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AN AGENT FRAMEWORK TO EXPLORE PATHFINDING
STRATEGIES IN MAZE NAVIGATION PROBLEM

C. CRESPI - V. CUTELLO - M. PAVONE - F. ZITO

The planning of paths in complex, interconnected, and unknown struc-
tures, such as mazes, is a crucial topic in various fields, including artificial
intelligence and robotics. Agents capable of making independent deci-
sions require efficient navigation through mazes, and their performance
can be influenced by various dynamics and features. Understanding these
factors is essential not only for developing more efficient and robust navi-
gation algorithms but also for gaining deeper insights into which attributes
to prioritize in the design and implementation of autonomous agents. In
this article, we propose an agent framework to analyze various navigation
strategies based on the concepts of memory and visibility. Our goal is
to identify the parameters that impact the agents’ performance the most
and how variations on these key parameters influence agents’ efficiency
on complex maze-solving.

1. Introduction

Planning paths in complex, interconnected, and unknown structures, namely
mazes, is a topic of significant importance across different areas such as ar-
tificial intelligence and robotics [12, 29]. In artificial intelligence, mazes are
often used as benchmarks to test the efficiency of algorithms in determining
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optimal paths [1, 28]. This helps in evaluating and improving algorithms de-
signed for pathfinding and decision-making in complex environments. Simi-
larly, in robotics, mazes serve as models for virtual environments where opti-
mizing robot movements is crucial for tasks such as autonomous navigation and
obstacle avoidance [2, 14, 18, 34].

Within these broader contexts, the study of pathfinding for autonomous
agents—intelligent entities capable of making independent decisions—has be-
come a crucial area of research [27]. These agents need to navigate efficiently
through mazes, and their performance can be influenced by various characteris-
tics. Understanding these factors is essential not only for developing more effi-
cient and robust navigation algorithms but also for gaining deeper insights into
which attributes to prioritize in the design and implementation of autonomous
agents.

In light of this importance, this research work proposes a framework to ex-
plore and analyze the impact that some features of these agents have on maze-
solving tasks and how their variations affect overall performance. Specifically,
visibility, memory size, and exploration tendency have been selected as key fea-
tures for this investigation. For clarity, visibility refers to the agent’s perception
range within the maze; memory size to the agent’s capacity to store crossed
paths; and exploration tendency to the agent’s preference for prioritizing new
and unexplored paths or previously crossed ones. Each agent is characterized
by a unique combination of these parameters, which govern its navigation strate-
gies and capabilities and is tasked with identifying the maze exit from a given
entrance.

The aim of this research work is to propose a new framework for investi-
gating and understanding the influence of visibility and memory on the perfor-
mance of autonomous agents in pathfinding problems in mazes. This framework
has been developed with potential extensions to multi-agent systems in mind.
While the current study focuses on individual agent features like visibility and
memory, the approach provides a foundation for exploring how these features
can scale or adapt in systems involving multiple agents. This adaptability posi-
tions the framework as a versatile tool for studying both isolated agent behavior
and broader dynamics in multi-agent contexts.

The paper is organized as follows. Section 2 provides an overview of re-
cent trends and advancements in the field of multi-agent systems. Section 3
describes the key features of our proposed model and the strategies employed
by the agents. The experimental protocol used to test our model, including the
maze instances, is described in Section 4. Section 5 outlines the experimental
setup, presents the results, and provides a critical discussion on the investigation
carried out. Finally, Section 6 presents our concluding remarks.
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2. Recent Trends and Advancements

The analysis of different navigation strategies for efficient maze-solving is an
interesting and well-studied area in literature, with several proposed algorithms.
In this section, we analyze different perspectives that take into account various
factors such as the cooperative and competitive behavior of intelligent agents,
the use of memory, and visibility. Earlier investigations focused on analyz-
ing the effects of cooperative and competitive behaviors on agent performance
within maze-like structures, leveraging the Ant Colony Optimization framework
[8] to model agents’ movement within the environment. Specifically, it was de-
veloped an agent-based model featuring two types of agents both aiming to
reach the exit of a virtual environment. The two types of agents were competi-
tive agents, which could damage random parts of the environment, and collabo-
rative agents, which could repair the damaged parts while providing information
about the cost of a crossed section [4, 7].

Different versions of such model have been proposed in the last years. In
a first model version, a profit function was used as an evaluation metric, which
showed that predominantly, but not entirely, collaborative groups of agents achi-
eve the highest profit function values [6]. Subsequently, the model was upgraded
into a new version including the number of agents which had exited the maze,
exit times, and path costs as evaluation metrics. Then, a sensitivity analysis
of the parameters of the model has been conducted, discovering that predom-
inantly collaborative sets of agents provide the best performance according to
these evaluation metrics [4, 5]. However, these outcomes emerge only under
specific circumstances related to the interplay between the parameters. Indeed,
in those cases where the available information is high, then, the presence of
competitive agents turns out to be crucial to achieve efficient performances;
otherwise, entirely collaborative groups reach best results [7].

Building on these insights, our currently research focuses on investigat-
ing the role of visibility and memory as key parameters of the aforementioned
model. Then, first goal of this paper is to analyze how these characteristics are
implemented and studied within the context of pathfinding problems. In order
to do that, several research works published over the past five years have been
taken into account. After that, the goal is to design and investigate these two
features, i.e. visibility and memory, in order to understand their impact on the
performance in pathfinding maze tasks.

