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ON DIOPHANTINE SINGLEFOLD SPECIFICATIONS

D. CANTONE - L. CUZZIOL - E. G. OMODEO
To the memory of Martin

(March 8, 1928 – January 1, 2023)

Consider an (m+ 1)-ary relation R over the set N of natural numbers.
Does there exist an arithmetical formula ϕ(a0, . . . ,am,x1, . . . ,xκ), not
involving universal quantifiers, negation, or implication, such that the
representation and univocity conditions, viz.,

R(⃗a⃗a⃗a) ⇐⇒ ∃x1 · · ·∃xκ ϕ (⃗a⃗a⃗a,x1, . . . ,xκ) and
∃x1 · · ·∃xκ ∀y1 · · ·∀yκ

[
ϕ (⃗a⃗a⃗a,y1, . . . ,yκ) =⇒ & κ

i=1
(
yi = xi

)]
,

are met by each tuple a⃗⃗a⃗a = ⟨aaa0, . . . ,aaam⟩ ∈ Nm+1 ?
Even if solely addition and multiplication operators (along with the

equality relator and with positive integer constants) are adopted as prim-
itive symbols of the arithmetical signature, the graph R of any primi-
tive recursive function is representable; but can representability be recon-
ciled with univocity without calling into play one extra operation, namely
⟨b , n⟩ 7→ bn (maybe with a fixed integer value > 1 for b)? As a preparatory
step toward a hoped-for positive answer to this issue, one may consider
replacing the exponentiation operator by any exponential-growth relation.

We discuss the said univocity, aka ‘singlefold-ness’, issue—first
raised by Yuri Matiyasevich in 1974—, framing it in historical context.
Moreover, we spotlight eight exponential-growth relation any of which, if
Diophantine, could supersede exponentiation in our quest.
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1. Introduction

The notions of being listable, exponential Diophantine, and polynomial Dio-
phantine were proved, in the decade 1960/1970, to capture the same family of
relations on the set N of natural numbers (see [13, 23]). Listability had been
characterized mathematically decades earlier in various equivalent manners (we
will recall one in Sec. 4); the other two notions can be characterized through
arithmetical formulae concerning N. To be specific, consider an arithmetic that
offers: constants denoting 0,1,2 and maybe other positive integers; variables
ranging over N ; operators designating addition, multiplication, and exponenti-
ation; the equality relator. Then:

Definition 1. A relation D ⊆ Nm+1 on natural numbers is said to be [POLY-
NOMIAL] DIOPHANTINE if there are arithmetical terms D′ and D′′ involving
variables a0, . . . ,am,x1, . . . ,xκ , constants, addition and multiplication, such that1

⟨aaa0,aaa1, . . . aaam⟩ ∈ D ⇐⇒ ∃x1 · · ·∃xκ D′(aaa0,aaa1, . . . ,aaam,x1, . . . ,xκ) =

D′′(aaa0,aaa1, . . . ,aaam,x1, . . . ,xκ)

holds for all aaa0,aaa1, . . . ,aaam in N . If exponentiation—with variables in the
exponent—is also admitted into D′ = D′′, then D is called EXPONENTIAL DIO-
PHANTINE.

A function f from Nm to N is termed likewise if its GRAPH, namely the rela-
tion {⟨a1, . . . ,am, a0⟩ : f (a1, . . . ,am) = a0} is Diophantine or, resp., exponential
Diophantine. ⊣⊣⊣

A valid biimplication of the form just shown is called a Diophantine repre-
sentation (resp., an exponential Diophantine representation) of D. Any listable
relation admits an exponential Diophantine representation, as was first proved in
[13]: this celebrated result, known as the Davis-Putnam-Robinson (or just DPR )
theorem, underwent two improvements with respect to its original statement,
which we will now recall. In [7], Martin Davis managed to bring exponential
specifications to the more generic format2

a⃗⃗a⃗a ∈ D ⇐⇒ ∃u∃v∃ x⃗ [D(⃗a⃗a⃗a, x⃗,u) = 0 & J(u , v) ] ,

where D is a polynomial (multivariate, with coefficients in Z), hence de-
void of exponentiation, while exponentiation is superseded by any fixed
EXPONENTIAL-GROWTH RELATION (a notion that Julia Robinson proposed in
[30] and slightly improved in [31]), i.e., a relation J such that

1Bold symbols often differentiate, henceforth, actual from formal parameters; to wit, values
from variables.

2Here and below, a⃗⃗a⃗a and x⃗ shorten aaa0,aaa1, . . . ,aaam and x1, . . . ,xκ , respectively.
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∥∥∥∥∥ ∀u∀v
[
J(u , v) =⇒ v ⩽ uu & u > 1

]
and

∀ℓ∃u∃v
[
J(u , v) & uℓ < v

]
.

(†)

In [24], Yuri V. Matiyasevich managed to bring exponential representations to
the format3

a⃗⃗a⃗a ∈ D ⇐⇒ ∃u∃v∃ x⃗ [D(⃗a⃗a⃗a, x⃗,u) = 0 & 2u = v ] ,

where D is a polynomial, while ensuring singlefold-ness, henceforth dubbed
UNIVOCITY, that is: for any a⃗aa, there is at most one solution to the constraint
D(⃗aaa, x⃗,u) = 0 & 2u = v.

Now and then our focus will zoom in on FINITEFOLD specifications, which
are the ones admitting at most a finite number of solutions for each tuple a⃗aa of
actual parameters.

Examples of exponential-growth relations are:

E1 =
{
⟨u , 2u⟩ :u ∈ N\{0,1}

}
and E2 =

{
⟨u , F2u⟩ :u ∈ N\{0,1}

}
,

where F is the Fibonacci progression defined by the recurrence F0 = 0 , F1 = 1 ,
and Fi+2 = Fi + Fi+1 for i ∈ N . The relation E1 suggests the feasibility of
an amalgamation—nowhere described in the literature, as far as the authors
know—between the cited results of [7] and [24]; as for E2, it was precisely
by exhibiting a polynomial Diophantine representation of it that Matiyasevich
revealed the existence of an alike representation of exponentiation itself [23].
Aiming at unearthing the sought amalgamation, we will closely examine (see
Sec. 6) Davis’ and Matiyasevich’s said reductions.

Polynomial Diophantine univocity—or, at worse, finitefold-ness—is the
true challenge; this is why we also seek a relation that can play, in this respect,
a role analogous to E2: a relation M that, in addition to satisfying exponential
growth, as well as any other requirements that might emerge from the amalga-
mated theorem (a potential such requirement is tagged (‡) in Sec. 7), admits a
finitefold, hopefully univocal, polynomial specification. After a suggestion pro-
vided by [11] (and then reiterated in [22, 27]), in Sec. 8 we candidate for such
a role eight relations associated with eight special quaternary quartic equations,
at least one of which we should prove to have only finitely many solutions—
which, quite regrettably, we have been unable to do so far.

————————

3Or to the even more elegant one a⃗⃗a⃗a ∈D ⇐⇒ ∃u∃ x⃗ [D(⃗a⃗a⃗a, x⃗) = 4u +u ] , cf. [1, pp. 137–138].
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The paper is organized as follows. Sec. 2 illustrates, through a gallery of
short examples, which kind of relations on N can be represented univocally
by means of Diophantine polynomials without resorting to overly sophisticated
tools. It is contended that when univocity does not come for free, it can be
built into such a representation by insertion of clauses that insist on the min-
imality of the values to be assigned to the “unknowns” x1, . . . ,xκ ; minimal-
ity can be enforced by means of bounded universal quantifiers, but can these
quantifiers be recast just in terms of addition, multiplication, and existential
quantification? Sec. 3 shows that a number-theoretic construct somehow related
to bounded universal quantification does, in fact, admit a univocal exponential
Diophantine representation: the construct we are referring to is the function
p(a,b,c) = ∏

c
k=1(a+ b · k), and clues about its kinship to bounded universal

quantification are deferred to a later section. Sec. 4 digresses into presenting a
special format, known as the Davis normal form, that can be used to represent
the graph of any primitive recursive function. This is, in essence, a technique for
specifying any listable relation in a manner that seemingly deviates from a Dio-
phantine representation, as it involves one bounded universal quantifier. Sec. 4
also recaps a variant of the Davis normal form, enforcing univocity, derived by
Yu. Matiyasevich from his momentous finding that every listable relation is Dio-
phantine. All prerequisites are ripe enabling us to produce, in Sec. 5, a univocal
exponential representation of any Diophantine—hence of any listable—relation
D, through reduction of the bounded universal quantifier to the said construct
p(a,b,c). At this point one of Matiyasevich’s variants, embodying univocity, of
the DPR theorem has been reached; in Sec. 6 we recall a more refined one, in
which exponentiation is relegated, within a representation of D, into a single lit-
eral of the form 2u = v. Two questions are then raised in Sec.7: Could a suitable
condition M (u,v) supersede this literal in the general representation scheme?
And also: Can we manage to place a finitefold Diophantine relation M (u,v) in
this role? The truly original part of this paper is Sec. 8, where we review the
entire catalog of our candidate M ’s, each one of which is associated with one
of the square-free rational integers d > 1 such that the algebraic integers of the
field Q(

√
−d ) form a unique-factorization domain.

2. Sampler of univocal (or nearly so) Diophantine specifications

Let us start with motivating examples of univocal (polynomial first, then expo-
nential) Diophantine specifications of various relations over N . Before doing
so, we observe that Diophantine relations can safely be nested one inside an-
other; moreover, we can unconditionally admit the conjunction connective ‘&’
in the specification language, in view of the equivalences
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[
∃ x⃗ P′(⃗a, x⃗) = P′′(⃗a, x⃗)

]
&
[
∃ y⃗ Q′(⃗b, y⃗) = Q′′(⃗b, y⃗)

]
⇐⇒

∃ x⃗∃ y⃗
[(

P′(⃗a, x⃗)−P′′(⃗a, x⃗)
)2

+
(
Q′(⃗b, y⃗)−Q′′(⃗b, y⃗)

)2
= 0

]
,

(s− t)2 +(u− v)2 = 0 ⇐⇒ s2 + t2 +u2 + v2 = 2(s t +u v) ,

which yield[
∃ x⃗ P′(⃗a, x⃗) = P′′(⃗a, x⃗)

]
&
[
∃ y⃗ Q′(⃗b, y⃗) = Q′′(⃗b, y⃗)

]
⇐⇒

∃ x⃗∃ y⃗
[
P′(⃗a, x⃗)2 +P′′(⃗a, x⃗)2 +Q′(⃗b, y⃗)2 +Q′′(⃗b, y⃗)2 =

2 ·
(
P′(⃗a, x⃗) ·P′′(⃗a, x⃗)+Q′(⃗b, y⃗) ·Q′′(⃗b, y⃗)

)]
.

