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ON THE FORMULATION OF EXTENDED
THERMODYNAMICS IN THE CASE OF FRACTIONAL

EXCLUSION STATISTICS.

M. TROVATO - E. DI STEFANO

We consider the non-equilibrium theory for the fractional exclusion
statistics (FES) by using the Maximum Entropy Principle and the Entropy
Principle. The entropy balance equation is determined and the statistical
consequence of theory are discussed. Both the entropy and its flux are
computed explicitly in terms of the non-equilibrium Lagrange multipliers
while, by using a general expression for the energy dispersion relation,
some thermodynamic properties connected with the convexity conditions
of the entropy are explicitly analyzed. Finally, for an ideal gas subject to
FES, the construction of an arbitrary set of closed hydrodynamic equa-
tions, in the context of Extended Thermodynamics, is briefly illustrated.

1. Introduction

It is well known that fermions and bosons can exist in all dimensions, while
some low-dimensional systems exhibit elementary excitations that obey quan-
tum statistics that interpolate the behavior of fermions and bosons. In particular,
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the concept of anyons [1, 2] is specific to two dimensions (D=2) being connected
to the braid group structure of particle trajectories [1, 2], and the fractional
statistics are described by means of a phase factor that describes the particle
exchange procedure [2]. A different notion of fractional statistics was intro-
duced by Haldane [3] without specific reference to spatial dimensions. Quasi-
particles that obey the fractional exclusion statistics (FES) are called exclusons.
Therefore, Haldane’s approach was developed using an arbitrary dimension of
a Hilbert space and by introducing a statistics (for a single species) parameter
κ = δG/δN, where δG describes the change in size of the subset of available
single-particle states corresponding to a variation of δN particles. It is known
that FES is, in general, different from anyon statistics. Indeed, the exclusion
statistics is assigned to elementary excitations of condensed-matter systems,
which are not necessarily connected with braiding considerations [3, 4]. How-
ever, there are some systems where a thermodynamics coincidence of the two
statistics has been shown [3, 5–8]. Many thermodynamic properties of an ideal
gas of exclusons have been studied in literature under equilibrium conditions
[9–18] and in particular the expressions for the distribution function have been
determined using the Maximum Entropy Principle (MEP) both in the framework
of a semiclassical local theory [9] than of a non-local quantum Wigner theory
(Quantum MEP) [19].
The aim of this work is to develop and apply a general theory for the fractional
exclusion statistics in non-equilibrium conditions by connecting the theory, in
a semiclassical framework, with the Boltzmann transport equation (BTE) and
with the method of moments, in terms of the Lagrange multipliers. For this
purpose we include, in the non-equilibrium collisional production of BTE, the
terms describing the effect of the fractional exclusion statistics on the accessibil-
ity of the final states reached during collisional processes. The entropy balance
equation is determined and the H-Theorem is discussed. Both the entropy and
its flux are computed explicitly in terms of the non-equilibrium Lagrange mul-
tipliers while, by using a general expression for the energy dispersion relation,
some thermodynamic relations for the system are determined, by discussing
the general conditions for entropy convexity under local equilibrium conditions.
Finally, the possible construction of an arbitrary set of closed hydrodynamic
equations, in the context of Extended Thermodynamics, is briefly indicated.

2. General theory

We can evaluate the entropy S, for a noninteracting system under nonequilib-
rium conditions, using the celebrated equation S = kB lnΓ, were kB the Boltz-
mann constant and Γ is the number of microscopic states compatible with the
macroscopic state of the system.
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2.1. FES and the non-equilibrium MEP

To take into account ab initio the FES, Wu [9] proposed, an interpolation for-
mula to describe the entropy in equilibrium conditions. Using this approach, in
non-equilibrium conditions and in the continuous case, the entropy density can
be expressed in the following form