2.1. The role of Visibility in Navigation Strategies

One of the widely used techniques to integrate visibility in path planning prob-
lems is the visibility-graph method. For instance, the authors in [16] developed
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a fast path planning algorithm for UAVs (Unmanned Aerial Vehicles) in 3D en-
vironments with obstacles, utilizing visibility graphs (VG) and sparse visibility
graphs (SVG) to reduce computational complexity while maintaining path qual-
ity. Their results showed that SVGs could significantly improve computational
efficiency without compromising path accuracy. Similarly, [35] explored the
impact of spatial attributes and physical design elements in emergency depart-
ments on staff satisfaction and performance, using visibility graphs to analyze
and visualize visibility patterns. The study found that improved visibility within
the department correlated with higher staff satisfaction and better performance.

In the marine context, the authors in [15] employed visibility graphs and
quadtree representation for path planning of USVs (Unmanned Surface Vehi-
cle), aiming to minimize voyage time. Their methodology proved effective in
optimizing navigation routes in complex maritime environments. Likewise, [13]
presented an algorithm for pathfinding in confined environments using visibility
graphs to create optimal movement paths for autonomous vessels, demonstrat-
ing that visibility graphs can significantly improve navigational efficiency.

Another interesting approach to modeling visibility was the use of Voronoi
diagrams, as demonstrated by the authors in [17], who introduced a Voronoi-
based navigation mesh for video games that integrates tactical properties such as
visibility to enhance path planning. Their findings indicated that incorporating
visibility into the navigation mesh led to more efficient and realistic pathfinding
behavior in game environments.

Further research papers focused on the role of visibility in pathfinding effi-
ciency. For example, the authors in [30] explored the performance of Multipath
Adaptive A* (MPAA*) in goal-directed navigation in unknown terrain, finding
that visibility played a crucial role in enhancing the algorithm’s performance.
The authors in [24] applied reinforcement learning for pathfinding in grid en-
vironments with static and stochastic obstacles, leveraging visibility to enhance
the learning algorithms. Their results showed that reinforcement learning with
visibility considerations outperformed traditional algorithms in dynamic envi-
ronments. The same authors continued this line of research in [23] by coordi-
nating multiple agents in complex scenarios using a decentralized multi-agent
pathfinding approach, demonstrating superior performance due to the incorpo-
ration of visibility in their models.

Finally, the authors in [11] investigated wayfinding in multi-level buildings
using agent-based modeling and VR experiments, highlighting the importance
of visibility for efficient navigation. Their study concluded that better visibility
improves wayfinding efficiency in complex indoor environments.

As seen from the analyzed papers, one of the most commonly used methods
to address the concept of visibility in pathfinding problems is through spatial
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representations such as visibility graphs and Voronoi diagrams. These methods,
however, are not typically implemented within agents or robots to model vision
directly. Instead, they serve as indirect approaches for environment modeling.
As detailed in [33], in the context of environment modeling the goal is to cre-
ate a simplified representation of the space, which requires prior environmental
information acquisition. Visibility graphs and Voronoi diagrams are among the
techniques used for this purpose. Our interpretation is that these methods con-
sider visibility as a given for the agents rather than an inherent capability to
be developed within them. Consequently, they necessitate prior knowledge of
the environment, making them less suitable for scenarios where the topology is
unknown.

2.2. Exploration in Unknown Environments through the use of Me-
mory

Recent studies have explored the use of memory and its implications in agent
navigation within unknown environments. For instance, in [26], it is studied
how agents navigate unknown environments while incorporating memory de-
cay into the wayfinding procedures. Memory decay reflects the gradual fading
or weakening of memory traces associated with routes, influencing decision-
making processes. In a different context, [19] proposes a model which uses
attention-augmented memory (AAM) to interpret the decision-making process
in long-horizon tasks, showing how AAM facilitates more stable decision-making.
Furthermore, the work in [25] explores how external memory can aid decision-
making in complex visual reinforcement learning tasks, by incorporating into
the model both short-term recurrent memory and long-term external memory.

In [3], memory-enhanced ant colonies have been proposed to investigate the
influence of colony division in a maze navigation problem. While investigating
the role of memory was beyond the scope of the paper, memory was imple-
mented by allowing the ants to remember the cost of an already crossed path.
This enabled ants to compute and estimate the cost of a path yet to be traversed
path when its cost was not directly visible.

In contrast to the approaches discussed in the previous paragraphs, the liter-
ature presents an alternative approach that involves a multi-agent system based
on Reinforcement Learning [21]. The main idea is to develop an agent that can
learn autonomously by using rewards to determine the optimal strategy in un-
known environments. These agents are based on Recurrent Neural Networks
that incorporate Long and Short-Term Memory Units to make decisions based
on past experiences. An enhanced version of this approach is described in [32],
where multiple agents cooperate by sharing information in a multi-agent system.
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2.3. On the role of visibility and memory in pathfinding problems

During our analysis of the literature on maze navigation strategies, we observed
that there is a lack of research specifically aimed at studying the roles of visibil-
ity and memory in pathfinding problems. Indeed, this gap in research presents
an opportunity for further investigation into the potential benefits of incorporat-
ing visibility and memory into pathfinding algorithms. By studying the impact
of these factors on agent performance in maze-solving tasks, it is possible to
gain a better understanding of how to optimize navigation strategies in unknown
environments. Additionally, the findings from such research could have practi-
cal applications in fields such as robotics, autonomous vehicles, and video game
development.

