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ACM BUNDLES ON A GENERAL QUINTIC THREEFOLD

LUCA CHIANTINI - CARLO MADONNA

Dedicated to Silvio Greco in occasion of his 60-th birthday.

Wegive a partial positive answer to a conjecture of Tyurin ([28]). Indeed
we prove that on a general quintic hypersurface of P

4 every arithmetically
Cohen�Macaulay rank 2 vector bundle is in�nitesimally rigid.

1. Introduction.

In this paper we study indecomposable vector bundleswithout intermediate
cohomology on a smooth projective threefold X ⊂ P

n with Picard group
generated over Z by an hyperplane section H .

Let us recall the following:

De�nition 1.1. Let E be an indecomposable rank k vector bundle on a smooth
projective threefold X as above. We say that E is an arithmetically Cohen-
Macaulay (ACM) bundle if hi (E(nH )) = 0 for i = 1, 2 and for any n ∈ Z.

In a previous paper ([16]) the second author showed a relation between the
invariants (up to twist) of indecomposable rank 2 ACM bundles on hypersur-
faces of P

4 and other threefolds of index one.
Of course, the existence of ACM bundles is linked with the existence of

some arithmetically Cohen�Macaulay curves, via Serre�s celebrated correspon-
dence between rank 2 bundles on threefolds and subcanonical cuves.
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Remind that a projective, locally Cohen�Macaulay variety X is subcanon-
ical when the dualizing sheaf ωX is OX (eH ) for some integer e.

If the threefold X is subcanonical it self (as complete intersection are), then
subcanonical curves C on X arise as 0-loci of global sections of rank 2 bundles
E on X and there is the natural exact sequence:

(0) 0 → O → E → IC(c1(E)) → 0

where IC is the ideal sheaf of the curve on X . Furthermore C is ACM exactly
when the bundle E is. E is decomposable if and only if C is the intersection of
X with two hypersurfaces of P

n .
It follows that the existence and the behaviour under deformation of

indecomposable rank 2 bundles on X is strictly linked with the problem of
describing curves C ⊂ X , which are not complete intersection on X .

Smooth Calabi�Yau threefolds X which, in our terminology, are subcanon-
ical with ωX = OX , received recently an increasing interest because of their
connection with other �elds of Mathematics. In particular, the study of curves
on such threefolds (apart from the obvious complete intersection ones) and of
their deformations and, consequently, the study of related rank two vector bun-
dles, was recently considered in the literature (see e.g. [12] or [28]).

The �rst examples of Calabi-Yau threefolds with Picard group generated
by the hyperplane section, are smooth quintic threefolds in P

4. In [28], Tyurin
conjectured that all rank 2 stable bundles E on a general quintic threefolds
are in�nitesimally rigid, that is the cohomology module H 1(E ⊗ E

∨), which
represents the local deformation functor, vanishes. The conjecture of course
imply that the Moduli spaces of these bundles on X is a discrete set of points.

On the other hand, in a private communication, G. Ottaviani pointed out to
us the following:

Example 1.2. [24] Call F the indecomposable Horrocks-Mumford rank 2
bundle on P

4 and call E the restriction of F to a general quintic threefold X .
F is not rigid in P

4 (see [10] for the properties of F ). One has h0(F) > 0,
h0(F(−1)) = 0 and the cohomology of F is shown in the table at p. 74 of [10].

Using the identi�cation of Pic(X ) with Z and the exact sequence:

(1) 0 → F(−5) → t F → t E → 0

one sees that c1(E) = 5 and h0(E(−1)) = h1(F(−6)) = 0, hence E is stable.
Furthermore, one computes that H 1(F ⊗ F∨) = 24 and

H 1(F ⊗ F∨(−5)) = 0
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(see e.g. [7] p. 218), hence by 0 → F ⊗ F∨(−5) → F ⊗ F∨ → E ⊗ E∨ → 0
one obtains H 1(E ⊗ E∨) > 0.

Thus E is a counterexample to Tyurin�s conjecture (in fact it is not even
actually rigid).

The non-rigidity of E follows euristically from the remark that F must
change under the action of PGL(4), for every homogeneous rank 2 bundle splits.
Since no elements of PGL(4) �x a general quintic threefold in P

4, clearly also
E cannot be rigid. Observe that a similar argument would work for every
indecomposable rank 2 bundles over P

4, restricted to X .

We remark that the bundle E of the previous example is not ACM. Indeed
from sequence (1) and from the table of [10] p. 74, one computes h1(E(2)) = 5,
since h1(F(2)) = 5 and h1(F(−3)) = h2(F(−3)) = 0.

Tyurin�s conjecture is still open for stable rank 2 bundles on a general
quintic threefold, which are not restriction of bundles in P

4. Among these
bundles, there are ACM bundles, which we are going to study in this note.

Our aim is to prove the following:

Theorem 1.3. All stable rank 2 ACM bundle on a general quintic threefold are
in�nitesimally rigid.