While these broadenings of the specification language do not affect univoc-
ity, the disjunction connective can be brought into play, but should be han-
dled with care: simple-minded use of the rewriting rule P′ = P′′ ∨ Q′ =

Q′′ ; P′ · Q′ + P′′ · Q′′ = P′ · Q′′ + P′′ · Q′ might, in fact, imperil univocity.
E.g., restating a = 0 ∨ ∃x b = x+1 as ∃x a · b = a · (x+ 1) would not work,
since x could take any value in N when a = 0 ; this violation of univoc-
ity can easily be cured, though: we can overload the first disjunct with the
condition x = 0 before eliminating propositional connectives, thus getting
∃x (a+ x) ·b = (a+ x) · (x+1) via the equivalence a2 + x2 = 0 ⇐⇒ a+ x = 0.

Using ‘:=’ to mean “stands for”, we now provide the specifications of some
basic relations among which divisibility, ‘|’, coprimality, ‘⊥’, and the graphs of
integer quotient ‘÷’ and remainder operation ‘%’:

a ∈∅ := a = a+1; a∈{b0, . . . ,bℓ} :=
∨

i⩽ℓ a = bi ;
a ⩽ b := ∃x a+ x = b ; a < b := a+1 ⩽ b ;
a ̸= b := 2 ·a ·b < a2 +b2 ; q =2 := ∃x x2 = q ;

d ̸=2 := ∃x (x2 < d & d ⩽ x2 +2 · x) ;
b1 maxb2 = a := a ∈ {b1,b2} & b1 ⩽ a & b2 ⩽ a ;

b÷a = q := ∃r
(

a ·q+ r = b & r < a
)

;
b % a = r := ∃q

(
a ·q+ r = b & r < a

)
;

a ⊥ b := ∃x1 ∃x2 ∃y1 ∃y2
(

x1 ·a+ y1 ·b = x2 ·a+ y2 ·b+1
)

;
a ∤ b := ∃q∃r

(
a ·q+ r+1 = b & r+1 < a

)
;

a | b := ∃q a ·q = b ; s ≡ r mod p := p2 | (s− r)2 ;
gcd(a,b) = g := g | a & g | b & (a÷g)⊥ (b÷g).

Among these, the specifications lacking univocity are the ones of ‘⊥’, of
‘|’ (insofar as a · q = b holds for any q when a = b = 0), and, consequently, of
‘mod’ and ‘gcd’. To fix them, put:

a ⊥ b := ∃x∃y∃z
[
x2 ·a2 +1 = y2 ·b2 +2 · x ·a &(
a+b = 1 = x+ y+ z ∨ x+ z+1 = b

)]
;

a | b := ∃q∃z
(
a+b+q+ z

)
·
(
(a ·q−b)2 +(z+1−a)2

)
= 0 .
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The former states that, unless a = 1 & b = 0, the equation xa± yb = 1 has a
solution (necessarily unique) such that x < b ; the definiens of the latter states
that (a = b = q = 0) ∨ (a > 0 & a ·q = b) holds for some q.

Likewise, since the specification Fib( f ) := ∃x f 2 − x · f − x2 =±1 of
the property of being a component of the Fibonacci progression (cf. [18, p. 85])
has multiple solutions for f = 1, we thus transform it into a univocal represen-
tation:

Fib( f ) := ∃x
(

f 2 − (x+1) · f − (x+1)2
)2

= 1 .

Generally speaking, univocity can be enforced in an existential definition
that lacks it by insisting on the minimality of the values assigned to the exis-
tential variables, but this brings into play bounded universal quantifiers;4 and
it is far from obvious (see Sec. 5 below) how these can be disempowered into
arithmetical constructs. As an illustration of this point, consider the following
Diophantine specification (alternative to the one proposed above) of the prop-
erty of not being a perfect square:

d ̸=2 := ∃x∃y∃z
[

x2 = d · (y+1)2 +1 & d = z+1
]
.

The theory of Pell equations (see, e.g., [28, Sec. 3.4]) ensures the correctness of
this characterization; however, the number of solving triples is infinite for each
non-square number and it is daredevil to introduce univocity by reformulating
the definiens as

∃x∃y∃z
[

x2 = d · (y+1)2 +1 & d = z+1 &

∀x′ < x∀y′ < y
(
x′2 ̸= d · (y′+1)2 +1

) ]
.

Remark 1 (Putnam’s format of a Diophantine representation). To each univocal
Diophantine representation

D(aaa) ⇐⇒ ∃ x⃗ D(aaa, x⃗) = 0
of a property of natural numbers, where D is a polynomial with coefficients in Z,
there corresponds the following univocal representation of the same property:

D(aaa) ⇐⇒ ∃x0 ∃ x⃗
[
(x0 +1) ·

(
1−D2(x0 , x⃗)

)
= aaa+1

]
. ⊣⊣⊣

3. Sampler of univocal exponential Diophantine specifications

Suppose now that the only operators adopted as primitive arithmetical constructs
are the exponentiation operator, along with a symbol designating the integer
value 2 . Then addition and multiplication can be viewed as derived constructs

4Bounded quantifiers can be introduced as usual; in particular:
∀v ⩽ w ϕ := ∀v (v ⩽ w =⇒ ϕ) and ∃v ⩽ w ϕ := ∃v (v ⩽ w & ϕ ).
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and no other constant m is essential (since m = 1+ · · ·+ 1), as the following
univocal exponential Diophantine specifications make evident:

a = 0 := ∃ t ∃u
(
ua = t & 2t = u

)
;

a = 1 := ∃v
(
v = 0 & 2v = a

)
,

i.e., a = 1 := ∃ t ∃u∃v
(
uv = t & 2t = u & 2v = a

)
;

a ·b = c := ∃x∃y
(
2a = x & 2c = y & xb = y

)
;

a+b = c := ∃u∃v∃w
(
2a = u & 2b = v & 2c = w & u · v = w

)
,

i.e., a+b = c := ∃u∃v∃w∃x∃y
(
2a = u & 2b = v & 2c = w &

2u = x & 2w = y & xv = y
)
.

It is an easy task to figure out from the above table the following fact, that
states more explicitly—and enhances with univocity—what is observed in [13,
p. 427]:

Lemma 3.1. Any exponential Diophantine specification ∃x1 · · ·∃xκ

ϕ(a0,a1, . . . ,am,x1, . . . ,xκ) whose matrix ϕ is devoid of quantifiers and
only involves the logical connectives =, & , ∨ can be recast as

∃x1 · · ·∃xκ ∃y0 ∃y1 · · ·∃yℓ
[

y0 = 2 & & i⩽s bni
i = ci

]
,

where: b0,b1, . . . ,bs, n0,n1, . . . ,ns, c0,c1, . . . ,cs are variables drawn from the set
{a0, . . . ,am,x1, . . . ,xκ ,y0, . . . ,yℓ}, and bi , ni , ci are distinct signs for each i .

If the source specification is univocal, so is the “flattened” one resulting
from this recasting. ⊣⊣⊣

Very early on [30, pp.446–447], J. Robinson noted that binomial coefficient
and factorial function are existentially definable in terms of exponentiation. The
following univocal specifications are reminiscent of hers, but we rely, as for the
factorial, on the modernized variant provided in [28, pp.145–146]. The classical
binomial theorem and the identities

(
ℓ

ℓ−i

)
=
(
ℓ
i

)
, for all i = 0,1, . . . , ℓ, justify the

first specification recalled here:

(
ℓ
i

)
= a := ∃u

[
a =

(
(u+1)ℓ÷ui

)
% u & u = 2ℓ+1

]
;

j! = a := a =

[(
(2 j) j

) j ÷
(
(2 j) j

j

)]
.

Constructs more general than c! are the falling factorial ∏k<c(a− k) with
a ⩾ c , and the related raising factorial ∏

c
k=1(a+ k) . Concerning an even more

general construct, we have:
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Lemma 3.2 (Originating from [12, Lemma 2.2]).
Given a,b,c,d, the relationship

∏
c
k=1(a+b · k) = d

holds if and only if there exist—and are uniquely determined—m, p,q,r,s, t such
that(

b · c = 0 & d = ac & m = p = q = r = s = t = 0
)

∨
[

b · c = t +1 &

m = b · (a+b · c)c +1 & b ·q = a+m · p &
[
bc · c!

(q+c
c

)]
% m = d &[

(q+ r+1 = m & s = 0) ∨ (q = m+ r & p+ s+1 = b)
]]
.

Proof. The first disjunct, regarding the case b = 0 ∨ c = 0, does not deserve
explanation; the second refines the existential specification of ∏

c
k=1(a+b k) ,

∃m∃q∃ p
(

m = b (a+b c)c +1 & b q = a+m p &

[
bc c!

(
q+ c

c

)]
% m = d

)
,

proved in [28, pp.147–149] for the case b> 0 & c> 0 . That specification leaves
p and q under-determined; we are now ensuring univocity by indicating that if
one tried to assign a smaller value to q, then either the value of q itself or the
corresponding value of p would turn out to be negative. ⊣⊣⊣

A theorem by Éduard Lucas (cf. [15]) enables us to univocally represent,
through the binomial coefficient, various comparing relators and bitwise oper-
ations involving two numbers a and b whose base-2 representations are

a = ∑
k
i=0 ai 2i , b = ∑

k
i=0 bi 2i , where

ai,bi ∈ {0,1} for i = 0,1, . . . ,k .

Let us so define MASKING, ORTHOGONALITY, and BITWISE PRODUCT:

a ⊑ b ⇐⇒ ai ⩽ bi for i = 0, . . . ,k ;
a |= b ⇐⇒ ai bi = 0 for i = 0, . . . ,k ;
a ⊓ b = ∑

k
i=0 (ai ·bi ) ·2i .

After [21, p. 228], we can specify:

a ⊑ b := ∃x
(b

a

)
= 2 · x+1;

a |= b := a ⊑ a+b ;

a ⊓ b = c := c ⊑ a & c ⊑ b & a− c |= b− c .
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In Sec. 4, we will exploit three computable functions admitting univocal ex-
ponential specifications; they are an injection from N2 onto N and its associated
projections (see [14, Sec. 3.8]):

ϖ(a , b) = c := 2a (2 b+1) = c+1;
λ (c) = a := 2a | c+1 & 2a+1 ∤ c+1;
ρ(c) = b := ∃x 2x (2 b+1) = c+1 .

These definitions yield, for all a,b,c,a′,b′ ∈ N , that:

ϖ(a , b) = c ⇐⇒ λ (c) = a & ρ(c) = b ,
a < a′ & b < b′ =⇒ ϖ(a , b)< ϖ(a′ , b) & ϖ(a , b)< ϖ(a , b′) .