The incorporation of exploration tendencies into the model represents a
novel aspect to be investigated. While memory and visibility, as mentioned
above, have been extensively studied in different contexts, in this research we
decided to add the exploratory tendencies in the aforementioned model to intro-
duce an additional layer of complexity in the analysis of behavioral dynamics.
This choice aims not only at making agents more similar to humans in their
behavior, which often involves a blend of exploration and caution in navigation
decisions, but also at exploring how these tendencies can positively influence
maze-solving capabilities.

Unlike existing works that primarily focus on multi-agent frameworks, our
research isolates and investigates key features at the individual agent level, such
as visibility and memory. By bridging this gap, our approach complements
studies on multi-agent dynamics, offering new insights into agent-specific be-
haviors.

3. Agent Modeling

Building upon the analysis conducted in the previous section, we present here
a model for the maze navigation problem. In this research work, we will dis-
cuss different navigation strategies used by intelligent agents as they navigate
through the maze with the aim of reaching the exit. These strategies will be
based on two key agent features: visibility and memory.

3.1. Maze Representation

In general, a maze is a structure that is characterized by having only one entrance
and only one exit: agents enter the maze through the entrance and must find their
way to the exit based on their strategy used. In our model, each intelligent agents
acts according to different visibility, memory and exploration strategies. To each
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Figure 1: Two different ways to model a maze: as a graph in left plot, and as a
matrix in right plot.

agent is assigned a determined starting energy whose consumption depends on
the paths taken. The goal of each agent is then to find the exit consuming as less
energy as possible, that is, to reach the exit before its energy runs out. If this
happens, the agent will not be able to escape the maze and will perish.

In one of our previous work [3], we modeled a maze as a graph G = (V,E),
where V is the set of vertices and E is the set of edges. Each vertex in V rep-
resents a point in the maze, and each edge in E represents a path between two
points. Two vertices, s and t, are designated as the starting and ending points,
respectively. The left plot in Fig. 1 shows a representation of a labyrinth based
on a graph. However, in this work, we consider a model of a maze from a dif-
ferent point of view. Indeed, here, a maze is modeled as a square matrix of size
N ×N. An agent can navigate through the maze by moving cell by cell in the
four available directions (Up, Down, Left, Right), without diagonal movements.
The matrix contains two types of cells: walkable cells, which an agent can tra-
verse, and non-walkable cells, which represent walls. To simulate a real-world
scenario, to each walkable cell is associated a cost required to cross it. This cost
represents the difficulty or energy required for crossing a specific cell, which
could be due to an obstacle or a steep incline, for instance. The right plot of Fig.
1 shows a representation of a maze based on a matrix.

3.2. Agent Framework

As briefly described above, the strategy employed by an agent to escape from a
maze is determined by three key characteristics: visibility, memory, and ex-
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Figure 2: This figure illustrates the movement of agents within the maze en-
vironment. Each agent (i) has unique properties, including visibility (ηi), ex-
ploration tendency (βi), and memory size (λi). Based on these characteristics,
each agent evaluates its current position (X (t)

i ) and remaining energy (Φ(t)
i ) to

select the next cell to move into (X (t+1)
i ). After each move, the agent updates its

energy level (Φ(t+1)
i ) accordingly. This process continues until either the agent

runs out of energy or successfully finds the exit of the maze.

ploratory tendencies. Visibility, denoted by η ∈ [ηmin,ηmax] determines an
agent’s ability to perceive distant paths. Memory denoted using the parameter
λ ∈ [λmin,λmax], indicates the number of paths crossed by the agent and which
it is able to store. Exploratory tendency is identified by the parameter β and we
incorporated it into the rule of the probabilistic function that governs the agents’
movement decisions. In other words, to capture the decision-making process of
autonomous agents navigating maze environments, we developed a probabilistic
function.

In general, we can formally define the i-th agent as a tuple (ηi,βi,λi), which
represents its visibility, exploration tendency, and memory size, respectively.
Each agent utilizes these features to adapt its strategy for exploring the maze.
Figure 2 provides a schematic representation of this exploration process. At any
given moment, each agent occupies a specific cell within the maze. We define a
vector state X (t) as a vector that contains all the positions of agents in the maze



AN AGENT FRAMEWORK TO EXPLORE PATHFINDING STRATEGIES 563

at time t. This can be formally expressed as:

X (t) =
(

x(t)1 ,x(t)2 , . . . ,x(t)m

)
, (1)

where x(t)i represents the cell in which agent i is located at time t. On the other
hand, we define an energy vector Ψ(t) that contains the remaining energy of each
agent, which is defined as follows:

Ψ
(t) = (φ

(t)
1 ,φ

(t)
2 , . . . ,φ

(t)
m ). (2)

Both the state vector and the energy vector are updated at each time step, specif-
ically when an agent moves from one cell to another. The remainder of this
section discusses the process by which an agent selects the cell to which it will
move, based on its current position x(t)i and remaining energy φ

(t)
i , which serve

as the agent’s inputs.
Figure 3 illustrates the flow diagram that the i-th agent follows to navigate

the maze. Given its current position x(t)i and remaining energy φ
(t)
i as inputs,

the agent computes the next position x(t+1)
i based on its strategy and updates its

current remaining energy φ
(t+1)
i . In our context, when agents have to choose

between two or more alternative paths, the value σ j (defined in equation 3)
tells us whether agents prefer to explore new paths or retrace previous ones. It
quantifies the overlap between the current path and previously explored paths
by the ratio of overlapping cells to the total cells in the previous path:

σ j =
πoverlap

πtot
, (3)

where πoverlap denotes the count of overlapping cells, and πtot denotes the total
number of cells explored in the agent’s preceding path. A high σ j suggests the
agent favors the same paths, while a low σ j indicates a preference for exploring
new paths.