Our result is based on the classi�cation of invariants of indecomposable
ACM rank 2 bundles on a smooth threefold in P

4, obtained by the second
author in [16]. It turns out that if the bundle E is normalized so that h0(E) >

h0(E(−1)) = 0, then only few possibilities are left for the Chern classes of
indecomposable rank 2 ACM bundles. Furthermore one has a classi�cation of
curves arising as 0-loci of these bundles (see section 3). Then we use the method
introduced by Kleppe and Miró-Roig in [14] to understand the in�nitesimal
deformations of ACM subcanonical curves which arise in each case, and we
extablish the rigidity directly.

Let us recall that a classi�cation of ACM bundles and ACM subcanonical
curves on Fano threefolds are studied in the literature, and in some situation
their moduli spaces are described. This is the case, for example, of rank 2
ACM bundles on some Fano hypersurfaces of P

4, which are related to a pfaf�an
description of forms (see [3]). We refer the reader to [24] for the quadric
threefold, to [1] [4] [19] and [8] for the cubic threefold, to [14] and [17] for
the quartic threefold and more generally to [2] [18] [15] [3] [26] and [5].

For bundles on Calabi-Yau threefolds, our general references are [27] and
[28].

Notice that our method gives a description of the invariants of all possi-
ble non complete intersection subcanonical ACM curves on a general quintic
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threefold. Unfortunately in some cases the problem of their existence is still
open.

Acknowledgements. The authors are glad for this opportunity to contribute to
the celebration of the 60th birthday of Prof. Silvio Greco. In particular the �rst
author is grateful to Silvio, who was one of the advisors of his thesis, teached
him a lot of commutative algebra and algebraic geometry, and encouraged him
at the beginning of his career.

2. Generalities.

We work in the projective space P
4 over the complex �eld. We will denote

with O the structure sheaf of P
4.

Let X be a general quintic hypersurface in P
4.

X is smooth and we identify its Picard group with Z, generated by a
hyperplane section. We use this isomorphism to identify line bundles with
integers. In particular, for any vector bundle E on X , we set c1(E) ∈ Z and
we write E(n) for E ⊗ OX (n).

We have the following formulas for the Chern classes of twistings of E:

c1(E(n)) = c1(E) + 2n

c2(E(n)) = c2(E) + 5nc1(E) + 5n2.

Let us de�ne the number:

b(E) = b = max{n | h0(E(−n)) �= 0}.

We say that E is normalized when b = 0. Of course, after replacing E with the
twist E(−b), we may always assume that it is normalized.

We say that a rank 2 vector bundle E on X splits if it is isomorphic to the
direct sum of two line bundles.:

We use the de�nition of stability given in [22] p. 160. Since Pic(X ) ∼= Z,
in our notation we know that:

Remark 2.1. A rank 2 vector bundle E is semi-stable if and only if 2b−c1 ≤ 0.
It is stable if and only if the strict inequality holds.
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In particular, when E is normalized, then it turns out that E is (semi-) stable
if and only if c1 > 0 (≥).

The number 2b − c1 is invariant by twisting i.e. for all n ∈ Z:

2b − c1 = 2b(E(n)) − c1(E(n)).

It measures the level of stability of E.

If b = 0, it is shown in [9] Remark 1.0.1 that E has some global section
whose zero-locus C has codimension 2. C is a subcanonical curve of degree
c2(E), whose canonical divisor is ωC = OC(c1(E)).

Since ωX is trivial, Serre�s duality says that:

h3(E(n)) = h0(E∨(−n)) = h0(E(−c1 − n)).

Let us �nally recall the following:

Riemann-Roch formula (RR). Let E be a rank 2 vector bundle on X . Then

χ(E(n)) =
5

6
c31 +

5

2
nc21 +

5

2
n2c1 +

10

6
n3 −

c1c2

2
− nc2 +

25

6
c1 +

25

3
n.

3. ACM subcanonical curves on a quintic threefold.

Let us recall the main result of [16], rephrased in our situation:

Theorem 3.1. Let be E a normalized rank 2 ACM bundle on X . If E is
indecomposable, then:

−3 < c1(E) < 5.

We present here a rough classi�cation of curves arising as 0-loci of sections
of indecomposable ACM bundles on a quintic threefold. These computations
were announced in [18]. In the �rst three cases, the bundles are not stable, by
remark 2.1. We list them here for the sake of completeness.

Let E be a stable ACM rank 2 bundle on a smooth quintic threefold X .

