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WEAKLY ARF PROPERTY FOR AMALGAMATION OF
SEMIGROUPS AND RINGS

D. SACCONE

We provide a characterization of the weakly Arf property for the amal-
gamation of numerical semigroups and for amalgamation algebras.

1. Introduction

The notion of Arf ring was formally introduced by J. Lipman in [10] generaliz-
ing a class of rings defined by C. Arf in order to study curve singularities (see
[1]). The definition of Arf ring requires, in particular, that the ring is Noethe-
rian semi-local and that every localization with respect to a maximal ideal is
one-dimensional and Cohen-Macaulay; this concept has been used to classify
the multiplicity trees of curve singularities, that, in turn, determine the equisin-
gularity classes with respect to formal equivalence (see e.g. [2]). In the above
mentioned context, one possible definition of an Arf ring A is the following:

Definition 1. Let A be a Noetherian semi-local ring such that Am is a one di-
mensional Cohen-Macaulay local ring for every m maximal ideal of A. Then A
is called an Arf ring if the following conditions hold:

1. Every integrally closed ideal I in A that contains a non-zerodivisor has a
principal reduction, i.e., In+1 = aIn for some n ≥ 0 and a ∈ I;
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2. if x,y,z ∈ A are such that x is a non-zerodivisor on A and y/x,z/x ∈ Q(A)
are integral over A, then yz/x ∈ A, where Q(A) denotes the total ring of
fractions of A.

Since Condition 1 becomes superfluous when A is also local with infinite
residue field (see [9, Proposition 8.3.7]), it was natural for the authors of [4]
to explore deeply Condition 2. So they propose the following more general
definition, without any assumption on A:

Definition 2. Let A be a commutative and unitary ring, A is said to be weakly
Arf if A satisfies the Condition 2 of the definition above.

In the same paper the authors develop a general theory of weakly Arf rings,
studying many interesting properties of the rings in this class. In particular,
they study when some ring constructions as the idealization, the amalgamated
duplication and some particular fiber products produce a weakly Arf ring (cf.
[4, Theorem 5.2, Theorem 6.2, Proposition 6.11]). A related problem was con-
sidered also in [3] where the author studies when a quadratic quotient of the
Rees algebra of an algebroid branch, with respect to an ideal I, produces an Arf
singularity.

Since idealization and amalgamated duplication are both related to a recent
construction introduced in [6], called amalgamation, considering that the amal-
gamation is a particular kind fiber product, it is natural to investigate when this
construction produces a weakly Arf ring.

More precisely, let f : R → S be a ring homomorphism and let J be an ideal
of S; we will call the amalgamation of R with S along J with respect to f the
ring

R ▷◁ f J = {(r, f (r)+ j) | r ∈ R and j ∈ J}

As said above, this ring can be constructed as a fiber product; indeed, if we
consider the canonical projection π : S→ S/J and f̌ = π ◦ f we get the following
commutative diagram

R ▷◁ f I
ρ1 //

ρ2

��

R

f̌
��

S
π

// S/J

where ρ1 and ρ2 are the canonical projections from R ▷◁ f J to R and S, respec-
tively. It is easy to check that R ▷◁ f J = f̌ ×S/J π . Therefore in this paper we
will study under which hypotheses the amalgamation is a weakly Arf ring.

A first step in this direction was motivated by the theory of numerical and
good semigroups, where it is possible to naturally define the notion of Arf semi-
groups, a notion that reproduces additively the definition of weakly Arf rings.
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In [5], the author defines the amalgamation of two numerical semigroups,
a construction that produces a good subsemigroup of N2; he shows that the
amalgamation of the value semigroups of two algebroid branches produces the
value semigroup of the amalgamation of the branches, that, in this case is an
algebroid curve with two branches.

Hence we start our investigation studying when the amalgamation of two
numerical semigroups gives an Arf semigroup and this is the content of Section
2. The main result of this section is Theorem 1, that completely characterize
when the amalgamation is an Arf semigroup.

Theorem 1. 1 Let S and T be two numerical semigroups, let g : S → T a semi-
groups homomorphism and let E an ideal semigroup of T . Then S ▷◁g E is
an Arf semigroup if and only if S and g(S)∪E are Arf semigroups and E is
integrally closed in g(S)∪E.

In Section 3 we investigated the amalgamation algebra R ▷◁ f J, where J is
an ideal of S and f : R → S is a ring homorphism. We obtained a result similar
to the case of semigroups, under the following hypotheses:

• R and f (R)+ J are domains.