Using the σ values and starting with the Normalized Exponential Function,
a common tool for modeling probability distributions, the probability p̄ j which
an agent uses to selects its next path j is initially expressed in equation 4:

p̄ j =
eσ j

∑ i = 1neσi
. (4)

To refine this function, we introduced the parameter β , which adjusts p̄ j

based on agent behavior ranging from a preference for new paths (β = 0.0 equa-
tion 5) to a preference for old paths (β = 1.0 equation 6).

β = 0 ⇒ p̄ j = 1− eσ j

∑
n
i=1 eσi

, (5)
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where 𝜎𝑘 is calculated in accordance
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Figure 3: Flow diagram illustrates the operations that the i-th agent performs to
select the next cell to move into in a maze.

β = 1 ⇒ p̄ j =
eσ j

∑
n
i=1 eσi

. (6)

To derive our final probabilistic function, we used the equation of a line
passing through two points because it provides a straightforward method to in-
terpolate between the two extreme behaviors governed by the parameter β . This
approach allowed us to smoothly transition from scenarios where agents exclu-
sively prefer new paths (β = 0) to those where they prefer retracing old paths
(β = 1). Mathematically, the equation of a line is an efficient way to create
a linear combination of two conditions. For our model, we identified then the
two key points: β = 1, agents prefer always old paths and β = 0, agents prefer
entirely new paths.

By using the line equation passing through these points, we create a for-
mula that linearly interpolates between these two behaviors, ensuring that for
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any value of β ∈ [0,1], p̄ j is a weighted average of the two extremes. This in-
terpolation captures the continuous spectrum of agent behaviors from choosing
new paths to choosing old paths, based on β . Thus, the final equation is shown
in equation 7:

p̄ j,β = 1−β +(2β −1) · eσ j

∑
n
i=1 eσi

, (7)

and it represents a balanced combination of the two probabilities, scaled by β ,
ensuring that our model accurately reflects the desired agent behavior across the
entire range of β values. In particular, it is clear from equation 7 that

p̄ j,1−β = 1− p̄ j,β

and, for the two borderline cases, β = 0 and β = 1 we have:

p̄ j,0 = 1− eσ j

∑
n
i=1 eσi

(β = 0)

p̄ j,1 =
eσ j

∑
n
i=1 eσi

(β = 1)

Once the agent has selected the next cell (k) to move into based on the prob-
ability computation described above, the i-th agent updates its current remaining
energy as follows:

φ
(t+1)
i = φ

(t)
i − ck, (8)

where ck is the weight of the cell selected by the agent, and φ
(t)
i represents the

energy level prior to the movement.

4. Experimental protocol

As mentioned in the previous section, Eq. 7 governs the strategy used by an
agent to select the path to exit from the maze. To prove the practicality of
this equation, we designed an agent framework to analyze various strategies
for exiting a maze. By using multiple agents, the framework allows for the
exploration of different approaches to maze navigation, including those that are
based on visibility, memory, and exploratory tendencies.

4.1. Agent Simulation

The framework was developed in Python and designed as an an agent framework
These agents are equipped with an initial energy charge, whose consumption de-
pends on the crossed paths, and are tasked with reaching the maze’s exit in the
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shortest time while preserving as much energy as possible before two termina-
tion criteria are met. The first termination criterion is the maximum simulation
time. The second termination criterion is the maximum possible path cost that
an agent incurs. This maximum cost corresponds to the total sum of all maze
weights and is interpreted as follows: each agent has a finite amount of energy
to navigate the maze, which decreases proportionally with the weight of each
traversed cell. Thus, as an agent traverses cells with higher weights, its energy
decreases proportionally. Consequently, we set the agent’s available energy not
to exceed the total sum of all maze weights. Therefore, simulation termination
occurs when either of the two termination criteria is met. Specifically, the sim-
ulation ends if an agent fails to find the exit within the allocated maximum time
or if the agent depletes its energy.Upon meeting either termination criterion, the
respective agent is killed.

4.2. Maze instances

To evaluate the agents’ performance, we generated instances of mazes repre-
senting different configurations. These instances were created using the same
seed and categorized into two types: large (L) of size 81×81 and medium (M)
of size 41×41. Each type includes a set of ten mazes with different degrees of
density. The density parameter determines the number of possible paths present
in the maze, that is the count of navigable cells within it. Mathematically is
defined as the ratio between the traversable cells and the total number of cells
(traversable cells and walls). All ten mazes share the same dimensions but the
number of navigable cells, i.e. the space agents can cross, might change and if
it increases, the number of walls decreases proportionally.

In table Tab.1 are reported the features of each generated instance, and con-
sidered for presented investigation. In particular, are reported, respectively: in-
stance name (No); total number of traversable cells (Nc) in the squared matrix
with which the maze is represented (see section 3.1); total number of walls (Nw)
in the maze; and finally the relative density (∆) of each instance. Then, L1
and M1 represent the least dense mazes, while L10 and M10 are the ones with
highest densities.

In all mazes, the weight distribution is uniform within the interval wi j ∈
[0;0.7], except for the entrance that has an undefined weight (NaN) to prevent
agents from mistakenly selecting it as an exit and the exit that weights 0 to
facilitate the agents’ exit.