S(r, t) =
∫

h(F)dD p (1)

being

h(F) = kB y
{[

1+(1−κ)
F
y

]
ln
[

1+(1−κ)
F
y

]
−[

1−κ
F
y

]
ln
[

1−κ
F
y

]
− F

y
ln
[
F
y

]}
(2)

where the constant y = gs/(2πℏ)D (being gs the spin degeneracy) and κ ∈ [0,1]
is the statistical parameter that for κ = 0,1 corresponds to Bosons and for
Fermions, respectively [9]. Accordingly, we search the non-equilibrium dis-
tribution function that maximizes S under the constraints that the expectation
values for some set of macroscopic variables (moments of distribution function)
can be expressed by means of the relations

FA =
∫

ψA(p)F(p,r, t)dD p , A = 1, . . .N (3)

being {ψA(p)} a suitable set of kinetic fields corresponding to the macroscopic
moments (3). The method of Lagrange multipliers [20–27] proves to be the most
efficient technique to include the constraints and solve this variational problem.
A short calculation yields the relation

y
F

[
1−κ

F
y

]κ [
1+(1−κ)

F
y

]1−κ

= ξ = eΠ (4)

and, consequently, to the nonequilibrium FES distribution function

F =
y

W(eΠ)+κ
with Π =

1
kB

N

∑
A=1

ΛA ψA (5)

where the function W(ξ ) satisfies the usual functional equation

[W(ξ )]κ [W(ξ )+1]1−κ = ξ (6)

and ΛA are the Lagrange multipliers to be determined.
Obviously, from equation (6) for κ = 0 we obtain W(ξ ) = ξ −1 while for κ = 1
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we have W(ξ ) = ξ and consequently the two distribution functions for Bosons
and Fermions respectively (which in the case ξ = eΠ >> 1 trivially converge to
the usual non-equilibrium Boltzman distribution function F = ye−Π).
We remark that, in general, the following set of kinetic fields can be considered

ψA = {ε
s, ε

sui1 , ε
sui1 ui2 , . . . , ε

sui1 ui2 · · ·uir} (7)

where ε is the microscopic energy and ui is the group velocity, with s= 0,1, . . .N
and r = 0,1, . . .M. Accordingly, it is possible to consider the general expression
for the dispersion relation and for the group velocity

ε = a pσ , ui =
∂ε

∂ pi
= aσ pσ−2 pi (8)

where a is a constant, σ an integer 1 and p is the momentum of single particle.
Finally, it is noteworthy that, only for σ = 2 it is possible to decompose the
moments (3) into their objective and convective parts by considering, as in the
usual gasdynamics, only the objective parts as constraints in the maximization
procedure of entropy [20, 21, 23, 24]. On the contrary, for an arbitrary value
of σ only the general moments FA can be considered as constraints in the MEP
approach.
The quantities (5)2 can be written explicitly by decomposing the Lagrange mul-
tipliers into a local equilibrium part ΠE = α +β ε and nonequilibrium part Π̂,

being Π = ΠE + Π̂ where α and β are the Lagrange multipliers of local equi-
librium, whereas Λ̂A denote the nonequilibrium contributions of ΛA. In this way we
re-obtain the results of local equilibrium [9] for the FES being

F|E =
y

W(eα+β ε)+κ
with [W(ξE)]

κ [W(ξE)+1]1−κ = ξE = eα+β ε . (9)

Analogously, we can calculate the variables of local equilibrium

n =
∫

F|E dD p , and W =
∫

ε F|E dD p . (10)

Consequently, if we assume the usual relation β = (kBT )−1, using (9) we obtain

n =
T D/σ

γ
I2D/σ−1(α), W = nkB T

I2D/σ+1(α)

I2D/σ−1(α)
(11)

where

1
γ
=

4
σ

πD/2

Γ(D/2)

(
kB

a

)D/σ gs

(2πℏ)D , In(α) =
∫ +∞

0

xn

W(ex2+α)+κ
dx (12)

1In literature [17] the case σ = 2 is called non-relativistic, while the case σ = 1 is called
ultrarelativistic (in particular, for D = 2 we have exactly the dispersion relation of hot carriers in
Graphene, being a = νF the Fermi velocity [28, 29])
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being In(α) the usual FES integral functions that satisfy the following differentiation
property with the recurrence relation

∂ r In(α)

∂ αr = (−1)r Γ
( n+1

2

)
Γ
( n+1

2 − r
) In−2r(α) (13)

where, the recurrence relation (13) cannot be necessarily restricted to positive values of
n, and for κ = 0,1 these integral functions allow us to reobtain the standard expression
for the Bose and Fermi integral functions [20, 21, 23, 24].