• J and f−1(J) are non-zero ideals of S and R, respectively.

• f (R)+ J is a DVR.

Under these hypotheses we can prove the following result, that is the main the-
orem of the paper.

Theorem 2. 3 R ▷◁ f J is a weakly Arf ring if and only if R and f (R)+ J are
weakly Arf rings and J is an integrally closed ideal in f (R)+ J.

2. Arf amalgamation of numerical semigroups

A numerical semigroup is a submonoid S of N such that N \ S is finite. Let E
be a subset of a numerical semigroup S; we say that E is a semigroup ideal (or
simply an ideal) of S if E + S ⊆ E. If E is a semigroup ideal of a numerical
semigroup S, let ẽ = minE. We call integral closure of E in S the semigroup
ideal E = {s∈ S : s≥ ẽ} of S and we will say that E is integrally closed if E =E.

For an element a∈N2 we denote by a1 and a2 its first and second coordinate,
respectively. Given a,b ∈ N2, we say that a ≤ b if a1 ≤ b1 and a2 ≤ b2 with
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respect to the usual ordering of N, and we denote the infimum of the set {a,b}
by a∧b = (min(a1,b1),min(a2,b2)).

Let S a submonoid of N2; we say that S is a good semigroup if (see [2]):

1. for all a,b ∈ S, then a∧b ∈ S;

2. if a ̸= b ∈ S and ai = bi for some i ∈ {1,2}, then there exists c ∈ S such
that ci > ai = bi and c j = min{a j,b j}, with j ∈ {1,2}\{i};

3. there exists c ∈ S such that c+N2 ⊆ S.

Let S a numerical semigroup, we say that S is an Arf semigroup if for all
a,b,c ∈ S with a ≤ b and a ≤ c we have b+ c− a ∈ S. Similary; let S a good
semigroup, we say that is an Arf semigroup if for all a,b,c ∈ S with a ≤ b and
a ≤ c we have b+ c−a ∈ S.

Let now S and T be two numerical semigroups and let g : S → T a semi-
group homomorphism, i.e. the multiplication by a positive integer s such that
sa ∈ T for all a ∈ S. Fix an ideal E of T ; as it was done in [5], we define the
amalgamation of S with T along E with respect to g as the following subset of
N2:

S ▷◁g E = D∪ (g−1(E)×E)∪{a∧b : a ∈ D, b ∈ g−1(E)×E}

where D = {(a,sa) : a ∈ S}. It is not difficult to check that S ▷◁g E is a good
semigroup.

In what follows we want to give a characterization of when S ▷◁g E is an Arf
semigroup.

Remark 2.1. We observe that g(S)∪E is closed with respect to the sum and,
since N \E is finite, we have that N \ (g(S)∪E) is finite, that is g(S)∪E is a
numerical semigroup. Now, we call π1 : S ▷◁g E → S and π2 : S ▷◁g E → T the
canonical projections on the first and on the second component, respectively. We
get π1(S ▷◁g E) = S and π2(S ▷◁g E) = g(S)∪E. Indeed, for the first equality
it’s enough to observe that π1(D) = S; meanwhile for the second equality, if
we take an element of the form a∧ b, with a ∈ D and b ∈ g−1(E)×E, then
(a∧b)2 = a2 ∈ g(S) or (a∧b)2 = b2 ∈E. It follows immediately that π2(a∧b)=
(a∧b)2 ∈ g(S)∪E.

The next lemma should be well known, but we did not find a direct reference
for it, so we include its proof for the sake of completeness.

Lemma 1. Let S⊆N2 be a good semigroup and let ρ1 : S→N and ρ2 : S→N be
the canonical projections on the first and on the second component, respectively.
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Set S1 = ρ1(S) and S2 = ρ2(S); if S is an Arf semigroup, then S1 and S2 are Arf
semigroups.

In particular, if S ▷◁g E is an Arf semigroup, then both S and g(S)∪E are
Arf semigroups.

