doi: 10.4418/2024.79.2.10

A TWO-FUNCTION EXTENSION OF A MINIMAX THEOREM

O. NASELLI

In this note we extend a topological minimax theorem due to Ricceri ([2]) to the case of two functions.

1. Introduction and statement of the main result

Let X, Y be two non-empty sets and let φ be a real-valued function on $X \times Y$. Set

$$\varphi_* = \sup_{y \in Y} \inf_{x \in X} \varphi(x, y)$$

and

$$\varphi^* = \inf_{x \in X} \sup_{y \in Y} \varphi(x, y)$$

It is clear that

$$\varphi_* \leq \varphi^*$$
.

This is called the trivial minimax inequality. The opposite inequality

$$\phi^* \leq \phi_*$$

Received on September 4, 2024

AMS 2010 Subject Classification: 90C47; 49K35

Keywords: minimax, semicontinuity, global minimum points

442 O. NASELLI

is called non-trivial minimax inequality and of course it is equivalent to the minimax equality

$$\varphi_* = \varphi^* \tag{1}$$

Starting from the pioneristic work of von Neumann ([8]), many results ensuring (1) were established. For an introductory bibliography see, for example, the classical survey of Simons ([5]).

Now, let $f,g: X \times Y \to \mathbb{R}$, with $f(x,y) \le g(x,y)$ for every $x \in X, y \in Y$. We call non-trivial minimax inequality involving f,g the following

$$f^* \le g_* \tag{2}$$

So, if f = g, (2) is equivalent to (1). For a given minimax theorem for one function, it is an usual fact to see whether it is possible to find a two-function version of it. The most natural way to get this is to split the hypotheses on φ to f and g. For example, the two-function version of the most classical Fan-Sion's theorem ([7]) (Theorem 1.1 below) has been obtained by Simons ([6], Th. 1.4) (Theorem 1.2 below).

Theorem 1.1. Let X be a nonempty compact convex subset of a topological vector space, Y a nonempty convex subset of a topological vector space, and let $\Psi: X \times Y \to \mathbb{R}$ be quasi-convex and lower semicontinuous in X, and quasi-concave and upper semicontinuous in Y. Then, (1) holds.

Theorem 1.2. Let X be a nonempty compact convex subset of a topological vector space, Y a nonempty convex subset of a topological vector space, let $f: X \times Y \to \mathbb{R}$ be quasi-concave in Y and lower semicontinuous in X, and let $g: X \times Y \to \mathbb{R}$ be upper semicontinuous in Y and quasi-convex in X, with $f \leq g$ on $X \times Y$. Then, (2) holds.

In [2], Ricceri proved the following result:

Theorem 1.3. Let X be a topological space, $I \subseteq \mathbb{R}$ an open interval and Ψ : $X \times I \to \mathbb{R}$ a function satisfying the following conditions:

- a) for each $x \in X$, the function $\Psi(x,\cdot)$ is quasi-concave and continuous
- b) for each $\lambda \in I$, the function $\Psi(\cdot,\lambda)$ is lower semicontinuous and infcompact
 - c) for every $\lambda^* \in I$, the function $\Psi(\cdot, \lambda^*)$ has only one global minimum point Under such hypotheses, (1) holds.

The aim of the present paper is to establish the following extension of Theorem 1.3 to two functions.

Theorem 1.4. Let X be a topological space, $I \subseteq \mathbb{R}$ an interval and $f, g: X \times I \to \mathbb{R}$ two functions satisfying the following conditions:

- *H1) for every* $(x, \lambda) \in X \times I$ *one has* $f(x, \lambda) \leq g(x, \lambda)$
- H2) the function g is lower semicontinuous in $X \times I$
- *H3*) for every $x \in X$, the function $g(x, \cdot)$ is continuous
- *H4) for every* $\lambda \in I$, the function $f(\cdot,\lambda)$ is lower semicontinuous and infcompact
 - *H5) for every* $x \in X$, the function $f(x, \cdot)$ is quasi-concave
 - *H6) for every* $\lambda \in I$ *, the function* $g(\cdot, \lambda)$ *has only one global minimum point*

Under such hypotheses, (2) holds.

To realize that when $f = g = \Psi$ Theorem 1.4 gives Theorem 1.3, one has to observe that conditions a), b) of Theorem 1.3, by Lemma 4 of [4], imply that the function Ψ is lower semicontinuous in $X \times I$.

