a positive-dimensional linear subspace of G , hence e ∼= P1. This means that
σ |Z : Z → Z � is the contraction morphism of e, that is a (−1)-curve of Z . In
particular, q ∈ Z �. We say that (X �, E

�, Z �) is a reduction of (X, E, Z ).

Now, X �, E
� and Z � satisfy the assumptions of the theorem we are proving.

If (X �, E
�) is again as in (3.6.2), we iterate the reduction. We remark that, in

this event, the exceptional divisors E
� of X � cannot contain the point q = σ (E).

This means that the exceptional divisor of X are disjoint. Eventually, we �nd
a reduction, say (X �, E

�, Z �), satisfying the hypothesis of Theorem A and not
containing any exceptional divisor. Thus, (X �, E

�) should come into one of the
previous cases stated in Theorem A. The following claim says that this can not
happen, concluding the proof of Theorem A.

Claim (3.7.3). Assume (X �, E
�) to be as in one case stated in Theorem A. Let

σ : X → X � the blow-up of X � at any point q , and E the vector bundle on X
de�ned by (3.7.1). Then E is not ample.
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Proof. Let F � be the �ber in X � containing q and F = σ−1(F �). Note that E�
F � ,

hence EF , is decomposable, and EF has at least one summand isomorphic to

summand of EF
∼=






σ ∗
OPn−1 (1) ⊗ OF (−E) in cases (0) or (1)

σ ∗
OQn−1 (1) ⊗ OF (−E) in case (2)

σ ∗(H (F ) ⊗ β∗
OP1 (bj )) ⊗ OF (−E) in case (3).

Take then C � ⊂ F � to be a curve passing through p: precisely, choose C � to be,
respectively, a line of F � ∼= Pn−1 in cases (0) and (1), a line of F � ∼= Qn−1 in
case (2), and a line of the �ber G ∼= Pn−1 of β containing p in the last case.
In any event, the summand of EF previously selected has intersection zero with
the strict transform of the curve C � . �

4. Proof of Theorem B.

By Proposition (2.1), the morphism π : Z → B extends to a morphism
α : Z → B , which is �at, as we remarked in (2.6.1). Let F be a general �ber
of α: then the pair (F, EF ) satis�es the hypothesis of Theorem (2.3). In the
following we analyze the possibilities listed in (2.3).

(4.1) Assume (F, E) to be as in one of the �rst two cases of Theorem (2.3).
Due to the isomorphism between the Picard groups (0.3.2), every �ber of α

is (reduced and) irreducible, ρ(Z ) = 2, and we can choose a line bundle L
on X whose restriction LZ to Z induces the quadric �bration structure. Then
LF

∼= OP(1) or OQ(1) respectively, and, using the �-genus semi-continuity
argument in analogous way as we did in the previous section, precisely in (3.3),
we obtain cases (1) and (2) of Theorem B.

(4.2) So, let (F, E) to be as in the last case of Theorem (2.3): F admits a Pn−2 -
bundle �bration β : F → P1, and EG

∼= OP(1)
⊗(n−3) for every �ber G of

β .

Claim (4.2.1). ρ(X ) = 3

Proof. Let F be a general �ber of α and f = F ∩ Z . Then, for every �ber G
of β : F → P1,

f ∩ G = (sG)0

is a positive-dimensional linear subspace of G , being

sG ∈ �(G, EG) ∼= �(Pn−2, OP(1)
⊕(n−3))

the restriction of s to G . Therefore, the restriction β| f : f → P1 must be the
projection of f ∼= P1 × P1 onto one of the two factors. Here we repeat an
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argument similar to the one given in the proof of (1.3.1). Let L be a line bundle
on X whose restriction LZ to Z induces the quadric �bration structure: we may
assume LZ to be very ample by (1.1.1). If D and D� are two general divisor in
the linear system |LZ |, then the intersection D ∩ D� ∩ f consists of two points
q1 and q2, not belonging to a same line of f . Let G1 and G2 denote the two
�bers of β containing q1 and q2 respectively, and de�ne:

Y :=
�

Gi ⊂F

F general

(G1 ∪ G2).

Let Y be its Zariski closure in X . By intersecting with two curves belonging to
the two different rulings of a �ber f ∼= P1 × P1, we see that Y , F and KX are
linear independent line bundles. �

Therefore ρ(Z ) = 3, hence Z is a P1 × P1- bundle over B with trivial
monodromy by Proposition (1.3.1), and two lines C1 and C2 belonging to the
two different rulings of a �ber f ∼= P1 × P1 generate two (negative) extremal
rays of N E (Z ). Let Ri := R≥0 · [Ci ] denote such rays and φi : Z → Si be the
corresponding contraction morphisms.

Claim (4.2.2). One of the two morphisms φi , say φ1 : Z → S1, extends to a
morphism γ : X → S1.

Proof. In order to prove the claim, we will show that N E(X/B) and N E (Z/B),
hence N E(X ) and N E(Z ), have a common extremal ray R.

First of all, (KX +det E)Z = KZ by adjunction formula (0.1). This implies
that KX + detE is negative, via intersection, on N E(Z/B). By the inclusion of
the cones, we see that KX + det E has negative intersection with some element
of N E (X/B). Using convexity of the cone N E(X/B), we deduce that at least
one of its two extremal rays has negative intersection with KX +detE. A fortiori
R has negative intersection with KX , being E ample. Let C be a rational curve
on X generating R and such that l(R) = −KX · C . Then

�(X, E, R) := −(KX + detE) · C ≥ 1.