2.2. FES and non-equilibrium Entropy Principle (EP)
We consider at a kinetic level the microscopic description governed by the Boltzmann
transport equation (BTE) for the distribution function F(r,p, t)

∂ F
∂ t

+ui
∂ F
∂ xi

+Fi
∂ F
∂ pi

= Q(F) (14)

where the right-hand side of the above equation describes the collisional processes the
gas particles are subjected to, and the Fi = ṗi are the components of the resultant of the
specific external forces. The collisional term Q(F) depends on the particular kind of
active scattering processes. In this case, we shall consider only the case in which the
relaxation towards thermodynamics equilibrium is brought about by the mutual colli-
sions of the gas particles. Thus, if we denote with p and p∗ the momentum before the
collision and with p′ and p′

∗ the new momentum after the collision then, as usual, F∗,
F ′ and F ′

∗ denote the values of the function F(r,p, t) when p is replaced by p∗, p′ and
p′
∗ respectively. Thus for ideal gases, with no inner degrees of freedom, we can write

Q(F) in general form

Q(F) =
∫ ∫ ∫

dD p∗ dD p′ dD p′∗ W(p′,p′
∗;p,p∗)×[

F ′F ′
∗G(F)G(F∗)−FF∗G(F ′)G(F ′

∗)
]

(15)

where W(p′,p′
∗;p,p∗) describes intrinsically the particle collisions in terms of the un-

derlying interaction potential between them, with the symmetries property [23, 30]

W(p′,p′
∗;p,p∗) = W(p′

∗,p
′;p∗,p) = W(p∗,p;p′

∗,p
′) = W(p,p∗;p′,p′

∗) (16)

while the functions G(F), G(F∗), G(F ′), and G(F ′
∗) describe the effect of FES on the

accessibility of the final states reached during collisional processes. To determine these
functions we assume that, if the MEP is valid for the physical system considered, then as
a direct consequence, an Entropy Principle (EP) must also be verified (H-theorem [23])
. Therefore, when the collisions are treated statistically by means of BTE, then the
total entropy of the system cannot be reduced, and, consequently, the non-equilibrium
production of entropy must always be non-negative. In other words, if the distribution
function, describing an ideal gas of exclusons, solves the entropy maximization of the
system under the moments constraint (3), then it is natural to expect that the entropy is
an increasing function along the trajectories, and that the collisions cannot reduce the
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total entropy.
Thus, multiplying Eq.(14) by the kinetic quantity ψ(r,p, t) = h(F)/F and integrating
in momentum space we obtain the general balance equation of entropy

∂S
∂ t

+
∂ϕk

∂xk
= Ps , (17)

where ϕk and Ps are, respectively, the entropy flux and the entropy production due to
collisions, defined as

ϕk =
∫

h(F)uk dD p , Ps =
∫

Φ(F) Q(F) dD p with Φ(F) = h′(F). (18)

In particular, by considering for the collisional term Q(F) the expression (15) and by
using the symmetry properties (16), we can write Eq. (18)2 in the form

Ps =
1
4

∫ ∫ ∫ ∫
dD pdD p∗ dD p′ dD p′∗

[
Φ(F)+Φ(F∗)−Φ(F ′)−Φ(F ′

∗)
]
×

W (p′,p′
∗;p,p∗)

[
F ′F ′

∗G(F)G(F∗)−FF∗G(F ′)G(F ′
∗)
]

and, by using the relations (2), (4) and (18)3 we obtain

Ps =
kB

4

∫ ∫ ∫ ∫
dD pdD p∗ dD p′ dD p′∗W (p′,p′

∗;p,p∗)×

ln

FF∗
(
F ′ eΠ′

/y
)(

F ′
∗ eΠ′

∗/y
)

