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A TWO-FUNCTION EXTENSION OF A MINIMAX THEOREM

O. NASELLI

In this note we extend a topological minimax theorem due to Ricceri
([2]) to the case of two functions.

1. Introduction and statement of the main result

Let X ,Y be two non-empty sets and let ϕ be a real-valued function on X ×Y .
Set

ϕ∗ = sup
y∈Y

inf
x∈X

ϕ(x,y)

and

ϕ
∗ = inf

x∈X
sup
y∈Y

ϕ(x,y)

It is clear that
ϕ∗ ≤ ϕ

∗.

This is called the trivial minimax inequality. The opposite inequality

ϕ
∗ ≤ ϕ∗
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is called non-trivial minimax inequality and of course it is equivalent to the
minimax equality

ϕ∗ = ϕ
∗ (1)

Starting from the pioneristic work of von Neumann ([8]), many results en-
suring (1) were established. For an introductory bibliography see, for example,
the classical survey of Simons ([5]) .

Now, let f ,g : X ×Y → R, with f (x,y)≤ g(x,y) for every x ∈ X ,y ∈ Y . We
call non-trivial minimax inequality involving f ,g the following

f ∗ ≤ g∗ (2)

So, if f = g, (2) is equivalent to (1). For a given minimax theorem for one
function, it is an usual fact to see whether it is possible to find a two-function
version of it. The most natural way to get this is to split the hypotheses on ϕ to
f and g. For example, the two-function version of the most classical Fan-Sion’s
theorem ([7]) (Theorem 1.1 below) has been obtained by Simons ([6], Th. 1.4)
(Theorem 1.2 below).

Theorem 1.1. Let X be a nonempty compact convex subset of a topological
vector space, Y a nonempty convex subset of a topological vector space, and
let Ψ : X ×Y → R be quasi-convex and lower semicontinuous in X, and quasi-
concave and upper semicontinuous in Y . Then, (1) holds.

Theorem 1.2. Let X be a nonempty compact convex subset of a topological
vector space, Y a nonempty convex subset of a topological vector space, let
f : X ×Y → R be quasi-concave in Y and lower semicontinuous in X, and let
g : X ×Y →R be upper semicontinuous in Y and quasi-convex in X, with f ≤ g
on X ×Y . Then, (2) holds.

In [2], Ricceri proved the following result:

Theorem 1.3. Let X be a topological space, I ⊆ R an open interval and Ψ :
X × I → R a function satisfying the following conditions:

a) for each x ∈ X, the function Ψ(x, ·) is quasi-concave and continuous
b) for each λ ∈ I, the function Ψ(·,λ ) is lower semicontinuous and inf-

compact
c) for every λ ∗ ∈ I, the function Ψ(·,λ ∗) has only one global minimum point
Under such hypotheses, (1) holds.
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The aim of the present paper is to establish the following extension of The-
orem 1.3 to two functions.

Theorem 1.4. Let X be a topological space, I ⊆R an interval and f ,g : X ×I →
R two functions satisfying the following conditions:

H1) for every (x,λ ) ∈ X × I one has f (x,λ )≤ g(x,λ )
H2) the function g is lower semicontinuous in X × I
H3) for every x ∈ X, the function g(x, ·) is continuous
H4) for every λ ∈ I, the function f (·,λ ) is lower semicontinuous and inf-

compact
H5) for every x ∈ X, the function f (x, ·) is quasi-concave
H6) for every λ ∈ I, the function g(·,λ ) has only one global minimum point

Under such hypotheses, (2) holds.

To realize that when f = g = Ψ Theorem 1.4 gives Theorem 1.3, one has to
observe that conditions a), b) of Theorem 1.3, by Lemma 4 of [4], imply that
the function Ψ is lower semicontinuous in X × I.

Finally, for the reader’s convenience, we recall the following result ([1], Th.
2.3) that will be the main tool used to prove Theorem 1.4.

For a generic set S ⊆ X × I, for each (x,λ ) ∈ X × I, we set

Sx = {µ ∈ I : (x,µ) ∈ S}

Sλ = {u ∈ X : (u,λ ) ∈ S}

Theorem 1.5. Let X be a topological space, I ⊆ R a compact interval and
S,T ⊆ X × I. Assume that S is connected and Sλ ̸= /0 for all λ ∈ I, while Tx is
non-empty and connected for all x ∈ X, and T λ is open for all λ ∈ I.

Then, one has S∩T ̸= /0.