This inequality, together with the property that, for any curve C ⊂ X, detE·C ≥

rkE because of the ampleness of E, give the following lower-bound to the length
of R:

l(R) ≥ �(X, E, R)+ rkE ≥ n − 2.

Thus, due to Theorem (2.8), we �nd a range for the dimension of the exceptional
locus of the contraction γ : X → W of the ray R. If E := Exc(γ ) is the locus
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of the points of the curves belonging to R, and Ew the general �ber of γ |E , we
have in fact

2n ≥ dim E + dim Ew ≥ dim X − 1 + l(R) ≥ 2n − 3.

If we assume γ to be birational, then E is a divisor and dim(γ (E)) ≤ 1. There
are two possibilities: either E ⊃ Z , or E ⊃ Z is a effective divisor of Z ,
due to (0.3.2). In any case γ |Z is not �nite, hence, by Lemma (2.9), it factors
through a contraction of an extremal ray of N E(Z ) and a �nite morphism. but
we know that the only contractions of extremal rays of Z are the two surjective
morphisms φi : Z → Si , and these don�t agree with the cases above.

Therefore γ is a �ber-type morphism. Moreover, dim W ≤ 3. Let F be a
general �ber of α, and compare the restriction γ |F of γ to F with β : F → P1.
Since both are contractions of extremal rays of N E (F) and the sum of the
dimensions of respective general �bers exceeds the dimension of F , by the
Kawamata Contraction Theorem we deduce that they are the same morphism:

γ |F = β : F → P1.

This implies that R is an extremal ray of N E(Z ), in particular of N E (Z/B), say
R1. By applying the second part of (2.9), we see that restriction γ |Z of γ to Z
factors through φ1 : Z → S1 and, possibly, a �nite morphism ν : S1 → S �. But
R being an extremal ray of N E (X/B) means that γ is a factor of α : X → B ,
hence that it is a �ber-wise morphism over B . On the other hand, γ |F = β

implies �rstly that dimW = 2, and secondly that ν should be 1 : 1 relatively to
the �bers of S1 over B . We conclude in this way that ν : S1 → W is a �nite
birational morphism. But W is normal, as stated in Kawamata�s Contraction
Theorem, hence we have that, actually, γ : X → S1 by Zariski�sMain Theorem.
�

If now G denotes a general �ber of γ, G ∼= Pn−2 and E ∼= OP(1)
⊕(n−3) .

We have to extend this property from the general G to every �ber of γ in order
to conclude the proof of Theorem B. The following claim permits us to apply
the �-genus semi-continuity argument.

Claim (4.2.3). γ : X → S1 is an equidimensional morphism with reduced and
irreducible �bers.

Proof. The general �ber has dimension n − 2. A bigger dimensional �ber
would be either a divisor of X , that it is impossible being γ a surjection onto a
surface, or a component of X , in contrast with the non-singularity of X . This
proves the �rst part of the claim.
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Let G be any �ber of γ . Then g = Z ∩ G ∼= P1 is a �ber of
γ |Z = φ1 : Z → S1. Let A be an irreducible component of G . Then
g ∩ A = Z ∩ A = (sA)0 is positive dimensional, because sA ∈ �(A, EA) and
rkEA < dim A. In fact g ⊂ A, being g an irreducible curve. We deduce that
any component A is reduced, so being g. To show that G is irreducible, note
that γ |Z is a smooth morphism onto S1, hence, for any p ∈ g,

(γ |Z )∗,p = γ∗,p|Tp Z : Tp Z → Tγ (p)S1

is surjective. On the other hand, if G is reducible, then p belongs to the
intersection of the irreducible components of G . Thus G is singular in p, and
this implies that the map

γ∗,p : Tp X → Tγ (p)S1

is not surjective. Then contradiction follows by the inclusion TZ ,p ⊂ TX,p. �

To conclude the proof, let L be the line bundle on X de�ned, via isomor-
phism (0.3.2), as extension of a tautological line bundle of φ1 : Z → S1. Then
LG

∼= OP(1) for a general �ber G of γ . Since N E (X/S1) is generated by the
numerical class of a line in G , we check easily that L is γ -ample by using the
relative version of Kleiman criterion. To see that γ is a �at morphism, for any
point p ∈ S1 pick a smooth and general curve C ⊂ S1 passing through p, and
de�ne Y := γ −1(p). Y is necessarily (reduced and) irreducible: indeed, γ |Y
being equidimensional implies that there are not irreducible components over
a point of C , and the existence of smooth �bers guarantees that there are no
more than one irreducible component dominating C . Therefore γ |Y is �at by
(2.6.1), hence γ does, since we can take p in S1 arbitrarily. Thus, we can apply
the �-genus semi-continuity (2.6) and Proposition (2.5) to conclude that every
�ber G of γ is isomorphic to Pn−2 . Furthermore, E ∼= OP(1)

⊕(n−3) , as follows
by Theorem (2.2) applied to (G, EG), and the �rst part of Theorem (2.5) applied
to (G, detEG).
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