F ′F ′
∗ (F eΠ/y)(F∗ eΠ∗/y)

 [
FF∗G(F ′)G(F ′

∗)−F ′F ′
∗G(F)G(F∗)

]
therefore to obtain a non-negative production of entropy it is sufficient to define

G(F) =
F
y

eΠ =
eΠ

W(eΠ)+κ
with Π =

1
kB

N

∑
A=1

ΛA ψA (19)

by rewriting Ps in the usual form [23]

Ps =
kB

4

∫ ∫ ∫ ∫
dD pdD p∗dD p′dD p′∗ W (p′,p′

∗;p,p∗)

{
ln
(

K
H

)
(K −H)

}
where the functions K and H are expressed by the quantities K = FF∗

(
F ′/yeΠ′)(

F ′
∗/yeΠ′∗

)
and H =F ′F ′

∗
(
F/yeΠ

)(
F∗/yeΠ∗

)
. In this way being W (p′,p′

∗;p,p∗)≥ 0
and analogously ln(K/H)(K −H)≥ 0, we obtain

Ps ≥ 0 ,

besides, using Eq. (19), if we assume the conservation of energy ε + ε∗ = ε ′+ ε ′∗, then
the collisional term (15) vanishes in equilibrium conditions, since F ′F ′

∗G(F)G(F∗)−
FF∗G(F ′)G(F ′

∗)|E = 0. Analogously, using the relation (19) with κ = 0,1 we reobtain
the usual terms introduced to describe the accessibility of the final states, reached during
the non-equilibrium collisional processes, for Bosons and Fermions respectively [23,
31, 32], being

G(F) =
eΠ

W(eΠ)+κ
=

 1+FB/y κ = 0 (Bose)

1−FF/y κ = 1 (Fermi)
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2.3. Entropy, Entropy flux and convexity conditions
From the entropy maximization procedure described in section (2.1) we can derive the
following relation

ln
[
F
y

]
−κ ln

[
1−κ

F
y

]
− (1−κ) ln

[
1+(1−κ)

F
y

]
=− 1

kB

N

∑
A=1

ΛA ψA (20)

if we insert this relation into eqs.(1),(2) and (18)1, then using the divergence theorem
and imposing that on the asymptotic surface for p →+∞ the distribution function van-
ishes, after some calculations, we can explicitly obtain, in the framework of FES, the
following exact expressions for entropy and for the entropy flux

S(r, t) =
N

∑
A=1

ΛA

∫
ψA F dD p+

1
D

N

∑
A=1

ΛA

∫
pk

∂ΨA

∂ pk
F dD p

ϕk(r, t) =
N

∑
A=1

ΛA

∫
ψA uk F dD p+

N

∑
A=1

ΛA

∫
ε

∂ΨA

∂ pk
F dD p .

In particular, it is easy to verify that in local equilibrium conditions (i.e. when we
consider only the local equilibrium Lagrange multipliers α and β and the kinetic fields
ψA = {1, ε}) and considering the general relations (8), we obtain

S̃(r, t)|E =
S(r, t)|E

kB
= α n+

D+σ

D
β W, ϕk(r, t)|E = 0. (21)

Analogously, using the usual relation β = (kBT )−1, we can introduce the quantities

z =
n

T D/σ
, F(z) =

σ

D
kB z

I2D/σ+1

I2D/σ−1
, (22)

and, in substitution of relations (11) we obtain

z =
1
γ

I2D/σ−1(α), W =
D
σ

T D/σ+1 F(z), with α = α(z), (23)

with the differential relations of local equilibrium

∂α

∂n
=−1

n
σ

D−σ

I2D/σ−1

I2D/σ−3
,

∂α

∂T
=

D
D−σ

1
T

I2D/σ−1

I2D/σ−3
, (24)

∂W
∂n

=
D

D−σ
kB T

I2D/σ−1

I2D/σ−3
,

∂W
∂T

=
D+σ

σ

W
T

− D2/σ

D−σ
kB n

I2D/σ−1

I2D/σ−3
(25)