4. Listable sets and the Davis normal form

Intuitively speaking, a set R ⊆Nm+1 is listable if there is an effective procedure
for making a list (with repetition allowed) of the elements of R . Computability
theory provides the notion of a RECURSIVELY ENUMERABLE (R.E.) set as the
formal counterpart—adequate, according to the Church–Turing thesis—of this
intuitive notion. One of several equivalent ways to characterize it is:5

Characterization 1. An (m+ 1)-ary relation R on N is called R.E. if either
R = /0 or there are primitive recursive functions r0,r1, . . . ,rm from N to N such
that

R = {⟨r0(i),r1(i), . . . ,rm(i)⟩ : i ∈ N} .

As this definition suggests, we mainly refer to monadic functions hence-
forth; hence we can rely on an ad hoc characterization of primitive recursive-
ness, that we borrow from [14, Sec. 4.9]:

Characterization 2. Put n(x) = 0 and s(x) = x+1 for each x ∈ N. PRIMITIVE

RECURSIVE FUNCTIONS are all and only those functions from N to N that ei-
ther belong to the initial endowment n( ) , s( ) , and λ ( ) , ρ( ) (see above, end
of Sec. 3), or are obtainable from that endowment through repeated use of the
following three operations:

1. composing f ( ) and g( ) into the function f ◦g that sends every x to
f
(
g(x)

)
;

2. pairing f ( ) and g( ) into the function f ⊗ g that sends every x to
ϖ
(

f (x),g(x)
)

(see above);

5In Sec. 8, another characterization of r.e. sets will underlie clause i) of (¶).
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3. obtaining by recursion from f ( ) and g( ) the function

h(x) :=


0 if x = 0 ,

f (x÷2) if x ∈ {1, 3, 5, 7, . . .} ,
g(h(x÷2)) if x ∈ {2, 4, 6, 8, . . .} .

We then have:

Theorem 1. The graph

F(a , b) ⇐⇒ F(a) = b

of any primitive recursive function F from N into N can be specified by means
of an arithmetical formula ϕ within which all universal quantifiers are bounded
and negation does not occur (nor does implication; usage of the conjunction
and disjunction connectives & , ∨ is subject to no restraints; also existential
quantification can be used with no restraints, because we are assuming as a
primitive sign ∃ on a par with ∀).

Proof. The graphs of the initial functions n( ) , s( ) , λ ( ), and ρ( ) can be spec-
ified, respectively, by a+b = a , a+1 = b , ∃ p∃x

(
Pow(b, p) & p · (2x+1) =

a+ 1
)

, and ∃x ∃ p
(

Pow(x, p) & p · (2b+ 1) = a+ 1
)

, where Pow(a,b) is a
formula describing the graph of 2a—this function gets the value 1 when a = 0
and gets the value 2 · 2t when a = t + 1 . By exploiting the Chinese remainder
theorem in the manner explained in [31, pp. 79–80],6 we get the specification

Pow(a,b) := ∃u∃d
[

1 = u %
(
1+d

)
& b = u %

(
1+(a+1) ·d

)
&

∀t ⩽ a
(

u %
(
1+(t +2) ·d

)
=

2 ·
[
u %

(
1+(t +1) ·d

)] )]
.

As for the mechanisms enabling the immediate construction of primitive
recursive functions out of f ( ) and g( ) that are supposed to satisfy the induction
hypothesis, we so specify the

graph of f ◦g : ∃y
(

g(a) = y & f (y) = b
)

,

graph of f ⊗g :

 ∃x∃y∃ p
[

f (a) = x & g(a) = y &

Pow(x, p) & p · (y+ y+1) = b+1
]
,

6A corollary, originating from Gödel (1931), of the Chinese remainder theorem says: Con-
sider integers a0, . . . ,an such that 0 ⩽ ai < q holds for each i , and put qi = 1+ n ! · q · (i+ 1) .
Then a0 = a % q0, . . . ,an = a % qn hold together for a sole a < ∏ j⩽n q j .
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and then conclude by so specifying the outcome of recursion:

∃u∃d ∃m
[

0 = u %
(
1+d

)
& b = u %

(
1+(a+1) ·d

)
& m = a÷2 &

∀t ⩽ m
(

f (t) = u %
(
1+(2 · t +2) ·d

)
&

g
(
u %

(
1+(t +2) ·d

))
= u %

(
1+(2 · t +3) ·d

) )]
.

Needless to say, here the Chinese remainder theorem is at work again. ⊣⊣⊣

In light of the elicitation Char. 1 of listability, Thm. 1 can easily be general-
ized into:

Theorem 2. Every listable (property or) relation on N can be specified by means
of an arithmetical formula wherein all universal quantifiers are bounded and
neither negation nor implication occurs. ⊣⊣⊣

In [31, pp. 93–96], a syntactic manipulation algorithm is described that
transforms any arithmetical formula ϕ endowed with the features stated in
Thm. 1 (and in Thm. 2), and whose free variabes are a0,a1, . . . ,am , into a Dio-
phantine polynomial R(h,y,a0, . . . ,am,x1, . . . ,xκ) such that:

ϕ(a0, . . . ,am) ⇐⇒ ∃h ∀y ⩽ h ∃x1 ⩽ h · · ·∃xκ ⩽ h[
R(h,y,a0, . . . ,am,x1, . . . ,xκ) = 0 ].

This special format is called DAVIS NORMAL FORM, because it was first brought
to light (originally lacking bounds on the inner existential quantifiers) in [5,
Part III]. We will now report on a perfectioning of this format, that Yuri Matiya-
sevich put forward after establishing that the a priori distinct notions of r.e. set
and Diophantine set amount to one another (cf. [23]).

Ancillary to that, let us introduce the Cantor functions cℓ, with ℓ ∈ N\{0} :

c1(u1) := u1 ,

cq+2(u1, . . . ,uq+2) := cq+1

(
u1, . . . ,uq,

(uq+1 +uq+2)
2 +3 ·uq+1 +uq+2

2

)
.

(Notice that (uq+1+uq+2)
2+3 ·uq+1+uq+2 is an even number.) It thus turns out

that each cℓ is a monotone injection of Nℓ onto N (cf. [17]). Yu. Matiyasevich
stated:

Lemma 4.1 ([25, pp. 303–304]). To each Diophantine polynomial
D(a0, . . . ,am,x1, . . . ,xκ), there correspond Diophantine polynomials
P(h,y,a0, . . . ,am,x0,x1, . . . ,xκ) ⩾ 0 and E(a0, . . . ,am,h) ⩾ 0 such that
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the following biimplications hold (where a⃗ and x⃗ shorten a0, . . . ,am and
x0,x1, . . . ,xκ , respectively): 7

∃x1 · · ·∃xκ D(⃗a,x1, . . . ,xκ) = 0 ⇐⇒ ∃h ∀y ⩽ h ∃ x⃗ P(h,y, a⃗, x⃗) = 0
⇐⇒ ∃!h ∀y ⩽ h ∃ x⃗ P(h,y, a⃗, x⃗) = 0
⇐⇒ ∃h ∀y ⩽ h ∃! x⃗ P(h,y, a⃗, x⃗) = 0

⇐⇒ ∃h ∀y ⩽ h ∃x0 ⩽ E (⃗a,h) ∃x1 ⩽ E (⃗a,h) · · ·∃xκ ⩽ E (⃗a,h) P(h,y, a⃗, x⃗) = 0 .

Proof. We will define P(h,y, a⃗,x0,x1, . . . ,xκ) so that P = 0 enforces univocally
(also with respect to the new existential variables, h and x0) the condition

cκ(x1, . . . ,xκ) = y &
[(

y < h & D(⃗a,x1, . . . ,xκ) ̸= 0
)

∨(
y = h & D(⃗a,x1, . . . ,xκ) = 0

)]
.

For this purpose, we put8

P := 22κ ·
(
y−cκ(x1, . . . ,xκ)

)2
+[

(h− y) ·D2(⃗a,x1, . . . ,xκ)− x0 −1
]2 ·

[
(h− y)2 +D2(⃗a,x1, . . . ,xκ)+ x0

]
.

It is then clear that the variables h, x1, . . . ,xκ , and x0 on the right-hand side
of the claimed biimplications designate, respectively: the first u such that the
κ-tuple ⟨x̂1, . . . , x̂κ⟩ for which cκ(x̂1, . . . , x̂κ) = u holds solves the equation
D(⃗a,x1, . . . ,xκ) = 0 (in the unknowns x1, . . . ,xκ ); for each y ⩽ h, the κ-tuple
⟨xy,1, . . . ,xy,κ⟩ such that cκ(xy,1, . . . ,xy,κ) = y; the accordance between positivity
of h− y and non-nullity of D(⃗a,xy,1, . . . ,xy,κ). When the left-hand side of each
claimed biimplication is satisfied by specific ai’s, we can hence determine—
and they are unique—a value for h and, corresponding to each y , values xy, j’s
that do to the case of the right-hand side; conversely, if h satisfies the right-
hand side for given ai’s, then the corresponding xh,1, . . . ,xh,κ are such that
D(⃗a,xh,1, . . . ,xh,κ) = 0 . To end, we must address the issue of setting a suit-
able bound E (⃗a,h) on the variables x j. Since no xy, j with j > 0 can exceed h,
we will enforce E (⃗a,h) ⩾ h; to also take into proper account the values xy,0 ,
we put E (⃗a,h) := h ·

(
1+ Ẽ (⃗a,h)

)
, where Ẽ (⃗a,h) results from the polynomial

D2(⃗a,h, . . . ,h) through replacement of each one of its coefficients, k, by the
absolute value |k| . ⊣⊣⊣

5. Reducing bounded universal quantifiers to exponentiation

The proof that the family of exponential Diophantine relations is closed under
bounded universal quantification can be developed in many different ways (see

7The sign ‘∃!’ (read: “there exists a sole”) can be introduced as an abbreviation:
∃!v ϕ := ∃u∀v (ϕ ⇐⇒ v = u), where u does not occur in ϕ and is distinct from v.

8The factor 22κ

abundantly suffices to elide the denominator of the polynomial cκ .
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[26, Chap.6] and [21, pp. 231–232]). Here we resume part of the development
(Lemmas 5.1 e 5.2) from the recent monograph [28]—see also [10, pp. 252–
256], in turn stemming from [13, pp. 433–435]—; the other part (Lemma 4.1
above and Lemma 5.3 below) is instead adapted from [24], in order to ensure
univocity.