Finally, for the reader's convenience, we recall the following result ([1], Th. 2.3) that will be the main tool used to prove Theorem 1.4.

For a generic set $S \subseteq X \times I$, for each $(x, \lambda) \in X \times I$, we set

$$S_x = \{ \mu \in I : (x, \mu) \in S \}$$

$$S^{\lambda} = \{ u \in X : (u, \lambda) \in S \}$$

Theorem 1.5. Let X be a topological space, $I \subseteq \mathbb{R}$ a compact interval and $S,T \subseteq X \times I$. Assume that S is connected and $S^{\lambda} \neq \emptyset$ for all $\lambda \in I$, while T_x is non-empty and connected for all $x \in X$, and T^{λ} is open for all $\lambda \in I$.

Then, one has $S \cap T \neq \emptyset$.

Remark 1.6. In [3], Theorem 1.3 has been extended to the case where I is an arbitrary convex set in a topological vector space. It is an open challenging problem to know whether the same holds for Theorem 1.4.

444 O. NASELLI

2. Proof of Theorem 1.4

We argue by contradiction. So, assume that

$$g_* < f^* \tag{3}$$

and fix $r \in \mathbb{R}$ satisfying

$$g_* < r < f^* \tag{4}$$

For each $\lambda \in I$, let x_{λ} be the only global minimum point of $g(\cdot, \lambda)$. Let us show that the function $\lambda \to x_{\lambda}$ is continuous. To this end, it is clearly enough to show that if $\{\lambda_n\}$ is a sequence in I converging to $\bar{\lambda} \in I$, then $x_{\bar{\lambda}}$ is a cluster point of x_{λ_n} . Let $[a,b] \subseteq I$ a compact interval containing the sequence $\{\lambda_n\}$. From H5) it follows that

$$\cup_{\lambda \in [a,b]} \{x \in X : f(x,\lambda) \le r\} \subseteq \{x \in X : f(x,a) \le r\} \cup \{x \in X : f(x,b) \le r\}$$

and so, from H1)

$$\cup_{\lambda \in [a,b]} \{ x \in X : g(x,\lambda) \le r \} \subseteq \{ x \in X : f(x,a) \le r \} \cup \{ x \in X : f(x,b) \le r \}$$
 (5)

Since, for every $n \in \mathbb{N}$, x_{λ_n} belongs to the left-hand side of (5), from H4) and (5) it follows that the sequence $\{x_{\lambda_n}\}$ is contained in a compact set and so it has a cluster point \bar{x} . Then, $(\bar{x}, \bar{\lambda})$ is a cluster point of $\{(x_{\lambda_n}, \lambda_n)\}$ in $X \times [a, b]$. Let us show that

$$g(\bar{x}, \bar{\lambda}) \le \limsup_{n} g(x_{\lambda_{n}}, \lambda_{n}) \tag{6}$$

Assume the contrary. Choose η such that

$$\limsup_{n} g(x_{\lambda_{n}}, \lambda_{n}) < \eta < g(\bar{x}, \bar{\lambda})$$

This implies that there exist $\alpha \in \mathbb{N}$ and, by H2), a neighbourhood U of $(\bar{x}, \bar{\lambda})$ such that, for every $(x, \lambda) \in U$ and every $n > \alpha$, one has

$$g(x_{\lambda_n}, \lambda_n) < \eta < g(x, \lambda)$$
 (7)

Since $(\bar{x}, \bar{\lambda})$ is a cluster point of $\{(x_{\lambda_n}, \lambda_n)\}$, there exists $\bar{n} > \alpha$ such that $(x_{\lambda_{\bar{n}}}, \lambda_{\bar{n}}) \in U$ and so, by (7)

$$g(x_{\lambda_{\bar{n}}}, \lambda_{\bar{n}}) < \eta < g(x_{\lambda_{\bar{n}}}, \lambda_{\bar{n}})$$

that is absurde.

Now, let us fix $x \in X$. Taking (6) and H3) into account, we have

$$g(\bar{x}, \bar{\lambda}) \leq \limsup_{n} g(x_{\lambda_n}, \lambda_n) \leq \lim_{n} g(x, \lambda_n) = g(x, \bar{\lambda})$$

Thus, \bar{x} is a global minimum point for $g(x, \bar{\lambda})$, and so $\bar{x} = x_{\bar{\lambda}}$. This prove the claim.