Remark 1.6. In [3], Theorem 1.3 has been extended to the case where I is an
arbitrary convex set in a topological vector space. It is an open challenging
problen to know whether the same holds for Theorem 1.4.
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2. Proof of Theorem 1.4

We argue by contradiction. So, assume that

g∗ < f ∗ (3)

and fix r ∈ R satisfying

g∗ < r < f ∗ (4)

For each λ ∈ I, let xλ be the only global minimum point of g(·,λ ). Let us show
that the function λ → xλ is continuous. To this end, it is clearly enough to show
that if {λn} is a sequence in I converging to λ̄ ∈ I, then x

λ̄
is a cluster point of

xλn . Let [a,b] ⊆ I a compact interval containing the sequence {λn}. From H5)
it follows that

∪λ∈[a,b] {x ∈ X : f (x,λ )≤ r} ⊆ {x ∈ X : f (x,a)≤ r}∪{x ∈ X : f (x,b)≤ r}

and so, from H1)

∪λ∈[a,b] {x∈X : g(x,λ )≤ r}⊆ {x∈X : f (x,a)≤ r}∪{x∈X : f (x,b)≤ r} (5)

Since, for every n ∈N, xλn belongs to the left-hand side of (5), from H4) and
(5) it follows that the sequence {xλn} is contained in a compact set and so it has
a cluster point x̄. Then, (x̄, λ̄ ) is a cluster point of {(xλn ,λn)} in X × [a,b]. Let
us show that

g(x̄, λ̄ )≤ limsup
n

g(xλn ,λn) (6)

Assume the contrary. Choose η such that

limsup
n

g(xλn ,λn)< η < g(x̄, λ̄ )

This implies that there exist α ∈ N and, by H2), a neighbourhood U of (x̄, λ̄ )
such that, for every (x,λ ) ∈U and every n > α , one has

g(xλn ,λn)< η < g(x,λ ) (7)

Since (x̄, λ̄ ) is a cluster point of {(xλn ,λn)}, there exists n̄ > α such that
(xλn̄ ,λn̄) ∈U and so, by (7)

g(xλn̄ ,λn̄)< η < g(xλn̄ ,λn̄)



A TWO-FUNCTION EXTENSION OF A MINIMAX THEOREM 445

that is absurde.
Now, let us fix x ∈ X . Taking (6) and H3) into account, we have

g(x̄, λ̄ )≤ limsup
n

g(xλn ,λn)≤ lim
n

g(x,λn) = g(x, λ̄ )

Thus, x̄ is a global minimum point for g(x, λ̄ ), and so x̄ = x
λ̄

. This prove the
claim.

Now, let {In} be an increasing sequence of compact intervals whose union
is I. We claim that there exists n ∈ N such that

sup
λ∈In

inf
x∈X

g(x,λ )< inf
x∈X

sup
λ∈In

f (x,λ ) (8)

Arguing by contradiction, suppose that, for every n ∈ N, one has

inf
x∈X

sup
λ∈In

f (x,λ )≤ sup
λ∈In

inf
x∈X

g(x,λ )

For every n ∈ N, let us put

Cn =

{
x ∈ X : sup

λ∈In

f (x,λ )≤ r
}

Each set Cn is non-empty: otherwise, by (4), one would have

r ≤ inf
x∈X

sup
λ∈In

f (x,λ )≤ sup
λ∈In

inf
x∈X

g(x,λ )≤ g∗ < r

Since the sequence {In} is increasing, the sequence {Cn} is decreasing.
Summarizing, {Cn} is a decreasing sequence of non-empty closed and compact
sets. So, there exists x∗ ∈ ∩n∈N Cn.

From the fact that for every n ∈N and for every λ ∈ In one has f (x∗,λ )≤ r,
it follows that f (x∗,λ )≤ r for every λ ∈ I and so one can conclude that

inf
x∈X

sup
λ∈I

f (x,λ )≤ r

against (4). Now, fix n ∈ N for which (8) is satisfied and choose s such that

sup
λ∈In

inf
x∈X

g(x,λ )< s < inf
x∈X

sup
λ∈In

f (x,λ ) (9)

Let us put

S = {(xλ ,λ ) : λ ∈ In}



446 O. NASELLI

T = {(x,λ ) ∈ X × In : f (x,λ )> s}
Thanks to the continuity of the function λ → xλ we can say that the set S is

connected in X × In. Observe now that, for every x ∈ X , the set Tx is non-empty
from (9) and connected from H5) and that, for every λ ∈ In, the set T λ is open
from H4). Then, thanks to Theorem 1.5, one has S ∩ T ̸= /0. But, for every
λ ∈ In, one has, from (9) and H1)

f (xλ ,λ )≤ g(xλ ,λ ) = inf
x∈X

g(x,λ )≤ sup
λ∈In

inf
x∈X

g(x,λ )< s

and so, S∩T = /0. This contradiction completes the proof.
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