Case 3.2. Assume that c1(E) = −2. Then c2(E) = 1 and E has a section whose
0-locus is a line.
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Proof. By [9] Remark 1.0.1 we know that E has a section whose 0-locus C is
a curve. By assumtions we have h1(E) = h2(E) = 0 and by Serre�s duality
h3(E) = h0(E(2)). The exact sequence (0) of the introduction here reads:

0 → OX → E → IC (−2) → 0

hence h3(E) = h0(E(2)) = 15. Now just use (RR) to see that necessarily
c2(E) = 1, i.e. C has degree 1, so it is a line. �

Case 3.3. Assume that c1(E) = −1. Then c2(E) = 2 and E has a section whose
0-locus is a conic.

Proof. As above we know that E has a section whose 0-locus C is a curve, with
the exact sequence:

0 → OX → E → IC (−1) → 0.

By assumtions we have h1(E) = h2(E) = 0 and by Serre�s duality h3(E) =

h0(E(1)) = 5. Then one computes c2(E) = 2, i.e. C has degree 2.
We do not know if C is reduced or irreducible. On the other hand, from

the exact sequence (0) we know that h0(IC (1)) = h0(E(2)) − 15. Since
h3(E(2)) = h0(E(−1)) = 0 and E is ACM, one may compute h0(E(2)) using
(RR). It turns out that h0(IC(1)) = 2, hence C is a plane curve of degree 2, i.e.
a conic. �

Case 3.4. Assume that c1(E) = 0. Then either:

1. c2(E) = 3 and E has a section whose 0-locus is a plane cubic;
2. c2(E) = 4 and E has a section whose 0-locus is a complete intersection

space curve;
3. c2(E) = 5 and E has a section whose 0-locus is a non-degenerate elliptic

curve.

Proof. Here E is semi-stable, by remark 2.1. As above we know that E has a
section whose 0-locus C is a curve, with the exact sequence:

0 → OX → E → IC → 0.

Again h1(E) = h2(E) = 0 while h3(E) = h0(E), so the Euler characteristic
of E cannot determine c2(E) in this case. On the other hand h0(IC(1)) =

h0(E(1)) − 5 and one may use (RR) to compute h0(E(1)), since h3(E(1)) =

h0(E(−1)) = 0 and E is ACM. It turns out that h0(IC(1)) = c2(E) − 5.
Thus deg(C) = c2(E) ≤ 5. Furthermore ωC = OC , so C is not a line, thus
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it cannot be contained in more than 2 independent hyperplanes of P
4; hence

deg(C) = c2(E) ≥ 3.
If c2(E) = 3, then h0(IC (1)) = 2 and C is a plane cubic.
If c2(E) = 4, then h0(IC(1)) = 1 and C is a space curve. It is well known

that any arithmetically Cohen-Macaulay subcanonical curve in P
3 is complete

intersection (see e.g. [9]). The invariants tell us then that C is complete
intersection of two quadrics in P

3.
Finally when c2(E) = 5, then C is a non-degenerate, elliptic ACM quintic

in P
4. �

Let us turn our attention to stable bundles.

Case 3.5. Assume that c1(E) = 1. Then either:

1. c2(E) = 4 and E has a section whose 0-locus is a plane quartic;
2. c2(E) = 6 and E has a section whose 0-locus is a complete intersection

space curve, of type (2,3);
3. c2(E) = 8 and E has a section whose 0-locus is a non-degenerate (possibly

singular) canonical curve of genus 5.

Proof. As above we know that E has a section whose 0-locus C is a curve, with
the exact sequence:

0 → OX → E → IC(1) → 0.

Here h3(E) = h0(E(−1)) = 0 and one computes c2(E) = 8 − 2h0(I(1)), so
that c2(E) is even and 4 ≤ c2(E) ≤ 8.

If C is degenerate, just as in the previous case it must be complete
intersection, and one concludes exactly as above.

Assume that c2(E) = 8, so that C is non-degenerate; since ωC = OC(1),
then C has arithmetic genus 5.

Observe that by (RR) and Serre�s duality, H 0(IC (2)) = 3. If the 3 quadrics
are independent, then C is complete intersection in P

4. �

Case 3.6. Assume that c1(E) = 2. Then c2(E) ≤ 14. Furthermore E has a
section whose 0-locus C is contained in a vector space of quadrics of dimension
14− c2 = 14− deg(C).

Proof. This is the most dif�cult case, in which we can say few things about the
curves associated to E. We have here h3(E) = 0 by assumptions and by Serre�s
duality, hence by (RR) h0(E) = 15− c2 and the �rst claim follows since we are
assuming h0(E) ≥ 1.

For the second claim, just use the exact sequence (0). �
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Notice that as deg(C) decreases in the previous example, then C must
be contained in a huge linear system of quadrics. In principle, this gives a
lower bound for deg(C), hence for c2(E). The bound is easily found when C
is reduced and irreducible, but unfortunately in general we cannot assume this
properties.