Lemma 5.1. (Cf. [28, p. 154]). To each Diophantine polynomial
P(h , y , a1 , . . . , am , x1 , . . . , xκ), there correspond Diophantine polynomials
Q(h , u , a1 , . . . , am) such that the following hold:

• Q(h , u , a1 , . . . , am) > hmaxu ;

• Q(h , u , a1 , . . . , am) ⩾ |P(h , y , a1 , . . . , am , x1 , . . . , xκ)|
when y ⩽ h and x1 , . . . , xκ ⩽ u .

Proof (just a clue). The trick is similar to the one used at the end of the proof
of Lemma 4.1. ⊣⊣⊣

Lemma 5.2 (From [28, pp. 150–153]). If P and Q are as in Lemma 5.1 then,
given h,u,a1, . . . ,am ,

∀y ⩽ h ∃x1 ⩽ u · · · ∃xκ ⩽ u P(h , y , a1 , . . . , am , x1 , . . . , xκ) = 0

will hold if and only if there exist t , z , w1 , . . . , wκ such that

(1) t = Q(h , u , a1 , . . . , am) ! ;

(2) 1+(z+1) t = ∏y⩽h
(
1+(y+1) t

)
;

(3) P(h , z , a1 , . . . , am , w1 , . . . , wκ)≡ 0 mod 1+(z+1) t ;

(4) 1+(z+1) t
∣∣ ∏ j⩽u(wi − j) , for i = 1, . . . ,κ . ⊣⊣⊣

Lemma 5.3. Out of any given Diophantine polynomial D(a1, . . . ,am,x1, . . . ,xκ),
one can construct three polynomials, P(h,y,a1, . . . ,am,x0,x1, . . . ,xκ),
E(a1, . . . ,am,h), and Q(h,u,a1, . . . ,am), each producing values in N when
its variables range over N, such that ∃x1 · · ·∃xκ D(a1, . . . ,am,x1, . . . ,xκ) = 0
holds if and only if there exist uniquely determined h ,u , t , z , w0 , . . . , wκ ,
g0 , . . . , gκ , f0 , . . . , fκ , and e satisfying the following exponential Diophantine
conditions:

(1) u = E(a1, . . . ,am,h) & t = Q(h , u , a1 , . . . , am) ! ;

(2) e = 1+(z+1) t & e = ∏
h+1
y=1

(
1+ yt

)
;

(3) e | P(h , z , a1 , . . . , am , w0 , w1 , . . . , wκ) ;
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(4) gi +u = wi & e
∣∣ ∏ j⩽u

(
gi + j

)
, for i = 0,1, . . . ,κ ;

(5)
∨

i⩽κ

[(
& j<i g j = f j + e

)
& gi + fi +1 = e & & κ

j=i+1 f j = 0
]
.

Proof. From D—assuming without loss of generality that m > 0—we obtain P
and E as in Lemma 4.1, then we get Q from P as in Lemma 5.1 (there is but one
extra variable, x0). Now we can apply Lemma 5.2, with u = E(a1, . . . ,am,h),
and this accounts for the conditions (1)–(4). By means of the gi, we are re-
quiring that wi ⩾ u; this is a legitimate request, in the light of the proof of
Lemma 5.2, whose congruence P(u , z , a1 , . . . , am , w0 ,w1 , . . . , wκ)≡ 0 mod e
is rewritten as a divisibility constraint between natural numbers here, by taking
the fact P(h , z , a1 , . . . , am , w0 ,w1 , . . . , wκ)⩾ 0 into account; moreover, within
that proof we had represented each wi − xy,i in the form wi − j with 0 ⩽ j ⩽ u,
here we are representing it in the form gi + j with 0 ⩽ j ⩽ u.

As Lemma 4.1 suggests, in order to make the specification (1)–(4) univo-
cal, it is enough to bring into play new unknowns f0, . . . , fκ subject to the con-
straint (5). That is, we are choosing as representative of the infinitely many
(κ + 1)-tuples ⟨w0, . . . ,wκ⟩ suitable to encode the list of tuples ⟨x0,i, . . . ,xh,i⟩
(i = 0, . . . ,κ) as described within the proof of Lemma 5.2, the one whose com-
ponents cannot be lowered by the amount e without at least one among them
becoming smaller than u . ⊣⊣⊣

Knowing that each listable set has a representation ∃ x⃗ D(⃗a , x⃗) = 0 , we can
view Lemma 5.3 as enriching the DPR theorem [13] with singlefold-ness; in
short:

Theorem 3 (Matiyasevich, 1974). Each listable set has a univocal exponential
Diophantine representation. ⊣⊣⊣

6. Exponentiation as a notable quotient

Denote by ⟨yyyi(a)⟩i∈N the endless, strictly ascending sequence consisting of all
non-negative integer solutions to the special-form Pell equation9

(a2 −1)y2 +1 = 2 with a ∈ N\{0,1} ;

also put xxxi(a):=
√

(a2 −1)yyy2
i (a)+1. Then:

9Once more, ‘Q =2’ means that Q must be a perfect square.
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Lemma 6.1. The following law determines uniquely the values of u,v :(
(b ⩾ 1∨n = 0)& a > bn

)
=⇒ bn = c ⇐⇒ ∃u∃v

(
u2 − (a2 b2 −1) v2 = 1 &

xxxn(a) ⩽ u < axxxn(a) & c = u÷xxxn(a)
)
 .

Moreover, if b ⩾ 1 & w ⩾ 3(c+1)(n+1) , then

bn = c ⇐⇒ c = yyyn+1(bw+1)÷yyyn+1(w) .

Proof. Concerning the first claim, the proof can be traced back to [30, Lem-
mas 9 and 10] (see also [7, Lemma 3]). Concerning the second claim, see [25,
p. 308]. ⊣⊣⊣

Through the first claim of Lemma 6.1, M. Davis obtained an elegant, gen-
eralized restatement of the DPR theorem, where a single literal involving an
exponential-growth relation J replaces exponentiation. In addition to J( , ) ,
Davis’ technique leverages a Diophantine relation D( , , ) on N, such that10

• ∀b∀n∀v∀ t
[

v > t & D(b,n, t) =⇒ v > bn
]

and

• ∀b∀n∃ t D(b,n, t) ,

along with the Diophantine relation

E (b,n,c,a, ℓ) := ∃u∃v∃w
[ (

b = u = v = c = 0 & n = w+1
)

∨(
u2 − (a2 b2 −1) v2 = 1 & w = 0 &

ℓ⩽ u < a ℓ & c = u÷ ℓ
) ]

.
It can be shown that

& i⩽s bni
i = ci ⇐⇒ (∃a , t0, . . . , ts, ℓ0, . . . , ℓs) & i⩽s

[
D(bi,ni, ti) & a > ti &

E (bi,ni,ci,a, ℓi)& ℓi = xxxni(a)
]
,

whence xxxni(a) can be eliminated thanks to the following proposition:

Lemma 6.2 (Cf. [4, Lemma A.2]). Suppose that a > 1, a > n, and xxxa(a) > ℓ .
Then,

ℓ= xxxn(a) ⇐⇒ ∃r ℓ2 − (a2 −1)
(
n+(a−1)r

)2
= 1 .

10For definiteness, one could take D(b,n, t) := Q(b+n+2, t) , where Q(w,u) is as in [1,
p. 155], namely:

Q(w,u) := (∃x , y)
[

u ⩾ w x & x > 1 & x2 − (w2 −1)(w−1)2 y2 = 1
]
.
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Ultimately, one gets the following proposition, whose proof we omit:

Lemma 6.3. If J( , ) is an exponential-growth relation and each bi,ni,ci is
either a variable or a non-negative integer constant, then we have

& i⩽s bni
i = ci ⇐⇒ (∃u,v, t0, . . . , ts, ℓ0, . . . , ℓs, r0, . . . ,rs)

[
J(u , v) &

& i⩽s

[
D(bi,ni, ti) & u > ti & u > ni &

E (bi,ni,ci,u, ℓi) & ℓi < v &

ℓ2
i = (u2 −1)

[
ni +(u−1)ri

]2
+1

] ]
.

Therefore, in view of Lemma 3.1:

Theorem 4 (Davis, 1963). Each listable subset of a Cartesian power Nm+1 ad-
mits a specification of the form ∃u∃v∃ x⃗

[
J(u , v) & D(⃗a, x⃗,u,v) = 0

]
, where

D is a Diophantine polynomial and J is any exponential-growth relation. ⊣⊣⊣

In one respect, this achieves more than Thm. 3; in fact, here we have a generic
exponential-growth relation in place of exponentiation. But, regrettably, uni-
vocity is not ensured.

Matiyasevich made a leap towards a reconciliation between Thm. 3 and
Thm. 4 in [25, pp. 308–309]. In his theorem, reported below, the specific re-
lation 2u = v occurs instead of a generic J(u , v) ; and in its proof (which we
omit) the second claim of Lemma 6.1 plays a decisive role:

Theorem 5 (Exponentiation, from dyadic to monadic). A univocal exponential
Diophantine specification of any relation & s

i=1 bni
i = ci (where bi,ni,ci are as

said above) is:
∃u∃v ∃e1 ∃ f1 ∃g1 ∃h1 · · ·∃es ∃ fs ∃gs ∃hs

[
L1 & L2 &

& s
i=1 [(bi = 0 & L3,i ) ∨ (bi > 0 & L4,i & L5,i & L6,i & L7,i )]

]
,

where

L1 := 2u = v ,
L2 := u = 20 ∑

s
i=1 (ci +1)(2bi +1)(n2

i +1) ,

L3,i := [(ni = 0 & ci = 1) ∨ (ni > 0 & ci = 0)] & ei + fi +gi +hi = 0 ,
L4,i := ci = fi ÷hi ,

L5,i := e2
i −

(
(bi u+1)2 −1

)
f 2
i = 1 & g2

i −
(
u2 −1

)
h2

i = 1 ,
L6,i := fi ≡ ni +1 mod (bi u) & hi ≡ ni +1 mod (u−1) ,
L7,i := fi < v & hi < v .

Consequently, every listable subset R of a Cartesian power Nm+1 admits
univocal representations ∃u ∃v ∃ x⃗

[
2u = v & D(a0 , . . . , am , x⃗,u,v) = 0

]
and
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∃ t ∃u∃w ∃ x⃗
[[

u+(u+ t)2
]
·
[
1−D2(a0, . . . ,am , x⃗ , u , u+ t)

]
= 4w+w

]
, with

D a Diophantine polynomial. ⊣⊣⊣

Remark 2. When m = 0, the former of the above representations of R can be
reformulated—retaining univocity, and in analogy with Putnam’s format seen in
Remark 1—as

R(a0) ⇐⇒ ∃x0 ∃ x⃗ ∃u
[
(x0 +1) ·0D2(x0, x⃗ ,u ,2u) = a0 +1

]
. ⊣⊣⊣

7. Two elusive issues concerning Diophantine finitefold-ness

We are after a generalized variant of Thm. 5 which has, in place of its

2u = v & L2 & & s
i=1 [(bi = 0 & L3,i ) ∨ (bi > 0 & L4,i & L5,i & L6,i & L7,i )] ,

a suitable formula M (u , v) & D( a⃗ , x⃗ , u , v) = 0 , where D is a Diophantine
polynomial in the parameters a⃗ and

• M is a dyadic relation subject to particular requirements—probably
stronger than exponential growth. Moreover,

• a concrete such M should be exhibited that admits a finitefold—hopefully
univocal—Diophantine polynomial specification.