Now, let $\{I_n\}$ be an increasing sequence of compact intervals whose union is I. We claim that there exists $n \in \mathbb{N}$ such that

$$\sup_{\lambda \in I_n} \inf_{x \in X} g(x, \lambda) < \inf_{x \in X} \sup_{\lambda \in I_n} f(x, \lambda)$$
 (8)

Arguing by contradiction, suppose that, for every $n \in \mathbb{N}$, one has

$$\inf_{x \in X} \sup_{\lambda \in I_n} f(x, \lambda) \le \sup_{\lambda \in I_n} \inf_{x \in X} g(x, \lambda)$$

For every $n \in \mathbb{N}$, let us put

$$C_n = \left\{ x \in X : \sup_{\lambda \in I_n} f(x, \lambda) \le r \right\}$$

Each set C_n is non-empty: otherwise, by (4), one would have

$$r \le \inf_{x \in X} \sup_{\lambda \in I_n} f(x, \lambda) \le \sup_{\lambda \in I_n} \inf_{x \in X} g(x, \lambda) \le g_* < r$$

Since the sequence $\{I_n\}$ is increasing, the sequence $\{C_n\}$ is decreasing. Summarizing, $\{C_n\}$ is a decreasing sequence of non-empty closed and compact sets. So, there exists $x^* \in \cap_{n \in \mathbb{N}} C_n$.

From the fact that for every $n \in \mathbb{N}$ and for every $\lambda \in I_n$ one has $f(x^*, \lambda) \leq r$, it follows that $f(x^*, \lambda) \leq r$ for every $\lambda \in I$ and so one can conclude that

$$\inf_{x \in X} \sup_{\lambda \in I} f(x, \lambda) \le r$$

against (4). Now, fix $n \in \mathbb{N}$ for which (8) is satisfied and choose s such that

$$\sup_{\lambda \in I_n} \inf_{x \in X} g(x, \lambda) < s < \inf_{x \in X} \sup_{\lambda \in I_n} f(x, \lambda)$$
 (9)

Let us put

$$S = \{(x_{\lambda}, \lambda) : \lambda \in I_n\}$$

446 O. NASELLI

$$T = \{(x, \lambda) \in X \times I_n : f(x, \lambda) > s\}$$

Thanks to the continuity of the function $\lambda \to x_\lambda$ we can say that the set S is connected in $X \times I_n$. Observe now that, for every $x \in X$, the set T_x is non-empty from (9) and connected from H5) and that, for every $\lambda \in I_n$, the set T^λ is open from H4). Then, thanks to Theorem 1.5, one has $S \cap T \neq \emptyset$. But, for every $\lambda \in I_n$, one has, from (9) and H1)

$$f(x_{\lambda}, \lambda) \le g(x_{\lambda}, \lambda) = \inf_{x \in X} g(x, \lambda) \le \sup_{\lambda \in I_n} \inf_{x \in X} g(x, \lambda) < s$$

and so, $S \cap T = \emptyset$. This contradiction completes the proof.

Acknowledgements

The author has been supported by Università degli Studi di Catania, PIACERI 2024-2026, Linea di intervento 1, Progetto "PAFA".

REFERENCES

- [1] B. Ricceri, Some topological mini-max theorems via an alternative principle for multifunctions, Arch. Math. (Basel) 60 (1993), 367-377
- [2] B. Ricceri, *Multiplicity of global minima for parametrized functions*, Rend. Lincei Mat. Appl. 21 (2010), 47-57
- [3] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2017, 99-152
- [4] J. Saint Raymond, *On a minimax theorem*, Arch. Math. (Basel) 74 (2000), 432-437
- [5] S. Simons, *Minimax theorems and their proofs*, in *Minimax and applications*, Nonconvex Optim. Appl., vol. 4, Kluwer Acad. Publ., Dordrecht (1995), 1-23
- [6] S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed point theorems, Proceedings of simposia in pure Mathematics, vol. 45 (1986), 377-391
- [7] M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176
- [8] J. von Neumann, Zur Theorie der Gesellschaftspiele, Math. Ann. 100 (1928), 295-320

O. NASELLI
Dipartimento di Matematica e Informatica
Università di Catania
e-mail: ornella.naselli@unict.it