Remark 3.7. Later (see proposition 4.11) we shall see that in the previous case,
necessarily c2(E) ≥ 11.

Case 3.8. Assume that c1(E) = 3. Then c2(E) = 20. Furthermore E(1) is
generated by global sections, so it has a section whose 0-locus C � is a smooth,
irrreducible curve.

Proof. As above we know that E has a section whose 0-locus C is a curve, with
the exact sequence:

0 → OX → E → IC(3) → 0.

Here h3(E(−1)) = h0(E(−2)) = 0, so the Euler characteristic of E(−1)
vanishes. From (RR) one computes c2(E(−1)) = 10, so that c2(E) = 20.

The bundle E(1) is regular in the sense of Castelnuovo-Mumford (see [21]),
for h3(E(1)(−3)) = h0(E(−1)) = 0 and E is ACM. Thus one knows that E(1)
has a section whose 0-locus C � is a smooth curve. Since C � is a smooth ACM
curve, then it is also connected, hence irreducible. �

Case 3.9. Assume that c1(E) = 4. Then c2(E) = 30 and E has a section whose
0-locus is a smooth irreducible ACM curve of degree 30, not contained in cubic
hypersurfaces and whose ideal sheaf is generated by quartics.

Proof. E has a section whose 0-locus C is a curve, with the exact sequence:

0 → OX → E → IC(4) → 0.

Since h3(E(−1)) = h0(E(−4)) = 0, from (RR) one computes c2(E(−1)) and
�nds that c2(E) = 30.

The bundle E is regular in the sense of Castelnuovo-Mumford. Indeed
h3(E(−3)) = h0(E(−1)) = 0 and E is ACM. Then as in the previous case we
conclude that E has a section whose 0-locus is smooth irreducible. The two �nal
claims follows soon from the exact sequence above. �

We collect all the possible values of c1(E) and c2(E) in the following table:
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c1(E) c2(E) informations
−2 1 line
−1 2 conic

0

�
3
4
5

plane cubic
space curve c.i. type (2,2)
elliptic non�degenerate

1

�
4
6
8

plane quartic
space curve c.i. type (2,3)
canonical non�degenerate

2 ≤ 14 non�degenerate, h0 C(2) = 14− c2(E)

3 20 not contained in quadrics
4 30 smooth, irreducible, generated by quartics

Remark 3.10. The relative Chern classes uniquely determine the normalization
of E, in the sense that a stable ACM bundle with h0(E) > 0 is normalized if and
only if its two Chern classes are in the list above.

Indeed observe that in all the previous cases h0(E) > 0 just by (RR). When
c1(E) = 1, 2 by stability E(−1) cannot have non-zero sections, hence E is
normalized. When c1(E) = 3 then c2(E) = 20 and c2(E(−1)) = 10, which
is impossible for a normalized ACM bundle with �rst Chern class 1. Finally if
c1(E) = 4, c2(E) = 30 and E is not normalized, then necessarily E(−1) has
a section. One computes c1(E(−1)) = 2 and c2(E) = 15 so E(−1) cannot be
normalized, which is impossible since E is stable.

4. Deformations of ACM curves and the rigidity theorem.

Curves arising as 0-loci of sections of ACM bundles on X are subcanonical
ACM curves in P

4. In particular, such curves are arithmetically Gorenstein
([6]). The resolution of the ideal sheaf of arithmetically Gorenstein curves in P

4

is described by the following:

Proposition 4.1. Let C be an e-subcanonical, ACM curve in P
4 and call I the

ideal sheaf of C in P
4. Then one has a resolution:

(2) 0 → O(−e − 5) → ⊕O(−bi ) → ⊕O(−ai ) → I → 0

which is self-dual, up to twisting. Hence if one orders the ai �s and the bi �s so
that a1 ≤ . . . ≤ an and bn ≤ . . . ≤ b1, then:

∀ i ai = bi − e − 5.
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Proof. see [6]. �

Since a curve C which is 0-locus of a section of an ACM bundle on X is
locally complete intersection, then the (embedded) normal bundle of C in P

4 is
well de�ned. The cohomology of this bundle is computed from the following
formula of Kleppe and Miró�Roig:

Theorem 4.2. Let C be an e-subcanonical, ACM curve in P
4. Let NC be its

normal bundle in P
4. Then, with the previous notation, one can compute h0(NC )

from the formula:

(3) h0(NC ) =

n�

i=1

h0(OC(ai )) +
�

1≤i≤ j≤n

�
−ai + bj + 4

4

�

−

−
�

1≤i≤ j≤n

�
ai − bj + 4

4

�

−

n�

i=1

�
ai + 4

4

�

Proof. see [14]. �

Let us settle the link between deformation of a rank 2 bundle E on the
quintic threefold X and deformations of the ACM subcanonical curve C ⊂ X
which arises as the 0-locus of a global section of E.