Figures Fig.4 and Fig.5 show, respectively, four examples of generated ma-
zes for medium (Fig.4) and large (Fig.5) types. For brevity, we have decided to
display in increasing order of density (from top-left to bottom-right), only 4 out
of the 10 generated mazes, namely M1, M3, M7 and M10 for medium size, and
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Table 1: Details about the maze instances by considering two different types:
large (L) and medium (M). For each kind of instances, are displayed instance
name (No); total number of traversable cells (Nc); total number of walls (Nw);
and density (∆ = Nc/(Nc +Nw)) of the maze.

(a) Large (L)

No Nc Nw ∆

L1 3519 3042 0.53635
L2 3806 2755 0.58009
L3 4042 2519 0.61606
L4 4276 2285 0.65173
L5 4514 2047 0.688
L6 4664 1897 0.71087
L7 4832 1729 0.73647
L8 4976 1585 0.75842
L9 5110 1451 0.77884
L10 5221 1340 0.79576

(b) Medium (M)

No Nc Nw ∆

M1 878 803 0.52231
M2 945 736 0.56217
M3 1013 668 0.60262
M4 1068 613 0.63534
M5 1114 567 0.6627
M6 1150 531 0.68412
M7 1189 492 0.70732
M8 1228 453 0.73052
M9 1261 420 0.75015
M10 1283 398 0.76324

L1, L3, L7 and L10 for the large size. The entrance of the mazes is always lo-
cated in the top left corner (represented by a green tile), while the exit is always
in the bottom right corner (simply represented as a hole in the wall).

In addiction, the walls are denoted by the color black, while white cells and
cells with different degrees of gray are the traversable ones. Color shades denote
the different traversability weight of each cell: from the smallest weight (white
color) to the highest one (dark gray).

We recall that we defined density as the ratio between the traversable cells
over the total number of cells. Therefore, as it easily visible from both figures
Fig.4 and Fig.5, the less dense is the maze the more complex it is to solve it,
since fewer paths lead to the exit and there is a higher number of walls that the
agent can encounter which, in turn, increases the presence of dead-ends. Con-
versely, if the maze has a high density then the number of walls/obstacles is low
and, consequently, there is a higher number of paths leading to the exit. Such
an inference is also confirmed by inspecting figure Fig.6, where we report the
success rate (SR) for the different maze instances, specifically (6a) for medium
and (6b) for large maze. SR is a classic evaluation metric that represents, in
our investigation, the percentage of agents that successfully reach the exit, and
in these plots are displayed versus those who instead run out of energy before
reaching the exit.

In particular, in the X-axis the ten maze instances are displayed in order from
least dense to most dense; the Y-axis represents the percentage of agents that,
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(a) M1 (b) M3

(c) M7 (d) M10

Figure 4: Examples of medium-sized mazes at different values of the density
parameter: M1, M3, M7, and M10.

respectively, reach the exit or die before. More in details, each plot contains two
lines: the blue line denotes the percentage of agents that exited the maze, while
the orange line shows the percentage of agents that stop due to energy exhaus-
tion and consequent death. These two curves are mirror images of each other.
Inspecting both figures, it emerges that the percentage of agents successfully
exiting increases as the maze density factor rises, resulting, as a conseuqnce, in
a decrease of the percentage of killed agents. This analysis suggests and con-
firms that having more pathways potentially leads to a higher success rate, as
stated before, since agents have multiple routes to reach the exit and less likely
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(a) L1 (b) L3

(c) L7 (d) L10

Figure 5: Examples of large-sized mazes at different values of the density pa-
rameter: L1, L3, L7, and L10.

to encounter dead ends that may cause them to turn back.

5. Results

To determine which of the three parameters visibility (η), memory (λ ), and ex-
ploratory tendencies (β ) had the most significant impact on agents performance
and to identify their best combination, we used the amount of the remaining
energy Ēr of the agent upon exiting the maze as our evaluation metric. Intu-
itively, an agent that successfully exits the maze with a high energy level can
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Figure 6: Percentage of agents exiting the maze versus percentage of agents
killed. Medium 6a and large 6b.

be considered more efficient than others that instead reach the exit with a low
energy level. The initial amount of energy assigned to each agent was calcu-
lated by summing the weights of all the maze cells and scaling this total by a
factor which, as we see in our tests, is either 0.6 or 0.7 or 0.8. The maximum
simulation time was set to 1200 seconds for large mazes and 300 seconds for
medium ones, based on the empirical consideration that the number of Nc cells
in the large case is about 4 times the number of Nc cells in the medium case, for
instances with similar density.

Table 2: Range of parameters

Symbol Description Range of Value
β Exploration Tendency [0,0.2,0.4,0.6,0.8,1]
λ Memory Size [0,10,20,30,40,50,60,70,80,90, inf]
η Visibility [1,6,11,16, inf]

The values considered for the three key parameters are listed in Tab.2, and,
we investigated all their possible combinations (6 · 11 · 5 = 330) each of which
represents the search strategy adopted by an agent. In particular, 10 agents for
each combination of η , λ and β have been tested, for a total of 3.300 agents
across our experiments. Each configuration was assessed on different maze
instances (see Tab.1) to comprehensively evaluate its impact on agent perfor-
mance. In light of this, we have conducted two types of analyses:

1. importance of the parameters: assessing the significance of β , η , and λ

in energy consumption;
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2. best parameter configuration: identifying optimal parameter settings that
maximize preserved energy across maze instances.