α
′(z) =− σ

D−σ

1
z

I2D/σ−1

I2D/σ−3
, F ′(z) =

σ

D−σ
kB

I2D/σ−1

I2D/σ−3
, (26)

In general, by introducing the entropy density, we assume that the function −S is a
strictly convex function with respect to the variables on which it depends 2 [20, 21,

2Usually in Extended Thermodynamics (σ = 2 and a = 1/2m) entropy depends only on ob-
jective moments, so the entropy at equilibrium can only depend on the density n and the pressure



512 M. TROVATO - E. DI STEFANO

24, 33]. In particular, in the equilibrium state we assume that the matrix of the second
derivatives of −S̃E with respect to FA = {n,W} must be positive definite. Thus, using
eq.(21)1 and the differential relations (22)-(26), after some calculations, we obtain the
matrix −[∂ 2 S̃E ]/[∂ FA ∂ FB] in the form

(D+σ)/D
[

F(z)/z2
]

F ′(z)

kB T D/σ

{
(D+σ)/D

[
F(z)/z

]
−F ′(z)

} −F ′(z)

(D/σ)nkB T
{
(D+σ)/D

[
F(z)/z

]
−F ′(z)

}
−F ′(z)

(D/σ)nkB T
{
(D+σ)/D

[
F(z)/z

]
−F ′(z)

} 1
(D/σ)2 nkB T 2

{
(D+σ)/D

[
F(z)/z

]
−F ′(z)

}


assuming that this matrix is positive definite, we obtain the following conditions that
guarantees the hyperbolicity of the system, in the equilibrium state

0 < F ′(z)<
D+σ

D
F(z)

z
, (27)

where for κ = 1, σ = 1,D = 2 we find the convexity conditions 0 < F ′(z)< 3/2F(z)/z
determined in the case of electrons in graphene [34], where in this case

z =
n

T 2 , F(z) =
kB

2
z

I+5
I+3

, F ′(z) = kB
I+3
I+1

, I+n =
∫ +∞

0

xn

exp(α + x2)+1
dx.

Analogously, for κ = 0,1, σ = 2,D = 3 we reobtain the convexity conditions (0 <
F ′(z) < 5/3F(z)/z)) in the case of bosons and fermions in Extended thermodynamics
[20, 21, 24, 33] being

z =
n

T 3/2 , F(z) =
2
3

kBz
I±4
I±2

, F ′(z) = 2kB
I±2
I±0

, I±n =
∫ +∞

0

xn

exp(α + x2)±1
dx

where the upper and lower signs correspond to cases of Fermi and Bose, respectively.
As is well know the convexity conditions imply that the differential system of hydro-
dynamic equations (HD) is symmetric hyperbolic and the local Cauchy problem is well
posed [35, 36]. The conditions (27) guarantee the hyperbolicity only in the equilibrium
state and therefore it is of great importance to check the region, in the neighborhood
of equilibrium, in which the hyperbolicity remains valid. In nonequilibrium conditions,
the hyperbolicity domain is determined through a computation of the roots of the char-
acteristic polynomial associated to the jacobian matrix of fluxes for the HD system
considered [20, 21, 23, 24]. In the next section we will briefly describe the strategy
that can be adopted to obtain closed hydrodynamic models, containing the statistical
information derived from FES, in the context of the usual Extended Thermodynamics.

P (or equivalently on the internal energy). But, in general for σ ̸= 2 the decomposition into
objective and convective parts cannot be done, and the average energy W (which can no longer
be decomposed into an objective part and a convective part) will assume a role similar to that
which the internal energy assumes in gasdynamics. Furthermore, even in the case σ = 2 there are
some physical systems in which a ”total energy scheme” must always be adopted [23, 25], due
to collisional processes (for example, in the transport of hot carriers in semiconductors, when the
electron-phonon collision must be described using specifically the band structure for electron and
phonon defined in the crystal.)
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2.4. Construction of closed hydrodynamic models using the MEP
strategy for the FES.