The achievement of these two goals would answer positively an issue raised in
[24] and [11]: “OPEN PROBLEM: Is there a finitefold (or better a singlefold)
Diophantine definition of a = bc ?”

As regards which requirement should be imposed on M , [22, p. 749] sug-
gests the following (without explaining, though, why this would be adequate
to ensure that the relation 2u = v—and therefore any listable set—has a finite
Diophantine specification if M (u , v) has one):

∥∥∥∥∥ Integers α > 1 , β ⩾ 0 , γ ⩾ 0 , δ > 0 exist such that to each w ∈
N\{0} there correspond u,v such that: M (u , v) , u < γ wβ , and
v > δ αw hold.

(‡)

As for a concrete choice of M , the most promising candidate at the time when
[11] was published was an exponential-growth relation, M7, associated in a
certain manner with the quaternary quartic equation 9 · (u2 + 7v2)2 − 7 · (r2 +
7s2)2 = 2 that had been spotlighted in [8]. The proposed M7 would admit a
finitefold Diophantine polynomial specification if the said equation only had a
finite number of integer solutions. Below, we will spotlight a few other quater-
nary quartics that may candidate as rule-them-all equations.
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8. Potential rule-them-all equations: how helpful?

In [8], Martin Davis argued that Hilbert’s 10th problem would turn out to be
algorithmically unsolvable if his quaternary quartic just recalled could be shown
to admit only one solution in N (an expectation, btw, that came to an end in the
early 1970s). In [1, 3, 4], by following Davis’ same construction pattern, we
increased the number of Diophantine equations that candidate as “rule-them-
all equations”. Each such equation is associated with one of the eight so-called
Heegner numbers d ̸= 1 (see below): today we know that, if any of the equations

№ d Associated quaternary quartic equation

2 2 ·
(
r2 +2 s2

)2 −
(
u2 +2 v2

)2
= 1

3 3 ·
(
r2 +3s2

)2 −
(
u2 +3v2

)2
= 2

7 7 ·
(
r2 +7s2

)2 −32 ·
(
u2 +7v2

)2
= −2

11 11 ·
(
r2 + r s +3s2

)2 −
(
v2 + vu+3u2

)2
= 2

19 19 ·32 ·
(
r2 + r s +5s2

)2 −132 ·
(
v2 + vu+5u2

)2
= 2

43 43 ·
(
r2 + r s +11s2

)2 −
(
v2 + vu+11u2

)2
= 2

67 67 ·36 ·
(
r2 + r s +17s2

)2 −132 ·
(
v2 + vu+17u2

)2
= 2

163 163 ·32 ·112 ·192 ·
(
r2 + r s +41s2

)2 −52 ·
(
v2 + vu+41u2

)2
= 2

associated with the respective Pell equations x2 − d y2 = 1 turned out to admit
only a finite number of solutions in Z, then every listable subset of Nm—first and
foremost the set of all triples ⟨b,n,c⟩ such that bn = c—would admit a finitefold
polynomial Diophantine representation.

This means that to any partially computable function f (⃗a) from Nm to N,
there would correspond a multi-variate polynomial D ∈ Z[a1, . . . ,am,x1, . . . ,xκ ]
such that for each a⃗ ∈ Nm the following two conditions (representation and
finitefold-ness) hold:

i) f (⃗a) yields a value ⇐⇒ ∃ x⃗ ∈ Nκ D(⃗a, x⃗) = 0;
ii) ∃b ∈ N ∀ x⃗ ∈ Nκ

(
D(⃗a, x⃗) = 0 =⇒ b > ∑ x⃗

)
.

(¶)

This would be the case if, say, the first of the above-listed quartic equations
admitted only the trivial solutions r =±1, s = 0, u =±1, v = 0; unfortunately,
as will be reported in Sec. 8.6, this is not the case.

Why would it be important to establish whether any of the above equations
has only a finite number of solutions? The whole point is that if the equation
associated with d is finitefold, then the following dyadic relation Md over N
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admits a polynomial Diophantine representation:
d ∈ {2,7} : Md (p , q) := ∃ℓ > 4

[
q = ỹyy2ℓ(d)/hd & p | q & p ⩾ 2ℓ+1

]
;

d ∈ {3,11,19,43,67,163} :

Md (p , q) := ∃ℓ > 12
[

q = ỹyy22ℓ+1(d)/hd & p | q & p ⩾ 22ℓ+2
]
.

where ⟨ỹyyi(d)⟩i∈N is the strictly ascending sequence11 consisting of all non-
negative integer solutions to the said equation d y2+1 =2 and the values of hd
are as shown in the following table:

d 2 3 7 11 19 43 67 163
hd 1 1 3 1 39 1 351 3135

= 3 ·13 = 33 ·13 = 3 ·5 ·11 ·19

The rationale behind these values of hd will be explained in Remark 3; anyway,
avoiding the division by hd in the definition of ỹyyd would only call for minor
retouches in the reasoning that will be carried out in Sec. 8.4 and Sec. 8.5.

Independently of representability, each Md turns out to satisfy Julia Robin-
son’s exponential growth criteria (†) recalled in Sec.1 as well as Matiyasevich’s
condition (‡) seen in Sec. 7.

8.1. Unique-factorization rings of the integers of Q(
√
−d )

Davis’ construction of a potential rule-them-all equation exploits a square-free
rational integer d > 0 such that in the imaginary quadratic field Q(

√
−d ) the

algebraic integers12 form a unique-factorization integral domain Ad . All such
numbers were discovered by Carl Friedrich Gauss; they are

1, 2, 3, 7, 11, 19, 43, 67, 163 (see OEISA003173),
and they are often termed Heegner numbers after the name of the scholar who
gave, in the 1950s, a decisive contribution to the proof that no more numbers
with the desired property exist (cf. [16, 35]). Number 1 must be discarded
beforehand, because it is a perfect square (hence −1 cannot serve as the dis-
criminant of a Pell’s equation); moreover, as it turns out that d ≡ 3 mod 4
holds for all other Heegner numbers except d = 2, we have:

Ad =


Z
[√

−d
]

when d = 2,

Z
[

1+
√
−d

2

]
for d ∈ {3,7,11,19,43,67,163}.

11This is tightly akin to the sequence ⟨yyyi(a)⟩i∈N seen earlier, since yyyi(a) = ỹyyi(a
2 −1).

12The algebraic integers mentioned here are the elements of Q(
√
−d ) which are roots of monic

polynomials xn + cn−1 xn−1 + · · ·+ c0 with rational integer coefficients ci .

https://oeis.org/A003173
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The rational prime numbers that cease to be prime in this ring Ad turn out
to be the ones writable in the following norm form (where w, t ∈ Z):

w2 +d t2 when d = 2,
w2 +wt + d+1

4 t2 for d ∈ {3,7,11,19,43,67,163}.

(Remark: In the case when d = 3, the numbers of this form coincide with the
ones writable in the form w2+3 t2; when d = 7, then 2 is the sole prime number
of norm form that cannot be written in the form w2 +7 t2).

For any Heegner number d, we call inert those numbers p, prime in Z, that
remain prime in the enlarged ring Z

[√
−d

]
. We must make an exception for

p = 2 relative to d = 3 : that p remains in fact irreducible, but no longer prime
in Z

[√
−3

]
;13 however, it becomes prime in the ring of integers of Q(

√
−3),

which is larger than Z
[√

−3
]

. The number d itself is not an inert prime.
When d ̸= 2 , a prime p other than d turns out to be inert if and only if

−d ̸≡ x2 mod p holds for some x ∈ Z such that |x|< p .
According to the quadratic reciprocity law, this also amounts to the property

p ̸≡ y2 mod d for any y ∈ Z such that 0 < |y|< d ,
which offers a practical criterion for recognizing inert primes.

On these grounds, one easily preps the tables below, showing, relative to
each Heegner number d ̸= 1, which primes are inert/representable:14

d inert prime p
2 p ≡ 5,7 mod 8
3 p ≡ 2 mod 3
7 p ≡ 3,5,6 mod 7

11 p ≡ 2,6..8,10 mod 11
19 p ≡ 2,3,8,10,12..15,18 mod 19
43 p ≡ 2,3,5,7,8,12,18..20,22,26..30,32..34,37,39,42 mod 43
67 p ≡ 2,3,5,7,8,11..13,18,20,27,28,30..32,34,

38,41..46,48,50..53,57,58,61,63,66 mod 67
163 p ≡ 2,3,5,7,8,11..13,17..20,23,27..32,37,42,44,45,48,50,52,59,63,

66..68,70,72,73,75,76,78..80,82,86,89,92,94,98,99,101..103,
105..110,112,114,116,117,120,122..125,127..130,
137..139,141,142,147..149,153,154,157,159,162 mod 163

13To see that 2 is not prime in Z
[√

−3
]

, it suffices to observe that 2 divides 4 = (1 +√
−3)(1−

√
−3) without dividing either factor; on the other hand 2 is irreducible in Z

[√
−3

]
,

in the sense it can be factorized as 2 = (a+ b
√
−3)(a′ + b′

√
−3) only with b = b′ = 0 and

a =±1∨a′ =±1.
14Herein, the notation h ..k designates the integer range {h,h+1, . . . ,k}.
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d representable prime q other than d
2 q ≡ 1,3 mod 8
3 q ≡ 1 mod 3
7 q ≡ 1,2,4 mod 7

11 q ≡ 1,3..5,9 mod 11
19 q ≡ 1,4..7,9,11,16,17 mod 19
43 q ≡ 1,4,6,9..11,13..17,21,23..25,31,35,36,38,40,41 mod 43
67 q ≡ 1,4,6,9,10,14..17,19,21..26,29,33,35..37,39,40,47,49,54..56,

59,60,62,64,65 mod 67
163 q ≡ 1,4,6,9,10,14..16,21,22,24..26,33..36,38..41,43,46,47,49,51,

53..58,60..62,64,65,69,71,74,77,81,83..85,87,88,90,91,93,
95..97,100,104,111,113,115,118,119,121,126,131..136,140,
143..146,150..152,155,156,158,160,161 mod 163

In [8], inert primes are called poison primes, because they ‘poison’ those
m ∈ N in whose standard factorization they appear with an odd exponent, in
the following sense: if m gets so poisoned, then it is not representable in the
above-specified quadratic form. We sum up the situation in the frame shown
here:

Inert, or ‘poison’ prime:
• it remains prime;

• it is not representable in the norm form;

• it poisons (by rendering it, in turn, not so representable) any m ∈ N in
whose standard factorization it occurs with an odd exponent.