First, we observe that stable ACM bundles have the following property:
0-loci of different sections are different.

Lemma 4.3. Let E be a normalized, stable, ACM bundle of rank 2 on a smooth
quintic threefold X and let s, s � ∈ H 0(E) be two independent global sections of
E. Call C,C � their 0-loci. Then (as schemes) C �= C � .

Proof. Assume that s � vanishes on C . Then H 0(E⊗IC ) has dimension at least
2, for it contains the independent sections s and s �. Tensoring sequence (0) with
E

∨ one gets:

(4) 0 → E
∨ → E ⊗ E

∨ → E ⊗ IC → 0

Since E is stable and normalized, then c1(E) > 0 hence:

h0(E∨) = h0(E(−c1(E)) = 0

and h1(E∨) = 0, since E is ACM. It follows that h0(E ⊗ E
∨) ≥ 2, which is

absurd since E is stable and hence simple. �

The previous result is in fact a special case of the following more general
statement:
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Proposition 4.4. Let X be a smooth quintic hypersurface in P
4 and let E and

F be two normalized stable ACM bundles of rank 2. Let s and t be two global
sections of E and F , respectively. Call C the 0-locus of s and C � the 0-locus
of t . If C = C � (as schemes), then there exist an isomorphism E ∼= F which
carries s to t .

Proof. Clearly E and F have the same Chern classes since the schemes C and
C � have the same numerical character. Tensoring the exact sequence:

0 → OX → E → IC (c1) → 0

by F
∨ one gets:

0 → F
∨ → E ⊗ F

∨ → IC ⊗ F → 0.

By assumptions, t de�nes a section of F ⊗IC , which is the image of an element
in H 0(E ⊗ F

∨), since h1(F ∨) = 0. It means that t induces a morphism
ϕ : F → E. Replacing E by F , it also follows the existence of a morphism
ψ : E → F induced by t . The two morphisms interchange s and t , hence the
composition is non zero. Since both E and F are simple, both ϕ and ψ are
invertible and we are done. �

Call EC the normal bundle of C on X and NC the normal bundle of C in
P
4. We have the exact sequence:

(4) 0 → EC → NC → OC(5) → 0

furthermore Serre�s correspondence (see e.g. [22]) implies:

EC = E ⊗ OC

Proposition 4.5. h0(EC) ≥ h0(E) − 1 and the stable ACM bundle E is
in�nitesimally rigid if and only if h0(EC) = h0(E) − 1.

Proof. The �rst claim follows soon from the exact sequence:

0 → H 0(IC ⊗ E) → H 0(E) → H 0(OC ⊗ E) = H 0(EC)

since h0(IC ⊗ E) = 1 by lemma 4.3. E is in�nitesimally rigid when h1(E ⊗

E
∨) = 0. Return to sequence (4) above and take cohomology:

H 1(E∨) → H 1(E ⊗ E
∨) → H 1(IC (c) ⊗ E

∨) → H 2(E∨)
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where c = c1(E). Since E is ACM, one gets H 1(E ⊗ E
∨) = H 1(IC (c) ⊗ E

∨).
Tensoring the exact sequence 0 → IC → OX → OC → 0 with E and recalling
that E(−c) = E

∨ , one gets in cohomology:

0 → H 0(IC (c)⊗E
∨) → H 0(E) → H 0(EC) → H 1(IC (c)⊗E

∨) → H 1(E)=0

and by lemma 4.3, necessarily H 0(IC(c) ⊗ E
∨) is generated by s . Hence the

formula in the statement is equivalent to H 1(IC (c) ⊗ E
∨) = 0. �

Next let us turn our attention to the Hilbert schemes in P
4.

Call H
� the Hilbert scheme of ACM curves in P

4 with degree c2(E) and
genus 1+ (c1(E)c2(E))/2.

Proposition 4.6. All the points of H
� which parametrizes curves C arising as

0-loci of sections of the indecomposableACM bundles determine a smooth open
subset H ⊂ H

� such that all Y ∈ H are ACM and satisfy h1(OY (5)) = 0.

Proof. Arithmetically Gorenstein curves in P
4 are unobstructed by [20]. All

these curves C are c-subcanonical for some c = c1(E) < 5. Hence they
satis�es:

h1(OC(5)) = h0(OC(c − 5)) = 0

since c − 5 < 0 and h1(IC (c − 5)) = 0. We are done since the vanishing
of H 1(OY (5)) describes an open subset of H

� , by semicontinuity, as the ACM
condition does. �

Let P = P
125 be the scheme which parametrizes quintic threefolds in P

4.
In the productH×P one has the incidence variety (i.e. theHilbert �ag scheme)

I = {(C, X ) : X is smooth and C ⊂ X },

with the two obious projections p : I → H and q : I → P.