To pass from the kinetic level of the BTE to the Hydrodynamic (HD) level of the balance
equations in the general framework of the moment theory, we use the set of general-
ized kinetic fields ψA(p) obtaining, as corresponding average expectation values, the
quantities (3). Multiplying the BTE by the quantities ψA(p) and integrating over the p
space we obtain the following set of generalized balance equations [20, 21, 23] for the
moments FA

∂FA

∂ t
+

∂FAk

∂xk
= Fk RAk +PA , A = 1, . . .N (28)

being N the number of moments used, and FAk, RAk, PA, respectively, indicate the
fluxes, the external field productions, and the collisional productions

FAk =
∫

ψA uk F dD p, RAk =
∫

∂ψA

∂ pk
F dD p, PA =

∫
ψA Q(F)dD p. (29)

where, in particular, using the MEP strategy and considering only the mutual collisions
of the gas particles, in the case of an ideal gases (with no inner degrees of freedom)
with the symmetry properties (16), we obtain

PA =
1
4

∫ ∫ ∫ ∫
dD pdD p∗ dD p′ dD p′∗ W(p′,p′

∗;p,p∗)
(
ψA +ψ

∗
A −ψ

′
A −ψ

′∗
A
)

×
[
F ′F ′

∗

(
F
y

eΠ

)(
F∗
y

eΠ∗

)
−FF∗

(
F ′

y
eΠ′

)(
F ′
∗

y
eΠ′

∗

)]
The structure of this system of equations shows that there are some unknown constitu-
tive functions HA = {F̂Ak,RAk,PA} represented by some unknown fluxes {F̂Ak} (which
are not present in the list of the moments FA), the external field productions {RAk}, and
the collisional productions {PA}. The above system should be closed in a self-consistent
way with the determination of the HA expressed by means of the FA. In this way we
obtain a closed system of balance equations for the expectation values FA, and each so-
lution of this set is called a thermodynamic process [20, 21, 23] for the ideal exclusons
gases, in the context of Extended Thermodynamics.
Once again, it is possible to determine the closure searched for the constitutive func-
tions self-consistently by using the MEP strategy. Therefore, expanding the distribution
function and the constitutive functions around the local equilibrium distribution func-
tion F|E ,these can be expressed as polynomials in the nonequilibrium variables whose
coefficients will depend on the local equilibrium quantities {n,W}. In particular, by
considering only a linear expansion of the distribution function (5)1 around the local
equilibrium distribution function F|E , we obtain

F = F|E +L 1
kB

N

∑
B=1

Λ̂B ψB with L= − y
W (W+1)

[W+κ]3

∣∣∣∣∣
E

inserting this expansion in the moment expressions (3)

FA −FA|E =
1
kB

N

∑
B=1

Λ̂B

∫
ψA ψB L dD p
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we can determine analytically the nonequilibrium part of the Lagrange multipliers Λ̂B
as explicit functions of the moments [20, 21, 23]. Consequently, both the distribution
function and the constitutive functions can be written in the explicit form, by means of
their kinetic expressions (29).

We remark that to obtain the explicit forms of all constitutive functions it is neces-
sary to know both the specific expression of microscopic energy ε(p) and the explicit
form of the term Q( f ) which describes the specific collisional processes [23].
Thus, for example, the specific choice of the independent kinetic fields ψA (and there-
fore of the corresponding moments FA), to be taken into account in the maximization
procedure, will depend on the specific form of the dispersion relation used to describe
the microscopic energy. Indeed, it is possible to prove that, using the general form
(8) with σ = 1,2 only the following complete set of kinetic fields (and corresponding
independent moments) must be considered

ψA = {ε
su⟨i1 ui2 · · ·uir⟩} with F(s)|⟨i1···ir⟩ =

∫
ε

s u⟨i1 · · ·uir⟩F dD p

where s = 0, . . .N, r = 0, . . .M with arbitrary values for the integers N and M, and
u⟨i1 ui2 · · ·uis⟩ is the traceless part [20, 21, 23] of tensor ui1 ui2 · · ·uis .
On the contrary, for σ ̸= 1,2 the complete set of kinetic fields (and corresponding inde-
pendent macroscopic variables) will assume the most general form