Example 1. Take d = 2. The argument just developed yields that any repre-
sentable odd m satisfies either one of the congruences m ≡ d ±1 mod 8 . ⊣⊣⊣

8.2. Promising (Diophantine?) exponential-growth relations

In this section we outline Davis’ construction of a potential rule-them-all equa-
tion, choosing the Heegner number d = 67 as our running example.15 Before
going into technicalities related to that number, we offer some background in-
formation.

To each Heegner number d ̸= 1, there corresponds the Pell equation

d y2 +1 = x2 ,

trivially solved by y0 = 0 , x0 = 1 . Its fundamental solution y1 , x1 (namely,
the one with y,x positive integers of smallest possible size), and the rule for

15In [3], the authors adopted d = 19 as running example.
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getting from two consecutive solutions yk , xk and yk+1 , xk+1 its next solution
yk+2 , xk+2 , are tabulated here:

d y1 x1 yk+2 xk+2
2 2 3 6yk+1 − yk 6xk+1 − xk
3 1 2 4yk+1 − yk 4xk+1 − xk
7 3 8 16yk+1 − yk 16xk+1 − xk

11 3 10 20yk+1 − yk 20xk+1 − xk
19 39 170 340yk+1 − yk 340xk+1 − xk
43 531 3482 6964yk+1 − yk 6964xk+1 − xk
67 5967 48842 97684yk+1 − yk 97684xk+1 − xk

163 5019135 64080026 2 · x1 · yk+1 − yk 2 · x1 · xk+1 − xk

A cornerstone in the construction of candidate rule-them-all equations is the
following basic fact concerning Pell equations (cf., e.g., [4, Corollary 3.2]):

Lemma 8.1. Consider the Pell equation x2−δ y2 = 1, with δ > 0 a non-square
integer; let ⟨x0,y0⟩ , ⟨x1,y1⟩ , ⟨x2,y2⟩ , . . . be its solutions in N, with y0 < y1 <
y2 < · · · . Then the following identities hold for every ℓ ∈ N :

x2ℓ = x2
ℓ +δ y2

ℓ and y2ℓ = 2xℓ yℓ . ⊣⊣⊣

This lemma shows that each x2ℓ entering in a representation of 1 in the form
x2 − δ y2 is, in turn, represented by the quadratic form x2 + δ y2 . One can get
Lemma 8.1 from the equality xk +yk

√
δ =

(
x1 +y1

√
δ
)k holding for all k ∈ N ,

by taking into account the irrationality of
√

δ . Consequently, since each entry
of the sequence

〈
x2ℓ+1 + y2ℓ+1

√
δ
〉
ℓ ∈ N equals

(
x2ℓ+ y2ℓ

√
δ
)
·
(
x1 + y1

√
δ
)
,

we have
y2ℓ+1 = y1 x2

ℓ +2x1 xℓ yℓ+δ y1 y2
ℓ ,

and so, when δ is one of the d’s that interest us here:

d = 2 y2ℓ+1 = 2(xℓ+ yℓ) (xℓ+2yℓ)
d = 3 y2ℓ+1 = (xℓ+ yℓ) (xℓ+3yℓ)

d ∈ {7 , 11} y2ℓ+1 = (xℓ+3yℓ) (3xℓ+d yℓ)
d = 19 y2ℓ+1 = (3xℓ+13yℓ) (13xℓ+3 ·19yℓ)
d = 43 y2ℓ+1 = (9xℓ+59yℓ) (59xℓ+9 ·43yℓ)
d = 67 y2ℓ+1 = (27xℓ+221yℓ) (221xℓ+27 ·67yℓ)

d = 163 y2ℓ+1 = (627xℓ+8005yℓ) (8005xℓ+627 ·163yℓ)

It turns out that the binomials appearing in each one of the above equali-
ties evaluate to co-prime numbers vℓ , wℓ; i.e.: xℓ+ yℓ ⊥ xℓ+ 2yℓ when d = 2,
xℓ+ yℓ ⊥ xℓ+3yℓ when d = 3, . . . , 627xℓ+8005yℓ ⊥ 8005xℓ+102201yℓ when
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d = 163 . Accordingly, if y2ℓ+1 is representable in the norm form, so are its fac-
tors vℓ and wℓ; in fact, no inert prime could possibly divide either vℓ or wℓ to an
odd power, else it would divide y2ℓ+1 to the same odd power.16

Example 2. Take d = 67. To see that 27xℓ+221yℓ ⊥ 221xℓ+1809yℓ holds for
every ℓ , begin by observing that xℓ ⊥ yℓ : in fact, any positive integer t dividing
both of xℓ and yℓ will divide x2

ℓ − d y2
ℓ , which equals 1; therefore such a t must

equal 1 . Next, by way of contradiction, suppose that a prime number p exists
such that p | 221xℓ+1809yℓ and p | 27xℓ+221yℓ . Then p | 2yℓ holds, because
2yℓ = 27(221xℓ + 1809yℓ)− 221(27xℓ + 221yℓ) ; therefore, either p = 2 or
p | yℓ holds. Inspection of the Pell equation at hand, whose discriminant d is odd,
shows us that yℓ and xℓ have opposite parity; so 27xℓ+221yℓ is odd and p ̸= 2 .
Hence p | yℓ, and moreover p | [11(221xℓ+1809yℓ)−90(27xℓ+221yℓ)] , i.e.,
p | xℓ+9yℓ ; thus p | xℓ , contradicting the co-primality between xℓ and yℓ .17 ⊣⊣⊣

What follows will adjust to the case d = 67 a general technique for as-
sociating with a given Heegner number d ̸= 1 an equation whose solutions
correspond to the representations of a certain integer C by a quadratic form
d · a2 ·X2 − b2 ·Y 2, where X ,Y are in turn representable by the quadratic norm
form associated with d as seen in Sec. 8.1. In most cases, either a = 1 or b = 1
or a = b = 1 holds; very often C equals 2. Inspection of the complete table of
resulting quartic equations shown at the beginning of Sec.8 makes it evident that
the quaternary quartic equation associated with d = 67 is relatively elaborate;
thus, our running example should encompass all technical difficulties.

Remark 3. Note that d = 67 is one of the four cases when hd ̸= 1 in the con-
struction of Md (see p. 604). The rationale behind this number hd (for each
Heegner number d) is that dividing each yi by hd serves to elide the inert primes
that occur with an odd exponent in the standard factorization of yi . ⊣⊣⊣

8.3. Contriving the quaternary quartic associated with d = 67

Two lemmas will aid in the proof of a crucial statement to be seen below.

16The consideration made in this paragraph needs some refinement for those d’s such that
hd ̸= 1 (see p. 604 and Remark 3 below): this is apparent in the treatment of d = 7 in [8] and of
d = 19 in [3], and will surface again in the treatment of d = 67 inside the proof of Thm. 6 below.

17For each odd d, the analogous co-primality result is proved very much like in this example,
with only the final step requiring a bit of ingenuity. When d = 3, the clue is that 2(xℓ+ 3yℓ)−
(xℓ+yℓ)= xℓ−5yℓ. When d = 7 or d = 11, the clue is that (xℓ+3yℓ)−3yℓ= xℓ; when d = 19, the
clue is that 9(3xℓ+13yℓ)−2(13xℓ+57yℓ)= xℓ+3yℓ; when d = 43, it is that 2(59xℓ+387yℓ)−
13(9xℓ + 59yℓ) = xℓ + 7yℓ; when d = 163, it is that 73(8005xℓ + 102201yℓ)− 932(627xℓ +
8005yℓ) = xℓ+13yℓ. When d = 2, the contradiction p | yℓ & p | xℓ follows from supposing that
a prime number p exists such that p | xℓ+ yℓ and p | xℓ+2yℓ: in fact, yℓ = (xℓ+2yℓ)− (xℓ+ yℓ)
and xℓ = 2(xℓ+ yℓ)− (xℓ+2yℓ) .
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Lemma 8.2. Take d = 67. For m,h = 1,2,3 . . . , it holds that
y2m·h = 2m xh yh ·∏0<i<m x2i·h .

In particular, we have
y2m = 2m+1 ·33 ·13︸ ︷︷ ︸

351

·17 ·24421 ·∏0<i<m x2i .

Proof. The claim is proved by induction on m : it readily follows from
Lemma 8.1 when m = 1 ; moreover, when m = k+2 , Lemma 8.1 together with
the induction hypothesis yields that

y2m·h = y2k+2·h = 2x2k+1·h y2k+1·h = 2k+2 xh yh ·∏0<i⩽k+1 x2i·h

= 2m xh yh ·∏0<i<m x2i·h . ⊣⊣⊣

Note that the recursive rule for calculating the yk’s yields, since y1 = 351 ·17,
that 351 | yk for every k .

Lemma 8.3. Take d = 67. If yn/351 is representable, where n = 2m ·h, h is odd,
and m > 0, then yh/351 is representable.

Proof. By way of contradiction, suppose that n = 2m · h, h is odd, m > 0, but
an inert prime p exists dividing yh/351 to an odd power. Since h is odd, yh is
odd and p ̸= 2. We know from Lemma 8.1 that x2i·h is representable for each
i > 0: in fact x2i·h can be written in the form u2 + 67v2 , hence it can also be
written as (u− v)2 + (u− v)(2v) + 17(2v)2, and hence it has the norm form
pertaining to d = 67 . Therefore p divides x2i·h to an even power (perhaps 0),
for i = 1, . . . ,m− 1 . In addition we have p ∤ 2m; moreover, p ∤ xh, because
xh ⊥ yh. So we finally use Lemma 8.2 to prove that p divides yn/351 to an odd
power, thus getting the sought contradiction. ⊣⊣⊣

Here is the above-announced key statement:

Theorem 6. Take d = 67. If yn/351 is representable (in the norm form w2 +
wt +17 t2) for some n > 0 not a power of 2, then the constraint system

X2 − 67 ·3512 · Y 2 = 1 ,
X + 17 ·132· Y = r2 + r s+17 s2 ,

17 ·X + 67 ·36 · Y = v2 + vu+17 u2 ,
Y > 0

has a solution X ,Y , r̄, s̄, v̄, ū in Z such that either r̄ ̸= ±1 or s̄ ̸= 0 holds and,
moreover, 351 · (X +17 ·132 ·Y ) · (17 ·X +67 ·36 ·Y ) | yn .