Corollary 4.7. I is smooth and the map q : I → P has smooth general �bers.

Proof. The �ber of I over Y ∈ H is P(H 0(IY (5))). We know that h1(OY (5)) =

0, so h0(OY (5)) is just the constant computed by Riemann-Roch, moreover
H 1(IY (5)) = 0. It follows that I is a projective bundle over H.

Since we work in characteristic 0, the second claim follows soon by the
theorem of generic smoothness. �

Proposition 4.8. Assume that dim(I) ≤ 125 + u. Then either q is not
dominant or, for (C, X ) ∈ I general, the normal bundle EC of C in X satis�es
h0(EC) = u.
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Proof. The previous corollary says that the �ber IX of q : I → P over a
general quintic threefold X ∈ P is smooth. When q dominates, then IX is u-
dimensional, furthermore it is smooth, by the previous corollary. Since IX is an
open subset of the Hilbert scheme of curves in X and it contains all 0-loci of
ACM bundles, the claim follows. �

Remark 4.9. The above quoted fact that IX corresponds to the Hilbert scheme
of curves in X follows soon from the de�nition of the Hilbert deformation
functor. In�nitesimally, this is encoded in the sequence 0 → EC → NC →

OC(5) → 0 (see [25]).
In our setting the situation is readily understood. Call I the ideal sheaf of

C in P
4 and IC the ideal sheaf of C in X . The tangent space to I at (C, X )

is equal to the product H 0(EC) × H 0(I(5))/(h), where h is an equation of X .
Notice that H 0(I(5)) = H 0(IC (5))/(h). The tangent space to the �ber is the
kernel of the map:

H 0(NC ) × H 0(I(5))/(h) → H 0(OX (5))

and it is equal to H 0(EC), as it follows from the diagram:

0 0
↓ ↓

H 0(IC (5)) = H 0(IC (5))
↓ ↓

H 0(NC ) × H 0(I(5))/(h) → H 0(OX (5))
↓ ↓

0 → H 0(EC) → H 0(NC ) → H 0(OC(5))
↓ ↓

0 0

Recall that if E is a stable, normalized ACM bundle on the smooth quintic
threefold X , then h3(E) = h0(E∨) = 0, so h0(E) can be computed by (RR):

(5) h0(E) = χ(E) =
5

6
c31 −

c1c2

2
+
25

6
c1.

We collect together all the previous result and get our main formula:

Theorem 4.10. Let X be a general quintic threefold in P
4 and let E be a stable,

normalized ACM rank 2 bundle on X ; write c1 and c2 for the Chern classes of
E. Call C the 0-locus of a section of E and call NC the normal bundle of C in
P
4. If:

(6) h0(NC ) ≤
5

6
c31 − c1c2 +

25

6
c1 + 5c2

then E is in�nitesimally rigid.
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Proof. We always have dim(H) ≤ h0(NC ). The projection p : I → H has
�bers at C of dimension h0(IC (5)) − 1, which is equal to 125 − h0(OC(5)).
Now by Riemann-Roch, h0(OC(5)) = 5c2 − (c1c2)/2; indeed C has degree c2
and ωC = OC(c1), furthermore c1 < 5, by theorem 3.1 and

h1(OC(5)) = h0(OC(c1 − 5)) = h1(IC(c1 − 5)) = 0.

It follows:
dim(I) ≤ h0(NC ) + 125− 5c2 +

c1c2

2
.

From proposition 4.8 one gets that either the projection q : I → P is not
dominant or h0(EC) ≤ h0(NC ) − 5c2 + c1c2/2. But the �rst case cannot hold,
for we assumed that a general quintic threefold has a vector bundle as E, i.e. a
curve C ∈ H. Then if formula (6) holds, using the previous remark one gets:

h0(E) − 1 ≥ h0(NC ) − 5c2 +
c1c2

2
≥ h0(EC).

Proposition 4.8 tells us that in fact the equalities must hold and E is in�nitesi-
mally rigid. �

The proof of our main theorem follows from the list of all possible curves
C arising as 0-loci of sections of ACM bundles and computing h0(NC ), by
means of theorem 4.10.

Proof of theorem 1.3.

Case c1(E) = 4.
We know that c2(E) = 30 and E is generated by global sections. Let C be

a curve arising as 0-locus of a section of E. Then we saw in the previous section
that we may assume C smooth; C is not contained in cubics and the ideal sheaf
is generated by quartics. By 4.1 we have an autodual resolution of the ideal
sheaf of C in P

4 of the type:

0 → O(−9) → ⊕Oc(−bi ) → ⊕O(−ai ) → I → 0

where necessarly ai = 4 for all i . Then by duality bi = 5 for all i . Since C
is 4-subcanonical, then h0(OC(4)) = genus of C = 61. Since C is ACM, it
follows that h0(I(4)) = 9. The resolution is:

0 → O(−9) → O(−5)9 → O(−4)9 → I → 0.