Discussion and details on each of these types of analyses are provided below.
In order to better investigate the importance of these parameters (η , λ , and β ),
and which is the optimal parameter configuration, three different energy levels
were tested, as we mentioned before 60%, 70% and 80% of the total sum of all
cell weights.

5.1. Importance of the parameters

Plots displayed in figure Fig.7 report the importance of the three main param-
eters, namely visibility, memory size, and exploration tendency with respect to
the remaining energy, analysed on the two different types of maze (M and L),
and at different starting energy level. In particular, it is a percentage measure
that quantifies how each of these parameters contributes to conserving or de-
pleting the agent’s energy as they navigate the maze.

We considered all possible combinations of parameters to determine the best
strategies for an agent in order to escape from a labyrinth. By analyzing these
combinations, we can identify which parameters are more important that others
and which ones have a significant impact on the energy used during the maze
exploration. Indeed, it is possible to define a collection of pairs (θi,Ei) where
θi is a configuration of parameters tested, and Ei is the average energy of the
agents that have explored from the maze with the configuration of parameters
θi. Using these pairs of values, (θi,Ei), the parameter that most affects the
energy value can be identified by using feature selection techniques, typically
employed in machine learning, such as the Maximum Relevance Minimum Re-
dundancy (mRMR) algorithm [20]. This algorithm was used in a similar way
in [10] to study the importance of parameters of Dynamic-IA algorithm, that
is an immune-inspired algorithm that dynamically sets the key parameters. An
importance score for each parameter is returned by the mRMR algorithm, and
this result can be used to determine which parameter has a major effect on the
energy required to explore the maze.

By inspecting the impact of these parameters with the lower starting energy
level, that is 60% of the total sum of cell weights, displayed at the top of figure
Fig.7 (7a and 7b), it is possible to assert that in Medium instances, Memory
Size (λ ) is the most influential parameter, followed equally by Beta (β ) and
Visibility (η). A similar trend is observed in Large instances, where Memory
Size continues to play a predominant role, but the gap between the parameters
is less pronounced compared to Medium instances, indicating a more balanced
distribution of importance. Specific peaks in importance show that in Medium
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Figure 7: Importance of β , η and λ in Medium (7a, 7c, and 7e) and Large
instances (7b, 7d, and 7f), investigated at different starting energy levels: 60%
(top), 70% (middle), and 80% (bottom) of the total sum of cell weights.

instances, β is most influential in M1, Visibility holds slightly more importance
in M9, and Memory Size is most significant in M6. Similarly, in Large in-
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stances, Beta has the greatest impact in L3, Visibility in L1, and Memory Size
in L7. Notably, no importance is recorded for β in instances L5, L7, and L8, for
η in L6, and for λ in L2. There is a slight positive correlation between maze
density and the importance of Memory Size, particularly in Large instances.
Conversely, these instances exhibit a slightly negative correlation for β . These
correlations are less pronounced in Medium instances, suggesting that the com-
plexity of Large mazes increases the importance of memory, while exploratory
behavior becomes less relevant as the mazes become denser.

If, instead, we provide the agents with a slightly higher starting energy level,
such as 70% of the total sum of cell weights (plots in the middle, 7c and 7d), it
emerges that β plays a dominant role in energy conservation, followed by Visi-
bility (η) and, lastly, Memory Size (λ ). This trend persists in Large instances,
where β remains the most influential parameter.

For what concerns possible correlations with the density of the maze, no
clear patterns are evident. However, a bell-shaped distribution is observed for
the importance of β in both Medium and Large instances: β ’s influence starts
low in mazes with fewer available paths, it increases with the maze density, and
then it decreases again. For Visibility in Medium instances, a slightly positive
correlation appears with respect to maze density, while in Large instances, an
inverse bell-shaped trend is observed: Visibility’s importance decreases as the
maze density increases and then rises again. For Memory Size, Medium in-
stances follow a bell curve similar to β ’s, while in Large instances, Memory
Size aligns with the inverted bell-shaped trend observed for Visibility. Specific
peaks of importance indicate that in Medium instances, β is most important in
M4, Visibility in M3, and Memory Size in M1. In Large instances, β peaks in
L7, Visibility in L2, and Memory Size in L8. These results suggest that there
is no evident correlation between what we call parameter importance and maze
density, with importance varying based on the specific characteristics of each
maze.

Finally, in the bottom plots of Fig.7 (7e and 7f) when the starting energy
is higher (80% of total sum of cell weights), for both medium and large maze
instances, the parameter β (exploration tendency) has the greatest impact on
energy conservation. In medium instances, there appears to be a slight positive
correlation with maze density, suggesting that β becomes more influential as the
maze density increases. Overall, for both types of instances, visibility and me-
mory have a much smaller impact. Memory, in particular, plays a significantly
lesser role in energy conservation, especially in large instances. Regarding the
correlation with maze density, neither visibility nor memory show a clear trend.
Instead, their influence seems to follow a bell-shaped pattern. In less dense ma-
zes, both visibility and memory are less important. Their significance increases



574 C. CRESPI - V. CUTELLO - M. PAVONE - F. ZITO

in moderately dense mazes but then it decreases again in the most dense mazes.
This pattern indicates that in extremely dense or sparse mazes, these parame-
ters have a minimal impact, while their role is more pronounced in mazes of
intermediate density.