Proof. Suppose n = 2m(2ℓ+ 1), with ℓ > 0, be such that yn/351 is repre-
sentable. Put h = 2ℓ+ 1. The preceding two lemmas yield—since plainly xh
is even—that y2m·h, and hence 2m · h, must be even, m must be positive, and
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y2ℓ+1/351 representable; therefore, xℓ+ 17 · 132 · yℓ
351 and 17 · xℓ+ 67 · 36 · yℓ

351
are also representable. By setting X = xℓ and Y = yℓ

351 , we hence have numbers
r̄, s̄, v̄, ū that satisfy the system appearing in the claim.

It is untenable that r̄ =±1 & s̄ = 0 , because this would imply xℓ+17 ·132 ·
yℓ

351 = 1 , contradicting xℓ > yℓ ⩾ 5967 = 351 ·17 .
Lemma 8.2 tells us that yh | y2m·h; which, in the present context, reads:

351(X +17 ·132 ·Y )(17X +67 ·36 ·Y ) = (27xℓ+221yℓ)(221xℓ+27 ·67 ·yℓ) =
y2ℓ+1 | yn . ⊣⊣⊣

Corollary 1. Under the hypothesis of Thm. 6, the equation

67 ·36 ·
(
r2 + r s +17s2

)2 −132 ·
(
v2 + vu+17u2

)2
= 2 (§)

has a solution r̄ , s̄ , v̄ , ū such that either r̄ ̸= ±1 or s̄ ̸= 0 holds and, moreover,
351 · (r̄2 + r̄ s̄+17 s̄2) · (v̄2 + v̄ ū+17 ū2) | yn .

Proof. Indeed, by solving the system of constraints of Thm. 6 in the manner
discussed there, we will have

67 ·36 ·
(

r̄2 + r̄ s̄+17 s̄2
)2 −132 ·

(
v̄2 + v̄ ū+17 ū2

)2

= 67 ·36 ·
(
X +17 ·132 ·Y

)2 −132 ·
(
17 ·X +67 ·36 ·Y

)2

= 67 ·36 ·
(
X2 +2 ·17 ·132 ·X ·Y +172 ·134 ·Y 2

)
−132 ·

(
172 ·X2 +2 ·17 ·67 ·36 ·X ·Y +672 ·312 ·Y 2

)
= 2 ·

[
X2 −67 · (351 ·Y )2

]
= 2 ,

where the non-triviality condition r̄ ̸= ±1 ∨ s̄ ̸= 0 , along with the divisibility
constraint stated in the claim, are satisfied. ⊣⊣⊣

8.4. Is { ỹyy22ℓ+1(67)/351 : ℓ= 0,1,2, . . .} a Diophantine set?

We continue to refer to the Heegner number 67. Let H be the assertion:

The equation (§) admits, altogether, finitely many solutions in integers.

Then, by combining Cor. 1 with the preparatory statement that y2m/351 is
representable if and only if m is odd (a fact easily obtainable from the ending
remark in the claim of Lemma 8.2, taking into account that 2 is an inert prime
while the prime numbers 17 and 24421 = 364 ·67+33 are not inert18), we get:

Lemma 8.4. H implies that {y22ℓ+1/351:ℓ⩾ 0} admits a polynomial Diophan-
tine representation.

18The claim that we have emphasized inside the proof of Lemma 8.3 also plays a role here.
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Proof. We know from Cor. 1 that if yn/351 is representable for some n > 1 not
a power of 2, hence of the form n = 2m (2ℓ+1) with m ⩾ 0 and ℓ > 0, then the
equation (§) has a non-trivial integer solution r̄, s̄, v̄, ū such that 351 · (r̄2 + r̄ s̄+
17 s̄2) · (v̄2 + v̄ ū+17 ū2) | yn .

This, along with the preparatory statement, yields the following sufficient
conditions for the property

y ∈ {y22ℓ+1/351: ℓ⩾ 0} (1)
to hold for y:

(i) y = yn/351, for some n > 1;

(ii) y is representable in the form w2 ±wt +17 t2 with w, t ∈ N;

(iii) (r̄2+ r̄ s̄+17 s̄2) · (v̄2+ v̄ ū+17 ū2) ∤ y, for any solution r̄, s̄, v̄, ū to (§) such
that r̄ ̸=±1 ∨ s̄ ̸= 0 .

Here are existential Diophantine definitions, in N, of the first two of these:

(i) 67(351 y)2 +1 =2 & y > 17 (since 17 = y1/351);

(ii) ∃w∃ t
[(

y− (w2 +17 t2)
)2

= w2 t2
]

.

Moreover, if (§) admits only finitely many solutions, then also (iii) admits an
existential Diophantine definition. Indeed, let ⟨r1,s1,v1,u1⟩ , . . . , ⟨rκ ,sκ ,vκ ,uκ⟩
be all of the non-trivial solutions to (§) such that si,ui ∈ N and ri,vi ∈ Z for each
i. Then (iii) is easily seen to be statable over N as

(∃q1, . . . ,qκ , g1, . . . ,gκ , z1, . . . ,zκ)

&
κ

i=1

[
y =

(
r2

i + ri si +17 s2
i
) (

v2
i + vi ui +17 u2

i
)

qi +gi +1 &

gi + zi +2 =
(
r2

i + ri si +17 s2
i
) (

v2
i + vi ui +17 u2

i
)]

.

In order to complete the proof that the property (1) is Diophantine when (§)
admits only finitely many solutions, it only remains to be shown that (i)–(iii)
also are necessary conditions for (1) to hold. This will result in a polynomial
Diophantine representation of the property y ∈ {y22ℓ+1/351 : ℓ⩾ 0}, if the num-
ber of solutions to the equation (§) is finite ! (An issue that we are unable to
answer.)

Let, hence, y = y22ℓ+1/351 hold for some ℓ⩾ 0. Obviously (i) holds and, by
the preparatory statement made in front of the present lemma, (ii) holds as well.

Towards a contradiction, suppose that we have

351
(
r̄2 + r̄ s̄ +17 s̄2) (v̄2 + v̄ ū+17 ū2) | y22ℓ+1 (2)
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for some non-trivial solution r̄, s̄, v̄, ū of (§), thus such that

67 ·36 ·
(
r̄2 + r̄ s̄ +17 s̄2)2 −132 (v̄2 + v̄ ū+17 ū2)2

= 2 . (3)

Now consider the system{
33 ·X + 13 ·17 ·Y = 33 ·

(
r̄2 + r̄ s̄ +17 s̄2

)
,

13 ·17 ·X + 33 ·67 ·Y = 13 ·
(
v̄2 + v̄ ū+17 ū2

)
,

(4)

whose solution is{
X = 1

2

[
67 ·36 ·

(
r̄2 + r̄ s̄+17 s̄2

)
−132 ·17 ·

(
v̄2 + v̄ ū+17 ū2

)]
,

Y = 1
2

[
33 ·13 ·

(
v̄2 + v̄ ū+17 ū2

)
−33 ·13 ·17 ·

(
r̄2 + r̄ s̄ +17 s̄2

)]
.

From (3), r̄2+ r̄ s̄ +17 s̄2 and v̄2+ v̄ ū+17 ū2 have the same parity; therefore,
the easily checked fact that each non-trivial integer solution r̄, s̄, v̄, ū to (3)—
alias (§)—satisfies 132 · 172 · (r̄2 + r̄ s̄+ 17 s̄2) < 132 · 17 · (v̄2 + v̄ ū+ 17 ū2) <
67 ·36 · (r̄2 + r̄ s̄+17 s̄2) entails that X and Y are positive integers.

From (4) and (3) we get 67 ·36 ·
(
X + 13·17

33 Y
)2−132 ·

(
17X + 67·33

13 Y
)2

= 2,

which simplifies into X2 − 67Y 2 = 1. Since Y ̸= 0, the latter equation yields
X = xḡ and Y = yḡ, for some ḡ⩾ 1. Therefore, from (4) and (2) we get 351 ·

(
xḡ+

13 ·17 · yḡ
33

)
·
(
17xḡ+67 ·33 · yḡ

13

)
| y22ℓ+1 , i.e.,

(
27xḡ+221yḡ

)(
221xḡ+27 ·67yḡ

)
|

y22ℓ+1 , i.e., y2 ḡ+1 | y22ℓ+1 ; this in turn yields 2 ḡ+1 | 22ℓ+1, a contradiction. ⊣⊣⊣

Corollary 2. H implies that the relation M67 (p , q), as defined on p. 604, ad-
mits a polynomial Diophantine representation.

Proof sketch. In close analogy with the treatment of the Heegner number 3 as
provided in [4], it can be shown that

M67 (u , v) ⇐⇒
[

v ∈ {y22ℓ+1/351: ℓ > 12}
]

& ∃x
[
(2x+1) ·u = v

]
is a polynomial Diophantine representation of M67 . A salient remark is that,
when b ̸= 0, the condition ∃x

[
(2x+ 1) · a = b

]
means “a | b and a is divisible

by any power of 2 that divides b”; thus, since 22ℓ+2 is the largest power of 2
dividing y22ℓ+1 , in the case at hand ∃x

[
(2x+1) ·u = v

]
amounts to u | v & u ⩾

22ℓ+2 . ⊣⊣⊣

Also the proof that M67 satisfies the exponential-growth criteria that are
recalled in the Introduction parallels the treatment of the Heegner number 3 as
provided in [4].
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8.5. Md conforms to property (‡): proofs for two emblematic cases

As announced in the lines that precede Sec. 8.1, Matiyasevich’s property (‡)
(see p. 602) is satisfied by each Md with d ∈ {2,3,7,11,19,43,67,163}. The
proofs are akin to one another for all d’s, just slightly simpler when d ∈ {2,7}.
To illustrate how they proceed, let us again choose d = 67 as our representative
case study. We will take the following two facts for granted, one of which is
already entered in the proof that M67 has exponential growth, while the other is
proved as [4, Lemma 6.9]:

Fact 1. For n > 1, it holds that 48842n−1 < yn .

Fact 2. For every real number x ⩾ 1, some positive even integer lies in the open
interval Ix:= ]1+ log2(1+ x) , 5+2log2 x [ .

Theorem 7. Take d = 67. Let α = 488424 , β = 2 , γ = 27 , and δ = 488423 .
Then, to each positive integer w there correspond non-negative integers u,v such
that

Md (u , v) & u < γ wβ & v > δ α
w .