Proof. It is enough to prove the lemma for one projection, since it is indepen-
dent on the choice of the component. Let a1,b1,c1 ∈ S1 be such that a1 ≤ b1 ≤
c1. By definition, there are a2,b2,c2 ∈ S2 such that (a1,a2),(b1,b2),(c1,c2) ∈
S. Moreover, we may assume (a1,a2) ≤ (b1,b2) and (a1,a2) ≤ (c1,c2). In-
deed, if (a1,a2) ≰ (b1,b2) since a1 ≤ b1 it follows that b2 < a2; therefore
(a1,a2)∧ (b1,b2) = (a1,b2) ∈ ρ−1(a1) and (a1,b2) ≤ (b1,b2). Similarly, we
have (a1,c2) ≤ (c1,c2) with (a1,c2) ∈ ρ−1(a1). Hence, it is enough to replace
(a1,a2) with [

(a1,a2)∧ (b1,b2)
]
∧
[
(a1,a2)∧ (c1,c2)

]
to get (a1,a2)≤ (b1,b2) and (a1,a2)≤ (c1,c2).

Now, if S is an Arf semigroup we have (b1 + c1 − a1,b2 + c2 − a2) ∈ S,
therefore b1 + c1 −a1 ∈ S1, thus S1 is an Arf semigroup.

Remark 2.2. Let E be an integrally closed ideal of g(S)∪E and let a = b∧ c
with b ∈ D and c ∈ g−1(E)×E. If we assume a ̸= b and a ̸= c, then a = (b1,c2)
or a = (c1,b2).

In the first case we have c2 ≤ b2 = sb1 so b2 ∈ E, therefore b1 ∈ g−1(E).
In the second case we have c1 ≤ b1, so sc1 ≤ sb1 = b2, with sc1 ∈ E; therefore
b2 ∈ E and b1 ∈ g−1(E).

In conclusion, we have a = b ∈ D or a ∈ g−1(E)×E and hence

S ▷◁g E = D∪ (g−1(E)×E).

Remark 2.3. Let E be an integrally closed ideal in g(S)∪E and let a,b∈ S ▷◁g E
such that a ≤ b. If a ∈ g−1(E)×E, then b ∈ g−1(E)×E.

Indeed, if b ∈ D and a ∈ g−1(E)×E we have a2 ≤ b2 = sb1 so that b2 ∈ E.
Therefore b1 ∈ g−1(E), hence b ∈ g−1(E)×E.

Proposition 2.4. Assume that S and g(S)∪E are both Arf semigroups and let E
be an integrally closed ideal of g(S)∪E. Then S ▷◁g E is an Arf semigroup.

Proof. Let a,b,c ∈ S ▷◁g E be such that a ≤ b and a ≤ c; since S and g(S)∪E
are Arf semigroups we have b1 + c1 − a1 ∈ S and b2 + c2 − a2 ∈ g(S)∪E. By
the above remarks S ▷◁g E = D∪ (g−1(E)× E) and, if a ∈ g−1(E)× E then
b,c ∈ g−1(E)×E too. So we need to consider the following three cases:

• if a,b,c ∈ D, then b2+c2−a2 = s(b1+c1−a1)∈ g(S), hence b+c−a ∈
D ⊆ S ▷◁g E;
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• if a ∈ D and at least one of b and c is in g−1(E)×E, for instance c ∈
g−1(E)×E; we have s(b1 + c1 − a1) ∈ g(S)∪E and s(b1 + c1 − a1) ≥
sc1, with sc1 ∈ E. Since E is integrally closed in g(S)∪ E, it follows
that s(b1 + c1 − a1) ∈ E, so b1 + c1 − a1 ∈ g−1(E). Hence b+ c− a ∈
g−1(E)×E ⊆ S ▷◁g E;

• if a,b,c ∈ g−1(E)×E we have s(b1+c1−a1)≥ sc1 and b2+c2−a2 ≥ c2
with sc1,c2 ∈ E, therefore b1 + c1 − a1 ∈ g−1(E) and b2 + c2 − a2 ∈ E.
Hence b+ c− a ∈ g−1(E)× E ⊆ S ▷◁g E (notice that, trivially, if E is
integrally closed, also g−1(E) is integrally closed).

The condition E integrally closed in g(S)∪E cannot be removed in order to
obtain that S ▷◁g E is an Arf semigroup, as the following example shows.

Example 1. Let S = {0,2,4,6,8,10,→} and T = {0,4,→}; both S and T are
Arf semigroups. Let E = {14,18,→} ⊂ T and let g : S → T the multiplication
by 2, that is g(a) = 2a for all a ∈ S. We have g(S) = {0,4,8,12,16,20,22, . . .}
and therefore

g(S)∪E = {0,4,8,12,14,16,18,→}.

Notice that 16 /∈ E, so E is not integrally closed in g(S)∪E. Computing g−1(E)
we get {10,→}; thus S ▷◁g E is the good semigroup depicted in the following
picture.