ψA = {ε
s u2l u⟨i1 ui2 · · ·uir⟩} with F(s,l)|⟨i1···ir⟩ =

∫
ε

s u2l u⟨i1 · · ·uir⟩F dD p

where s = 0, . . .N, l = 0, . . .L and r = 0, . . .M with arbitrary values for the integers N,
L and M.
In this paper, therefore, a general formulation of a closed set of HD equations cannot
be determined without specifying the physical system considered. However, with the
strategy indicated in the previous sections, the determination of specific closed HD
systems, for an ideal gas obeying the FES, will be the subject of future works in the
context of usual Extended Thermodynamics.

3. Conclusions

Fractional exclusion statistics describe interaction phenomena that, as an end result, in-
hibit or favor the occupation of possible elementary excited states of individual particles
due to the presence of the remaining N particles in the system (Generalized Exclusion
Principle). The fundamental purpose of this paper is to formulate a non-equilibrium
theory for FES, within the framework of kinetic theory, connected with the theory of
moments in Extended Thermodynamics. The main informations, of a specific physical
system, are actually contained in the correct form of band structure and in the correct
description of collisional processes between the particles of the system. Consequently:

1. Imposing that the entropy is an increasing function along the motion trajectories
satisfying the BTE (H-Theorem), we explicitly determine the correct functional
form of the terms describing the final states of occupancy (in non-equilibrium
conditions) contained in the collisional Boltzmann operator.
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2. Entropy and its flux are computed explicitly in terms of non-equilibrium La-
grange multipliers.

3. Given the physical relevance and the possible applications connected with an
ideal gas subject to FES [3, 5–18], using the MEP we describe the correct strat-
egy for determining closed Hydrodynamic systems within the framework of Ex-
tended Thermodynamics in non-equilibrium conditions.

4. Finally, using a general form for the band structure, both some thermodynamic
properties connected with FES and the correct convexity conditions of the en-
tropy are explicitly obtained in equilibrium conditions.

It is clear that, at present, there are many open problems, in describing fractional ex-
clusion statistics, in the context of Extended Thermodynamics. For example, a relevant
problem within the usual Extended Thermodynamics of non-degenerate gases is the
convergence of the integrals defining the moments of the distribution function [37] (a
problem that, in gas-dynamics, turns out to be connected with the order on the trun-
cation (even or odd) of kinetic fields which are a polynomial in the group velocity u
[37]). However, it is observed that when considering transport phenomena in solid state
physics the integrals of moments (associated with the particles or quasi-particles) are
certainly convergent. Indeed, when transport occurs in a crystal lattice, the domain of
integration (in the k or in the p space) of moments of the distribution function is nec-
essarily a domain closed, limited and compact (corresponding to the well-known first
Brillouin zone [38]). Thus, from a purely mathematical point of view (even consider-
ing the exact MEP distribution function, and not an approximate expansion of it) there
seem to be no problems with convergence for these integrals regardless of the tensorial
order of the moments and regardless of the type of statistics to which the particles are
subjected.
In contrast, the problem of convergence, for the integrals of moments, could perhaps be
present in the case where fractional statistics were applied in the usual gas-dynamics
(σ = 2,D = 3 and a = 1/2m) with a non-closed and non-limited domain of integration.
This analysis could be the subject of future work and, most likely, will have to be done
numerically. Indeed, it is noted that the explicit form of the distribution function con-
tained in the integrals of moments, in the case of fractional statistics, is connected with
solving the nonlinear functional equation (6) for the function W(ξ ) (which is usually
solved numerically as the parameter κ varies). The problem is therefore much more
complicated than that described for non-degenerate gases. It is not necessarily the case,
that this problem can be addressed analytically; rather, it will almost certainly have to
be addressed numerically. However, this analysis is beyond the scope of present paper.
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