Overall, it is evident that the importance of the parameters in energy con-
servation shifts depending on the initial energy available to the agents. Memory
Size plays a more significant role in scenarios where agents start with 60% of
the total sum of cell weights, but its importance decreases as the available en-
ergy increases. Conversely, the exploratory behavior β becomes more critical as
agents have more initial energy. The influence of Visibility also tends to increase
with available energy, but this effect is more pronounced in Medium instances,
while in Large instances, the opposite trend is observed. This could suggest that
in more complex environments (Large instances), as agents are provided with
more energy, their reliance on direct visual cues decreases, possibly due to the
increased importance of strategic exploration (as indicated by β ) in navigating
denser mazes. In simpler environments (Medium instances), however, visibility
remains crucial as energy increases, maybe because the mazes are less complex,
allowing agents to make better use of visual information.

Notably, when comparing extreme cases—such as Medium instances with
60% starting energy and Large instances with 80% starting energy—a clear in-
version in parameter importance is observed. In the former, Memory Size is the
most influential parameter in energy conservation, while β is the least. In the
latter, the situation is reversed: β dominates in importance, while Memory Size
plays a lesser role. This suggests a shift in the relevance of these parameters
based on the energy context, reflecting different strategies agents may adopt in
conserving energy across varying maze complexities and initial energy levels.
The decreased reliance on memory in high-energy scenarios may indicate that
with sufficient energy, agents are more willing to explore rather than rely on
memorized paths, especially in more complex environments where exploration
can lead to discovering shorter or more efficient routes.

5.2. Best parameter configuration

A second analysis carried out in this research work, as previously anticipated,
is to determine the optimal parameter settings in order to maximize preserved
energy. The optimal configurations obtained for the three parameters β ,η and
λ are reported per each instance in tables Tab.3, Tab.4 and Tab.5, performed
considering 60%, 70% and 80% of the total sum of cell weights, respectively.
By an overall inspection of all three tables, it is possible to claim that:

• the remaining energy of the agents appears to be highest when their initial
energy is set at 70%. While one might expect the remaining energy to
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increase linearly with the initial energy, this is not the case, as agents with
80% of the total cell weight as initial energy actually end up with less
remaining energy. This trend is consistent across both Medium and Large
instances. Overall, there seems to be a slight linear correlation between
the best values of remaining energy and the density of the maze. This
suggests that higher maze density, which provides more available paths,
encourages a more exploratory behavior in the agents, allowing them to
make more efficient choices;

• in the medium mazes, the best memory values are all finite and tend to in-
crease with the available energy, as agents need more memory to explore
effectively. In contrast, in the large mazes, infinite memory values appear
only in specific cases, particularly with 60% energy and 70%. As energy
increases to 80%, memory values often decrease, suggesting that in larger
mazes, agents rely less on memory and more on visibility or exploration
strategies to navigate successfully;

• when agents have 60% of the initial energy, the best visibility values are
finite, with only one instance where infinite visibility is optimal. The
occurrence of infinite visibility as the best configuration tends to increase
with the agents’ available energy and is more common in large mazes.
The correlation between infinite visibility and maze density is slightly
positive, but not strong. This might suggest that as maze size and density
increase, having infinite visibility becomes more advantageous, allowing
agents to see as far as possible to navigate more complex environments;

• across all three energy configurations, the best β -values, which we recall
denote the exploratory tendency, are generally 0.0, with a few exceptions
where the best results were achieved with a beta of 0.2 and just one result
with 1.0.

6. Conclusions and future directions

This research work is focused on two different objectives: (i) investigate how
visibility and memory are nowadays within pathfinding contexts; and, after-
wards, (ii) design and develop a new model which allows to analyse and un-
derstand how these two features affect the performance of agents in pathfinding
maze tasks.

To reach the first objective, we carried out a review on research works of the
last five years, reported in Sect. 2, where a short discussion on the current lacks
in literature from our point of view has been also included (2.3).
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Table 3: Remaining Energy for the best parameter configuration for E(0)= 60%

Maze Ēr β η λ

M1 61.5424 0.0 16.0 50.0
M2 51.0223 0.0 11.0 70.0
M3 63.0841 0.0 16.0 70.0
M4 65.8154 0.0 16.0 60.0
M5 62.9886 0.0 inf 30.0
M6 64.6485 0.0 11.0 30.0
M7 72.6486 0.0 16.0 20.0
M8 65.6526 0.2 6.0 80.0
M9 66.6223 0.0 11.0 90.0
M10 71.4604 0.0 11.0 20.0
L1 40.1573 0.0 inf 50.0
L2 57.6738 0.0 6.0 60.0
L3 63.5465 0.0 inf 80.0
L4 63.2109 0.0 6.0 80.0
L5 64.445 0.0 16.0 inf
L6 64.7217 0.0 6.0 40.0
L7 68.9362 0.0 inf 30.0
L8 67.1214 0.0 6.0 70.0
L9 71.1575 0.0 16.0 80.0
L10 68.0527 0.0 11.0 inf

Regarding the second objective, we developed a new model through which
to investigate the impact and interplay of visibility, memory, and exploratory
tendencies of agents in maze-solving tasks. We analysed how variations in
these characteristics affect agent performances. We recall that visibility refers to
the agent’s perception range within the maze, memory size denotes the agent’s
capacity to store crossed paths, and exploratory tendency reflects the agent’s
preference for exploring new or previously crossed paths. Each agent is charac-
terized by a unique combination of these parameters that govern its navigation
strategies and capabilities, aiming at finding the exit of the maze starting from
a given entrance. The exploratory tendency was integrated into the probabilis-
tic function that rules the agents’ movement decisions, capturing the decision-
making process of autonomous agents navigating maze environments. The re-
maining energy was used as the evaluation metric.