0
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The obtained semigroup S ▷◁g E is not an Arf semigroup: if we consider a =
(8,14),b = (8,16) and c = (10,14) ∈ S ▷◁g E, we have a ≤ b and a ≤ c, but
b+ c−a = (10,16) /∈ S ▷◁g E.

We conclude the section showing that the sufficient condition of Proposition
2.4 is in fact a characterization.

Theorem 1. Given two numerical semigroups S,T ⊆ N let g : S → T a semi-
group homomorphism and E a semigroup ideal of T .The following conditions
are equivalent.

1. S ▷◁g E is an Arf semigroup.

2. S and g(S)∪E are Arf semigroups with E integrally closed in g(S)∪E.

Proof. We need to show only the implication 1 ⇒ 2. By Lemma 1 we know
that S ▷◁g E are S and g(S)∪E are Arf numerical semigroups. So it remains to
prove that E in integrally closed in g(S)∪E.

Suppose, by contradiction, that E is not integrally closed in g(S)∪E and
set ẽ = minE; then there is an element b2 ∈ g(S)∪ E such that b2 > ẽ and
b2 /∈ E; hence b2 ∈ g(S), and so b2 = g(b1), for some b1 ∈ S. Consider b =
(b1,b2) ∈ S ▷◁g E and let c2 be the maximal element in E such that c2 < b2;
let c = (c1,c2) ∈ g−1(E)×E be such that c1 > b1 (such an element exists, since
g−1(E) is an ideal of S, so it has finite complement in N). Let a= b∧c∈ S ▷◁g E;
by construction we have a ≤ b, a ≤ c and a = (b1,c2).

We claim that b+c−a = (c1,b2) /∈ S ▷◁g E. Since c1 ̸= b1 and b2 = g(b1) /∈
E, the unique possibility to have (c1,b2) ∈ S ▷◁g E is that (c1,b2) = d ∧ e for
some d ∈ D and e ∈ g−1(E)×E. Hence (c1,b2) = (d1,e2) or (c1,b2) = (e1,d2).

• If (c1,b2) = (d1,e2), then b2 = e2 ∈ E, that is a contradiction.

• If (c1,b2) = (e1,d2), then g(b1) = sb1 = b2 = d2 = sd1, and so b1 = d1;
but then c1 = e1 ≤ d1 = b1. That is a contradiction, because we chose
c1 > b1.

This shows that b+c−a /∈ S ▷◁g E and it is a contradiction against the assump-
tion that it is Arf.

3. Weakly Arf property for amalgamated algebras

For a commutative ring R let W (R) be the set of non-zerodivisors of R and
denote by R the integral closure of R in its total ring of fraction Q(R). We recall
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that: given an ideal I of R, an element r ∈ R is said to be integral over I if there
exist an integer n and elements ai ∈ Ii for i = 1, . . . ,n, such that

rn +a1rn−1 + · · ·+an−1r+an = 0.

The set of all elements that are integral over I is called the integral closure of I,
and is denoted I (for more details see [9]).

A commutative ring with unity R is said to be weakly Arf if: for any x,y,z ∈
R with x ∈W (R) and y/x,z/x ∈ R, then yz/x ∈ R.

In this section we are interested in determining when an amalgamation al-
gebra is weakly Arf. So let R and S be commutative rings, let J be an ideal of
S and f : R → S a ring homomorphism. As we defined in the introduction, the
amalgamation of R with S along J with respect of f is the ring

R ▷◁ f J = {(r, f (r)+ j) | r ∈ R, j ∈ J}.

We recall now some basic properties of the amalgamation that we will need in
the sequel.

Remark 3.1. By [6, Proposition 5.1] we have:

1. Let ι := ιR, f ,J : R→R ▷◁ f J be the natural the ring homomorphism defined
by ι(a) :=(a, f (a)), for all a∈R. Then ι is an embedding, making R ▷◁ f J
a ring extension of R (with ι(R) = Γ( f ) (:= {(a, f (a)) | a ∈ R} subring of
R ▷◁ f J).

2. Let pR : R ▷◁ f J → R and pS : R ▷◁ f J → S be the natural projections of
R ▷◁ f J ⊆ R× S into R and S, respectively. Then pR is surjective and
ker(pR) = {0}× J. Moreover, pS(R ▷◁ f J) = f (R) + J and ker(pS) =
f−1(J)×{0}. Hence, the following canonical isomorphisms hold:

R ▷◁ f J
({0}× J)

∼= R and
R ▷◁ f J

f−1(J)×{0}
∼= f (R)+ J.