Now using formula (3) one computes soon h0(NC ) = 99 and the rigidity of E

follows from formula (6).
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Case c1(E) = 3.
This is very similar to the previous one. We know that c2(E) = 20 and

E(1) is generated by global sections. Let C be a curve arising as 0-locus of a
section of E. Then C lies in no quadrics and the ideal sheaf IC is generated by
quartics; it follows that the minimal generators of the ideal of C have degree 3
or 4. Since C is 3-subcanonical, then h0(OC(3)) = genus of C = 31. Since
C is ACM, it follows that h0(I(3)) = 4. Hence in the resolution of I we have
ai = 3 for three values of i , so that by duality bi = 4 for three values of i .
We do not know in principle how many minimal generators of degree 4 one has
for I, since it may depend on the syzygies among the cubics (and in fact it may
vary). The resolution reads:

0 → O(−8) → O(−4)a ⊕ O(−5)4 → O(−3)4 ⊕ O(−4)a → I → 0.

Now one just computes that the contributions of terms of degree 4 in formula
(3) cancel, so whatever a is, one computes h0(NC ) = 74 and the rigidity of E

follows from (6).

Case c1(E) = 2.
This is as usual the most dif�cult case. Put d = c2(E); we just know that

d ≤ 14. If C is a curve arising as 0-locus of a section of E, then its ideal sheaf is
generated by quartics, furthermore C is non degenerate and h0(I(2)) = 14−d .
The resolution reads:

0 → O(−7) → O(−3)b ⊕ O(−4)a ⊕ O(−5)14−d →

→ O(−2)14−d ⊕ O(−3)a ⊕ Oc(−4)b → I → 0.

Proposition 4.11. d ≥ 11

Proof. If d < 11, then C is contained is a family of quadrics of af�ne
dimension at least 4. These quadrics cannot have a common hyperplane. Indeed
otherwise the residue hyperplanes must be independent and meet at a point:
since C is locally complete intersection, the point cannot be a component of C
(embedded or not), so C is degenerate, contradiction.
It follows that two general quadrics through C meet in a surface and C is
contained in a complete intersection curve of type (2, 2, 4). The resolution of
the ideal sheaf I� of the residue curve C � is computed with the mapping cone of
the diagram:

0 → O(−8) → O(−4)b ⊕ O(−6)2 → O(−2)2 ⊕ O(−4)
↓ ↓ ↓

0 → O(−7) → O(−3)b ⊕ O(−4)a ⊕ O(−5)x → O(−2)x ⊕ O(−3)a ⊕ O(−4)b
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(where x = 14− d ). One gets:

0 → O(−6)12−d ⊕O(−3)b⊕O(−4)a−1 → O(−3)14−d ⊕O(−4)b⊕O(−5)a →

→ O(−1) ⊕ O(−2)2 ⊕ O(−4) → I
� → 0.

Then C � is a degenerate curve of degree 5 and genus 3 (clearly not reduced
irreducible). Since C � lies in an ireducible quadric and its ideal is generated
by quartics, we may link it again using a complete intersection of type (1, 2, 4)
and get a new curve C �� ⊂ P

3 of degree 3, whose ideal sheaf I
�� (in P

4) has a
resolution which can be computed by the mapping cone again. It begins with

O(−1)13−d ⊕ O(−2) ⊕ O(−3)a−1 ⊕ O(−4)b+1 → I
�� → 0

which is impossible when d < 11, for 3 independent hyperplanes determine a
line. �

Let us go back to our computation of h0(NC ).
I f d = c2 = 11 then the resolution of I reads:

0 → O(−7) → O(−3)b ⊕ O(−4)a ⊕ O(−5)3 →

→ O(−2)3 ⊕ O(−3)a ⊕ O(−4)b → I → 0

and comparing the �rst Chern classes of the sheaves, one obtains b = a + 2.
We do not know b exactly: it depends on the intersections of the 3 quadrics.
Nevertheless one can apply formula (3) and see that every term with b cancels.
The output is H 0(NC ) = 47, which by (6) gives the in�nitesimal rigidity of E.
I f d = c2 = 12 then C is contained in two quadrics, hence in the resolution
of I there is at most one syzygy of degree 3. If there are no syzygies of degree
3, then by duality the curve is generated by cubics and one computes that one
cubic generator is enough. It turns out that C is complete intersection of type
(2, 2, 3), so that h0(NC ) = 2h0(OC(2)) + h0(OC(3)) = 50 and the inequality
(6) holds. If there is one syzygy of degree 3, then the resolution is:

0 → O(−7) → O(−3) ⊕ O(−4)2 ⊕ O(−5)2 →

→ O(−2)2 ⊕ O(−3)2 ⊕ O(−4) → I → 0

from which one computes by (3) again h0(NC ) = 50. In any case theorem [27]
implies the in�nitesimal rigidity of E.
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I f d = c2 = 13 C is contained in one quadric and no syzygies of degree
3 are allowed. The resolution is:

0 → O(−7) → O(−4)4 ⊕ O(−5) → O(−2) ⊕ O(−3)4 → I → 0

so one computes h0(NC ) = 53, the inequality (6) holds and E is in�nitesimally
rigid.