For our investigation, we conducted experiments on two types of maze in-
stances: Medium (M) and Large (L). For each type, we used ten mazes with
increasing density, where density represents the number of cells the agents can
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Table 4: Remaining Energy for the best parameter configuration for E(0)= 70%

Maze Ēr β eta λ

M1 83.6509 0.0 inf 70.0
M2 80.1404 0.0 inf 80.0
M3 95.6449 0.0 11.0 40.0
M4 97.0003 0.0 6.0 20.0
M5 90.3285 0.2 6.0 80.0
M6 92.9826 0.0 inf 80.0
M7 98.6011 0.0 11.0 40.0
M8 99.6959 0.0 inf 70.0
M9 98.2649 0.0 16.0 90.0
M10 98.6027 0.0 6.0 60.0
L1 73.7722 0.0 inf 60.0
L2 83.8487 0.0 16.0 60.0
L3 87.5786 0.0 6.0 60.0
L4 88.0305 0.0 16.0 90.0
L5 94.0121 0.0 6.0 60.0
L6 94.679 0.0 11.0 60.0
L7 89.624 0.0 inf 50.0
L8 89.7274 0.2 6.0 80.0
L9 96.78 0.0 inf inf
L10 95.2501 0.0 inf inf

traverse: high density corresponds in having more available paths and fewer
obstacles i.e. dead ends; low density, on the contrary, represents fewer crossed
paths and a greater presence of dead ends. Furthermore, three different start-
ing energy per agent were considered for each experiment, that is 60%, 70%
and 80% of the total sum of the cell weights. Two different types of analyses
were conducted: (i) importance of the parameters, that is assessing the signif-
icance of visibility, memory, and exploratory tendency in energy conservation;
and (ii) best parameter configuration, that is determining the optimal setting of
the parameters for both types of instances.

From the investigation on the parameter importance emerges that their effect
on energy conservation is strictly related with the initial energy available to the
agents. In particular, memory size λ plays a more significant role in scenarios
where agents start with a lower energy and its influence begins to decrease as the
available energy increases. Instead, the exploratory behavior β becomes more
crucial when agents have higher initial energy. Regarding the visibility parame-
ter η , its importance tends to increase with available energy, but it appears more
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Table 5: Remaining Energy for the best parameter configuration for E(0)= 80%

Maze Ēr β η λ

M1 73.9552 0.0 11.0 60.0
M2 72.6133 0.0 11.0 70.0
M3 70.845 0.0 11.0 70.0
M4 79.6918 0.0 inf 30.0
M5 79.2694 0.0 6.0 60.0
M6 79.11 0.0 11.0 90.0
M7 81.3269 0.0 6.0 40.0
M8 81.6511 1.0 1.0 30.0
M9 82.8119 0.0 inf 80.0
M10 78.8536 0.0 inf 80.0
L1 71.5567 0.0 16.0 60.0
L2 65.2119 0.0 inf 40.0
L3 80.8658 0.0 16.0 80.0
L4 76.289 0.2 6.0 50.0
L5 74.7903 0.0 inf 10.0
L6 74.3046 0.2 6.0 30.0
L7 76.3296 0.0 6.0 30.0
L8 84.4148 0.0 16.0 20.0
L9 80.1261 0.0 inf 70.0
L10 87.283 0.0 16.0 90.0

pronounced on Medium instances than Large ones. Finally, regarding the best
parameter configuration:

• for both medium and large maze instances, β = 0.0 consistently mini-
mized energy consumption, proving what intuitively one can assume that
exploring is an energy consuming task;

• about the memory size λ , on larger mazes and high energy agents ex-
plore more and rely less on memory, but they need more memory on the
medium mazes because they need more memory to explore effectively the
environment;

• there appears to be a positive correlation between global visibility η and
maze density, i.e. as maze size and density increase, having global visibil-
ity becomes more advantageous, allowing agents to see as far as possible
to navigate more complex environments.

The presented model is still in the early stages of development and it par-
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tially confirms what is claimed in existing literature that visibility and memory
significantly impact agent performance. In our context, these parameters influ-
ence the agents’ ability to solve mazes and identify optimal paths in unknown
environments. Specifically, we used the remaining energy as a performance
metric, reflecting the agents’ efficiency in navigating and exiting the maze.
However, preliminary data suggest that exploration tendencies may be even
more crucial in determining agent performance.

This finding highlights the potential importance of incorporating exploration
strategies in future enhancements of our model. Indeed, a future direction is to
use a reinforcement learning approach to model an agent by considering the
three parameters under consideration in this article, such as visibility, memory,
and exploration tendencies. In this case, an agent will be able to automatically
set the parameters of the model during its exploration and therefore change its
strategy based on the payoff. To implement this agent model, we plan to use
a recently developed methodology to design machine learning models, see [36,
37]. Subsequently, we plan to test this model on larger maze instances and
transportation networks to scale it for real-world applications. Another possible
future research direction is to use a multiobjective decision-making perspective,
using a reliable metaheuristic such as immune-inspired algorithm [31], which
has proven to be a robust and efficient search methodology [9] even in large
datasets [22].
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