3. Let γ : R ▷◁ f J → ( f (R)+ J)/J be the natural ring homomorphism, de-
fined by (a, f (a) + j) 7→ f (a) + J. Then γ is surjective and ker(γ) =
f−1(J)× J. Thus, there exists a natural isomorphism

R ▷◁ f J
f−1(J)× J

∼=
f (R)+ J

J
.

Proposition 3.2 ([7, Proposition 3.1]). Assume that J and f−1(J) are regular
ideals of S and R, respectively. Then Q(R ▷◁ f J) is canonically isomorphic to
Q(R)×Q(S).
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Proposition 3.3 ([7, Proposition 3.4]). Assume that J and f−1(J) are regular
ideals of S and R, respectively. Then R ▷◁ f J (i.e., the integral closure of R ▷◁ f J
in its total ring of fractions) coincides with R× f (R)+ J. In particular, if f is an
integral homomorphism (i.e. f (R)⊆ S is an integral extension), then R ▷◁ f J =
R×S.

In the light of the last two results, in order to study the weakly Arf prop-
erty for R ▷◁ f J, we will need to always assume that J and f−1(J) are regular
ideals of S and R, respectively. Moreover, to control the non-zerodivisors of the
amalgamation, we will assume some extra hypothesis.

Proposition 3.4. Assume J and f−1(J) are regular ideals of S and R, respec-
tively and that f (a) ∈ W (S) for all a ∈ W (R). Then, if R ▷◁ f J is a weakly Arf
ring, also R is a weakly Arf ring.

Proof. Let a,b,c ∈ R be such that c ∈ W (R) and a/c,b/c ∈ R. By hypothesis
f (c)∈W (S), then α = (a/c, f (a)/ f (c)) and β = (b/c, f (b)/ f (c)) are elements
of Q(R)×Q(S). Moreover (c, f (c)) ∈W (R ▷◁ f J), therefore

(a, f (a))
(c, f (c))

,
(b, f (b))
(c, f (c))

∈ Q(R ▷◁ f J)

and we can write

α =
(a, f (a))
(c, f (c))

and β =
(b, f (b))
(c, f (c))

.

Since a/c ∈ R, there exists a monic polynomial h(X) ∈ R[X ] such that h(a/c) =
0, say h(X) = Xn + ∑

n−1
i=0 aiX i; define f (h)(X) = Xn + ∑

n−1
i=0 f (ai)X i ∈ S[X ].

Then it is straightforward that α = (a/c, f (a)/ f (c)) is a root of the polynomial
Xn +∑

n−1
i=0 (ai, f (ai))X i, that is α ∈ R ▷◁ f J. Similarly we get that β ∈ R ▷◁ f J.

By hypothesis R ▷◁ f J is a weakly Arf ring, therefore

(a, f (a))(b, f (b))
(c, f (c))

=

(
ab
c
,

f (ab)
f (c)

)
∈ R ▷◁ f J

and so ab/c ∈ R, that is R is a weakly Arf ring.

Now, we want to understand under which condition the converse of the pre-
vious proposition is true. To start we assume that R and S are integral domains,
in this case we have the following.

Proposition 3.5 ([6, Proposition 5.2]). With the notation above, we assume J ̸=
{0}. Then, the following conditions are equivalent.
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1. R ▷◁ f J is an integral domain.

2. f (R)+ J is an integral domain and f−1(J) = {0}.

We note that, if J = {0} we have R ▷◁ f J ∼=R. On the other hand, if f−1(J) =
{0} we have R ▷◁ f J ∼= f (R)+ J. Hence we will always assume J ̸= {0} and
f−1(J) ̸= {0}. In particular, we have that R ▷◁ f J is not an integral domain.
Moreover; since R and S are integral domains, then J and f−1(J) are regular
ideals. So that, by Proposition 3.3, we get R ▷◁ f J ∼= R× f (R)+ J.

The following result will be very useful in the sequel.

Lemma 2. Let I be an ideal of a ring R, let x, i ∈ R such that x/i ∈ R and i ∈ I.
Then x ∈ I.

Proof. Let x, i∈R such that x/i∈R and i∈ I. Then x∈ iR⊆ IR; since I = IR∩R
we get x ∈ I.

If we further assume that f (R)+ J is a valuation domain, then the following
holds are true.