I f d = c2 = 14 then there are no quadric generators. The resolution is:

0 → O(−7) → O(−4)7 → O(−3)7 → I → 0

so one computes h0(NC ) = 56, the inequality (6) holds and E is in�nitesimally
rigid.

case c1(E) = 1.
Put d = c2(E). We know that d = 4, 6, 8. Let C be a curve arising as

0-locus of a section of E.
If d = 4 or d = 6, then C is a space curve, hence it is complete

intersection; in the �rst case it is complete intersection of type (1, 1, 4) and
one computes h0(NC ) = 2h0(OC(1)) + h0(OC(4)) = 20, while in the second
case C is of type (1, 2, 3) and one has h0(NC ) = h0(OC(1)) + h0(OC(2)) +

h0(OC(3)) = 28. In any event, the inequality (6) holds and E is in�nitesimally
rigid.

If d = 8 then C is non degenerate. Since the resolution is minimal,
syzygies may arise only in degree 3. By duality I is generated in degree 3
and the resolution has the form:

0 → O(−6) → O(−4)a ⊕ O(−3)b → O(−3)b ⊕ O(−2)a → I → 0.

One computes a = h0(I(2)) = h0(E(1)) − 1 = 3 by (RR), since h3(E(1)) = 0.
It is impossible to determine b exactly. Even if C is smooth, we have b = 0
for general canonical curves (complete intersection of 3 quadrics) and b > 0
for trigonal ones. Nevertheless in the formula (3) of theorem 4.2 all the terms
containing b cancel, and one �nally obtains the value:

h0(NC ) = 36 =
5

6
c31 − c1c2 +

25

6
c1 + 5c2

hence by formula (6) of the previous theorem, E is in�nitesimally rigid.
All the cases are examined and the proof of our main theorem is concluded.

�
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Remark 4.12. Notice that in all the previous cases we get in fact an equality
in formula (6). It turns out that I has dimension exactly 125 for all the quoted
situations, so the map I → P may be dominant and we might expect that a
general quintic threefold X has c1-subcanonical curves of degree c2 for all the
values of c1 and c2 listed in the previous section.

This is true in many cases. When C is complete intersection, then its
existence in a general quintic threefold can be computed using the method of
Kley (see [13]). Also the existence of lines and conics is well known, and
for elliptic curves we refer to [13] again. In the case c1 = 4 and c2 = 30
the existence result follows by Beauville�s paper [3], where it shown that the
existence of such bundles is equivalent to the pfaf�an representation of the
quintic and in which it proved that a general quintic threefold is pfaf�an.

However there are still cases where the existence is not known: c1 = 2 and
c2 = 11, 13, 14 (which seems to be the most dif�cult) and c1 = 3, c2 = 31. See
also [11], [17] and [18] for discussions on this subject.

Remark 4.13. Even when E is a non-stable ACM bundle, some rigidity state-
ment holds. Namely in this case, if E is normalized then c1(E) ≤ 0 so that
h0(E) = 1 and one may replace the rigidity of E with the rigidity of the curve
arising as 0-locus of a section of E. This rigidity holds for lines, conics and
elliptic curves in a general quintic threefold (see [13]).

Remark 4.14. Buchweitz, Greuel and Schreyer proved in [5] that every smooth
quintic threefold has some non rigid bundle without intermediate cohomology.
Our main theorem proves that such bundles must have rank at least 3 (see
also [28] and [18] for a wider discussion of non rigid bundles on Calabi-Yau
threefolds).

We believe that our methods could be used to understand the rigidity (and
somehow the existence) of ACM rank 2 bundles on general hypersurfaces in P

4

of degree d ≥ 6. For these threefolds, which are of general type, the existence
of ACM indecomposable bundles would be in fact unexpected (see [29]).
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[20] R.M. Miró-Roig, Non-obstructedness of Gorenstein subschemes of codimension 3
in Pn , Beit. Alg. Geom., 33 (1992), pp. 131�138.

[21] D. Mumford, Lectures on curves on algebraic surfaces, Ann. of Math. Studies,
59, (1966).

[22] C. Okonek - M. Schneider - H. Spindler, Vector Bundles on Complex Projective
Spaces (Prog. Math. 3), Birkhäuser Boston, Mass., 1980.
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