Proof. Recalling that

M67 (u , v) := ∃ℓ
[
ℓ > 12 & v = y22ℓ+1/351 & u | v & u ⩾ 22ℓ+2

]
,

in order to prove the claim it suffices to show that, for each w ⩾ 1, there is an
integer ℓ > 12 such that

22ℓ+2 < γ wβ & y22ℓ+1 > δ α
w .

Note that Fact 1 yields y22ℓ+1 ⩾ 4884222ℓ+1−1, for every ℓ ∈ N. Our task,
hence, further reduces to proving that, for each w ⩾ 1, there is an ℓ > 12 such
that

22ℓ+2 < γ wβ & 4884222ℓ+1−1 > δ α
w ,

namely,

22ℓ+2 < 27 w2 & 4884222ℓ+1−1 > 488423 ·488424w ,

i.e.,
22ℓ < 25 w2 & 4884222ℓ+1

> 488424 ·488424w . (5)

For w ⩾ 1, (5) amounts to

2ℓ < 5+2 log2 w & 22ℓ+1 > 4+4w . (6)
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In turn, 22ℓ+1 > 4+4w amounts to
2ℓ > 1+ log2(1+w) ,

and hence (6) is equivalent to

1+ log2(1+w)< 2ℓ < 5+2 log2 w . (7)

Summing up, to get the desired claim it suffices to show that, for every w ⩾ 1,
there is an ℓ ∈ N satisfying (7). But this readily follows from Fact 2. ⊣⊣⊣

Remark 4. We have selected d = 67 as our primary case study in this section,
because this case is comparatively challenging; however, we wish to highlight
the modifications needed in the proof of Thm.7 to establish the analogous state-
ment for the Heegner number d = 2. ⊣⊣⊣

Theorem 8. Take d = 2. Let α = 3 , β = 2 , γ = 26 , and δ = 1 . Then, to each
positive integer w there correspond non-negative integers u,v such that

Md (u , v) & u < γ wβ & v > δ α
w .

Proof sketch. Now we must refer to the definition:

M2 (u , v) := ∃ℓ
[
ℓ > 4 & v = y2ℓ & u | v & u ⩾ 2ℓ+1

]
.

Our previous formulations of Fact 1 can be superseded by the following:

• For every positive integer n, it holds that 3n−1 < yn (whence y2ℓ ⩾ 32ℓ−1).

Our goal becomes the one of proving, for each w ⩾ 1, the existence of an
ℓ > 4 such that either the condition

2ℓ+1 < γ wβ & y2ℓ > δ α
w ,

or the stronger condition
2ℓ+1 < γ wβ & 32ℓ−1 > δ αw ,

holds. The latter condition, namely 2ℓ+1 < 26 w2 & 32ℓ−1 > 3w , gets rewritten
as 2ℓ < 25 w2 & 32ℓ > 3w+1 , then as ℓ < 5+2 log2 w & 2ℓ > 1+w , and then
as log2(1+w)< ℓ < 5+2 log2 w . Fact 2 ensures the existence of such an ℓ . ⊣⊣⊣

8.6. Discovering solutions to 2 ·
(
r2 +2 s2)2 −

(
u2 +2 v2)2

= 1

The surmise that each r.e. set admits a singlefold polynomial Diophantine rep-
resentation was made by Yuri Matiyasevich in 1974, inside the paper where he
first proved the singlefold exponential Diophantine representability of any r.e.
set (cf. [25, p.301]). It appears promising—yet tantalizing—that the truth of the
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weaker conjecture that each r.e. set admits a finitefold polynomial Diophantine
representation could be established by just proving that a single fourth-degree
Diophantine equation has only a finite number of integer solutions. No algo-
rithm can tell us, for any given Diophantine equation, whether the set of its
integer solutions is finite or infinite (cf. [9]);19 nevertheless, the structure of our
eight candidate rule-them-all equations is so simple that we may hope that the
finitefold-ness of at least one of them will come to light.20

For quite a while the authors hoped that Matiyasevich’s surmise could be
established by just proving that ⟨r̄, s̄, ū, v̄⟩ = ⟨1,0,1,0⟩ is the sole solution, in
N, to the quaternary quartic 2 ·

(
r2 +2 s2

)2 −
(
u2 +2 v2

)2
= 1 corresponding

to the Heegner number d = 2 . In order to detect a non-trivial solution (if any)
to this equation, let us associate the equation

2A2 −B2 = 1 (8)

in the unknowns A and B with it. The solutions to this Pell-like equation in N
form the sequence ⟨A0,B0⟩ ,⟨A1,B1⟩ ,⟨A2,B2⟩ , . . . , where

A0 = B0 = 1 and An+1 = 3An +2Bn , Bn+1 = 4An +3Bn , (9)

for all n ∈ N . Our goal here is to find an integer n > 0 such that both of An and
Bn are representable in the form w2 +2 t2 . We will try to achieve this by means
of the method devised by Shanks and Wagstaff [34].

The recurrence formula (9) gives us: A1 = 5 , B1 = 7 , A2 = 29 , B2 =
41 , A3 = 169 , B3 = 239 , etc. We are less interested in the explicit values of
An , Bn than in their residue classes modulo 8; hence we form the table

n 1 2 3 4 5 6 7 8 . . .

An 5 5 1 1 5 5 1 1 . . .

Bn 7 1 7 1 7 1 7 1 . . . ,

19Given an arbitrary instance P = 0 of Hilbert’s 10th problem and a variable x0 not occurring in
P , the equation x0 ·P= 0 will have infinitely many integer solutions if and only if the equation P=
0 has at least one integer solution. Being able to determine, for any given Diophantine equation
Q = 0, whether or not it is finitefold, would hence enable one to solve Hilbert’s 10th problem.
This would contradict the today known undecidability of the latter problem (cf. [10, 11]).

20Non-trivial solutions (finitely many, so far) to the quaternary quartics associated with the
Heegner numbers 3,7, and 11 were discovered years ago, as reported in [4, p. 530 and p. 538].
Non-trivial solutions corresponding to the Heegner number 43 were also detected, one of them
(jointly found by L. Cuzziol and P. Campochiaro) being

r = 2644220400, s = −305590179873,
v = 2488975045142, u = 134875386175 .
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namely:
An ≡ 5 mod 8 if n ≡ 1,2 mod 4 ,
An ≡ 1 mod 8 if n ≡ 3,0 mod 4 ,
Bn ≡ 7 mod 8 if n is odd ,
Bn ≡ 1 mod 8 if n is even .

In view of the information about representability in Z
[√

−2
]
, as provided

in Sec. 8.1 (see, in particular, Example 1), we only need to survey those pairs
An,Bn whose subscript n is a multiple of 4. In particular:21

5∥A4 = 985 = 5 ·197 , where 5 is inert, and so A4 is not representable;

103∥B8 = 103 ·15607 , where 103 is inert, and so B8 is not representable;

29∥A12 = 29 · 1549 · 29201 , where 29 ≡ 5 mod 8, hence A12 is not repre-
sentable;

5∥A16 = 5 ·5741 ·52734529 , and hence A16 is not representable;

302633∥B20 = 2297 ·302663 ·3553471 , where 302633≡ 7 mod 8, hence B20
is not representable; and so on.

This empirical approach to finding a pair ⟨An,Bn⟩ of numbers, both repre-
sentable, that solves (8) fails for each n ∈ {4,8,12,16, . . . ,100}; yet it cannot be
excluded that a larger n—even, maybe, infinitely many n’s—would work.

As a matter of fact, readily after [3] was published on arXiv, two scholars
sent us kind communications that they had found useful solutions to (8). On
March 9, 2023, Evan O’Dorney (University of Notre Dame) sent us a Sage pro-
gram by means of which he had located two non-trivial solutions corresponding
to the Pell pairs ⟨A128,B128⟩ and ⟨A140,B140⟩ . Independently of him, the next
day Bogdan Grechuk (University of Leicester) sent us explicit values of three
non-trivial solutions to 2 ·

(
r2 +2 s2

)2 −
(
u2 +2 v2

)2
= 1, the first of which is:

r1 = 8778587058534206806292620008143660818426865514367,
s1 = 1797139324882565197548134105090153037130149943440,
u1 = 5221618295817678692343699483662704959631052331713,
v1 = 6739958317343073985310999451965479560858521871624;

the components of the third solution—associated with the companion Pell num-
bers A486,B486—are numbers of roughly 180 decimal digits each (see [3, p.10]).

It must be mentioned that Apoloniusz Tyszka radically disbelieves Matiya-
sevich’s finitefold representability conjecture22 that has been, throughout, (and
firmly remains) our polar star.

21By pk∥m , where p is a prime number and k,m∈N , one states that pk | m & pk+1 ∤ m .
22See, among many, https://arxiv.org/abs/0901.2093. In [37], A. Tyszka advances a

https://arxiv.org/abs/0901.2093
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9. Concluding remarks

One of the questions Yu. Matiyasevich raised, at the outset of his seminal paper
[24] on the Diophantine singlefold representability issue, was:∥∥∥∥∥∥∥∥∥∥∥∥∥

Suppose a proof is available that each

Da(x1, . . . ,xκ) = 0 , a ∈ N ,

in some indexed family of equations has at most one solution in
N . Can we extract from it an effective bound Ca ensuring, when
x1 = vvv1 , . . . , xκ = vvvκ is such solution, that vvv1, . . . ,vvvκ ⩽ Ca ?
As we recalled and explained in the conclusions of [1], his answer was neg-

ative in general, assuming the signature underlying the Da’s comprises exponen-
tiation. Matiyasevich calls “noneffectivizable estimates” [25, 27] this and more
general limiting results that follow from the univocal representability, in terms
of exponentiation, of any r.e. set. Analogous limiting results about polynomial
Diophantine equations would follow if it turned out that any r.e. set admits a
finitefold representation in merely polynomial terms. Can such a representa-
tion be found? The entire paper has revolved around this question, to whose
hoped-for positive answer the material outlined in Sec. 8 might prove useful.

Matiyasevich also discussed in [20] (see [1, pp. 151–152] for a quick ac-
count) intriguing consequences that establishing the finitefold Diophantine rep-
resentability of any r.e. set would entail about the Diophantine characterization
of the probability of selecting by chance a program that terminates on every
input.

This paper, which merges and extends [2, 3], is a companion to [1]. Two
differences with respect to [1] are: • In accordance with the historical path
[13, 24], great emphasis is placed on the kinship between exponentiation and
bounded universal quantification. • Novel candidate rule-them-all equations
have come into play.
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conjecture that, if true, would falsify Matiyasevich’s finitefold representability conjecture. As
pointed out in [36, p. 711], even [11, p. 360] suggests a possibility that “would eliminate the
possibility of singlefold definitions for all Diophantine sets”.
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