Lemma 3. Assume that J is integrally closed in f (R)+J, and let x,y ∈ f (R)+J
be such that x /∈ J and y = f (a)+ j, with a ∈ R and j ∈ J; then y/x ∈ f (R)+ J
if and only if f (a)/x ∈ f (R)+ J.

Proof. Since j ∈ J and x ∈ f (R) + J, we have x/ j ∈ f (R)+ J if and only if
x∈ j( f (R)+ J)∩( f (R)+J)⊆ J = J; thus x/ j /∈ f (R)+ J, since x /∈ J; therefore
j/x ∈ f (R)+ J. Now, by

y
x
=

f (a)
x

+
j
x

the thesis follows immediately.

Now, we are ready to show the following result.

Proposition 3.6. Let R and S be two integral domains, let (0) ̸= J ⊂ R be an
ideal of S such that f−1(J) ̸= (0). We also assume that f (R)+ J is a valuation
domain. Then, if R and f (R)+ J are weakly Arf and J is integrally closed in
f (R)+ J, R ▷◁ f J is weakly Arf.

Proof. Let α,β ,γ ∈ R ▷◁ f J such that γ ∈ W (R ▷◁ f J) and α/γ,β/γ ∈ R ▷◁ f J,
we write α = (a1,a2), β = (b1,b2) and γ = (c1,c2). So a1/c1,b1/c1 ∈ R and
a2/c2,b2/c2 ∈ f (R)+ J. Since R and f (R)+J are weakly Arf, we have a1b1

c1
∈ R

and a2b2
c2

∈ f (R)+ J, hence αβ/γ ∈ R× ( f (R)+ J). Since J is integrally closed
in f (R)+ J, then f−1(J) is also integrally closed; thus, if c2 ∈ J (that implies
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also c1 ∈ f−1(J)), by Lemma 3.6 we get α,β ,γ ∈ f−1(J)×J. Furthermore, we
note that

a1b1

c1
= c1

a1

c1

b1

c1
∈ c1R∩R ⊆ ( f−1(J))R∩R = f−1(J)

a2b2

c2
= c2

a2

c2

b2

c2
∈ c2( f (R)+ J)∩ ( f (R)+ J)⊆ J( f (R)+ J)∩ ( f (R)+ J) = J

hence
αβ

γ
∈ f−1(J)× J ⊆ R ▷◁ f J.

On the other hand, if c2 /∈ J, by Lemma 3.7, we can assume that a2,b2,c2 ∈ f (R).
By definition of R ▷◁ f J, it follows that a pair (x,y) ∈ R ▷◁ f J if and only if
f (x)− y ∈ J, therefore we want to show that f (a1b1/c1)− f (a1) f (b1)/ f (c1) ∈
J. Indeed

f
(

a1b1

c1

)
− f (a1) f (b1)

f (c1)
=

f (c1) f (a1b1
c1

)− f (a1) f (b1)

f (c1)
=

=
f (c1

a1b1
c1

)− f (a1b1)

f (c1)
= 0 ∈ J

Hence, also in this case we have αβ/γ ∈ R ▷◁ f J.

Now we would like to understand when the converse of the above proposi-
tion holds. Before doing that, we need to show some more preliminary results.
First of all we recall that, if R is a local, noetherian, one-dimensional domain,
whose integral closure R is a DVR, then, every ideal I has a principal reduc-
tion (x), with x an element of minimal value in I; moreover I = xR∩R (see [9,
Proposition 1.6.1]), and thus, for any i ∈ I, i/x ∈ R.

Lemma 4. Let R be a local noetherian domain, such that R is a DVR and
(R : R) ̸= (0); denote the associated valuation by v. Let I be an ideal of R and
let e0 ∈ I be a minimal reduction of I. Let c ∈ (R : R)\{0}.

Then, for any a ∈ R such that v(a)> v(ce0), we have a ∈ I.

Proof. By c∈ (R : R) it follows that cR⊆R; therefore, if v(a)> v(ce0), we have
a ∈ e0(cR)⊆ I. Thus a ∈ I.

Lemma 5. Let R be a local noetherian domain such that R is a DVR and
(R : R) ̸= (0); denote the associated valuation by v. Denote by n the maxi-
mal ideal of R and by m= n∩R the maximal ideal of R. Let I be an ideal of R
not integrally closed and let e0 ∈ I be a minimal reduction of I.

If R/n ∼= R/m, then there exists a ∈ R \ I such that a/e0 ∈ R and v(a) /∈
v(I) = {v(i)|i ∈ I \{0}}.
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Proof. Since I is not integrally closed, there exists a ∈ I \ I ⊆ R; the choice of
e0 implies that v(a)− v(e0)> 0, and so a/e0 ∈ R.

If v(a) ∈ v(I), that is v(a) = v(i1) for some i1 ∈ I, a/i1 ∈ R\n; by hypoth-
esis there exists b1 ∈ R \m such that b1 − a/i1 ∈ n, that implies v(b1i1 − a) =
v(i1(b1−a/i1))> v(i1) = v(a); furthermore a−b1i1 ∈ R\ I and (a−b1i1)/e0 ∈
R.

If v(a−b1i1) /∈ v(I) we get the thesis replacing a with a−b1i1. Otherwise,
as above, we can find i2 ∈ I and b2 ∈ R\m such that v(a−b1i1 −b2i2)> v(a−
b1i1); furthermore a−b1i1 −b2i2 ∈ R\ I and (a−b1i1 −b2i2)/e0 ∈ R.

Inductively, for any r ∈ N+, if v(ar−1) ∈ v(I), we can find ir ∈ I and br ∈
R \ I such that the element ar = a− b1i1 − . . . − brir ∈ R \ I, ar/e0 ∈ R and
v(ar)> v(ar−1).

We claim that, after a finite number of steps we get v(ar) /∈ v(I). Indeed, if
c ∈ (R : R)\{0}, since the sequence of the v(ai) is strictly increasing, there

exists r ∈ N+ such that v(ar)> v(ce0) and, by Lemma 4, we get ar ∈ I that is a
contradiction.

Now, we assume that both R and S are integral domains and f (R)+ J is
a DVR with valuation v. We assume that J is a finitely generated ideal of S
and that f−1(J) ̸= {0}. Then, by [7, Proposition 3.1], we have R ▷◁ f J = R×
f (R)+ J Assume also that ( f (R)+J : f (R)+ J) ̸= (0) and that the residue fields
of f (R)+ J and f (R)+J are isomorphic (so we can apply the previous lemma).

With this setting, we have the following.

Theorem 2. If J is not integrally closed in f (R)+ J, then R ▷◁ f J is not weakly
Arf.

Proof. Let e0 ∈ J be such that J( f (R)+ J) = e0( f (R)+ J); since J is not inte-
grally closed in f (R)+ J we can take y ∈ f (R)+ J such that y/e0 ∈ f (R)+ J
and, by Lemma 5, we can assume that v(y) /∈ v(J); if we write y = f (x)+ j with
x ∈ R and j ∈ J, we set a = (x,y) ∈ R ▷◁ f J. Let i ∈ J be such that v(y) > v(i)
(e.g. take i = e0) and set b = (0, i) ∈ R ▷◁ f J. Let c = a+ b ∈ R ▷◁ f J and we
observe that a/c,b/c ∈ R ▷◁ f J; indeed we have

a
c
=

(x,y)
(x,y+ i)

=

(
1,

y
y+ i

)
and

b
c
=

(0, i)
(x,y+ i)

=

(
0,

i
y+ i

)
clearly 0,1 ∈ R; moreover v(y)−v(y+ i) = v(y)−v(i)> 0 and v(i)−v(y+ i) =
0, thus y

y+i ,
i

y+i ∈ f (R)+ J.
Now, we want to show that

ab
c

=

(
0,

yi
y+ i

)
/∈ R ▷◁ f J
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that is yi
y+i /∈ J. If yi

y+i ∈ J we would have yi ∈ (y+ i)J, so yi = (y+ i)h for
some h ∈ J; then v(y) + v(i) = v(y + i) + v(h); since v(y + i) = v(i) we get
v(y) = v(h) ∈ v(J), that is a contradiction. Thus ab/c /∈ R ▷◁ f J, that is R ▷◁ f J
is not weakly Arf.

Theorem 3. Under the standing assumptions, the following are equivalent:

(i) R ▷◁ f J is weakly Arf.

(ii) R and f (R)+ J are weakly Arf and J is integrally closed in f (R)+ J.

Proof. By Proposition 3.6 we need only prove that (i) implies (ii). Furthermore,
if (i) holds, then J is integrally closed in f (R)+ J by Theorem 2. So it remains
to prove only that R and f (R)+ J are weakly Arf.

Let a,b,c ∈ R such that c ̸= 0 and a/c,b/c ∈ R; we set α = (a, f (a)) and
β = (b, f (b)) ∈ R ▷◁ f J. Two cases can occur:

1. f (c) ̸= 0; in this case γ = (c, f (c)) ∈W (R ▷◁ f J) and α/γ,β/γ ∈ R ▷◁ f J.
Since R ▷◁ f J is weakly Arf, we get αβ/γ ∈ R ▷◁ f J. Thus ab/c ∈ R;

2. f (c) = 0; we have c∈ f−1(J), therefore a∈ cR⊆ f−1(J) = f−1(J). Since
J is a finitely generated ideal, there exists e ∈ J such that v(e) = minv(J);
note that v( f (a)) ≥ v(e) and v( f (b)) ≥ v(e), hence f (a)/e, f (b)/e ∈
f (R)+ J. If we set γ = (c,e) ∈ W (R ▷◁ f J), then α/γ,β/γ ∈ R ▷◁ f J;
by hypothesis we get αβ/γ ∈ R ▷◁ f J, thus ab/c ∈ R.

This shows that R is weakly Arf.

Now, we check that f (R)+J is weakly Arf. Let x,y,z∈ f (R)+J be such that
x ̸= 0 and y/x,z/x ∈ f (R)+ J; set x = f (c)+h, y = f (a)+ j and z = f (b)+ i,
with a,b,c ∈ R and j, i,h ∈ J. Again two cases can occur:

1. x ∈ J; by y/x,z/x ∈ f (R)+ J, we have y,z ∈ J. Pick d ∈ J such that d ̸= 0
and set α = (d,y), β = (d,z) and γ = (d,x); then α,β ∈ R ▷◁ f J and
γ ∈W (R ▷◁ f J). Therefore:

α

γ
=

(
d
d
,
y
x

)
=
(

1,
y
x

)
∈ R ▷◁ f J

β

γ
=

(
d
d
,

z
x

)
=
(

1,
z
x

)
∈ R ▷◁ f J;

since R ▷◁ f J is weakly Arf, we get αβ/γ ∈ R ▷◁ f J, thus yz/x ∈ f (R)+J;
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2. x /∈ J; by Lemma 3 we have f (a)/x ∈ f (R)+ J, therefore

f (a) ∈ x( f (R)+ J)⊆ f (c)( f (R)+ J)+ J.

Then there is k ∈ J such that ( f (a)+k)/ f (c)∈ f (R)+ J; again by Lemma
3 we get f (a)/ f (c) ∈ f (R)+ J. Hence, we can assume x,y,z ∈ f (R). Set
α = (a,y),β = (b,z),γ = (c,x) ∈ R ▷◁ f J; since x /∈ J we obtain c ̸= 0 so
that γ ∈ W (R ▷◁ f J); by hypothesis, y/x ∈ f (R)+ J therefore there is a
monic polynomial P(t) ∈ ( f (R)+ J)[t] such that P( y

x) = 0. We write

P(t) = tn +
n−1

∑
i=0

wit i

where wi = f (mi)+ ki with mi ∈ R and ki ∈ J; we set

Q(t) = tn +
n−1

∑
i=0

mit i ∈ R[t]

by f (Q(t)) = P(t)−∑
n−1
i=0 kit i we get f (Q(a

c )) ∈ J( f (R)+ J) ⊆ J, there-
fore Q(t)−Q(a

c ) ∈ R[t] and (Q(t)−Q(a
c ))(

a
c ) = 0; thus a/c ∈ R; simi-

larly b/c ∈ R. Then α/γ,β/γ ∈ R ▷◁ f J, so that αβ/γ ∈ R ▷◁ f J and thus
yz/x ∈ f (R)+ J.

This shows that f (R)+ J is weakly Arf.

Example 2. Let R = k[X1, . . . ,Xn] and S = k[[Y1, . . . ,Ym]], let f : R → S the ring
homomorphism defined by f (Xi) =Y1 for any i= 1, . . . ,n and f (1) = 1. Let J be
the ideal of S generated by Y1. It’s easy to check that all hypothesis of Theorem 3
are satisfied observing that f (R)+ J = k[[Y1]] is a DVR. Now; because R and
k[[Y1]] are UFDs, by [9, Proposition 2.1.5] they are integrally closed, and hence
they are weakly Arf rings. Moreover (Y1) is an ideal integrally closed in k[[Y1]],
therefore J is integrally closed in f (R)+J. Hence, by Theorem 3 the ring R ▷◁ f J
is a weakly Arf ring.
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