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W 1,1
0 (Ω)−SOLUTIONS FOR A DEGENERATE DOUBLE PHASE

TYPE OPERATOR IN SOME BORDERLINE CASES

F. ACHHOUD - S. D’ASERO

We study the existence of W 1,1
0 (Ω)−solutions of nonlinear anisotropic

problems whose simplest model is{
−div

(
a(x)|∇u|p−2

∇u
)
−div

(
|u|(r−1)q+1|∇u|q−2

∇u
)
= f in Ω,

u = 0 on ∂Ω.

where Ω is a bounded open subset of RN(N > 2), 1 < q ≤ p < N, r > q−1
q

and f is a function with poor summability.

1. Introduction and statement of the main results

We consider the following boundary value problem:{
−div

(
a(x)|∇u|p−2

∇u
)
−div

(
g(u)|∇u|q−2

∇u
)
= f in Ω,

u = 0 on ∂Ω,
(1)

where Ω is an open, bounded subset of RN(N > 2), and p,q are parameters
satisfying the condition:

1 < q ≤ p < 2− 1
N
. (2)
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a : Ω → R is a measurable function such that

0 < α ≤ a(x)≤ β , a.e. x ∈ Ω, (3)

g : R→ R is a function defined as

g(t) = |t|(r−1)q+1, with (r−1)q+1 > 0, (4)

and
f ∈ Lm(Ω), with m > 1. (5)

Problem (1) falls within the so called ”double phase” problem, a class of
problems which exhibit an unbalanced growth, the (p,λ )-growth according to
Marcellini’s definition given in [14].

A simple example of nonlinear double phase elliptic equation is

−div
(
|∇u|p−2

∇u
)
−div

(
g(x)|∇u|λ−2

∇u
)
= f . (6)

The left-hand side of this equation is the derivative of the double phase integral
functional

J(v) =
∫

Ω

(
|∇v|p

p
+

g(x)
λ

|∇v|λ
)

dx, with 1 < p < λ , (7)

which is basically characterized by the fact of having the energy density switch-
ing between two different types of degenerate behaviours, according to the size
of the set where g(x) = 0.

Nowadays, the double phase elliptic problems are widely studied. Some
fundamental papers are [2, 3, 10, 11].

We point out that, respect to the double phase equation (6), in (1) numbers
p, q play the role of λ , p, and function g(u) depends on a power of u.

Problem (1) has been considered in the papers [1] and [4], where the authors
studied the improved regularity of ∇u both depending on the presence of the
additional term

−div
(
g(u)|∇u|q−2

∇u
)

and on the summability of the datum f . In particular, for a datum f having a
summability exponent m below the duality one, that is

max
{

1,
N

N(p−1)+1

}
< m <

(
p∗
)′
,

the existence of a distributional solution u can be summarized as follows
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
1
q′

< r ≤ r̄(m) ⇒ u ∈W 1,(p−1)m∗

0 (Ω)

r̄(m)< r < r̃(m) ⇒ u ∈W 1,ζ
0 (Ω)∩L(mq)∗r(Ω)

where

r̄(m) =
(mp)∗

p′(mq)∗
, r̃(m) =

N −mq
Nq(m−1)

and ζ = m
(mq)∗rp

m+(mq)∗r
.

Note that,

(p−1)m∗ = 1 ⇐⇒ m = m̄ =
N

N(p−1)+1

and

m̄ > 1 ⇐⇒ 1 < p < 2− 1
N
.

Moreover,

ζ = m
(mq)∗rp

m+(mq)∗r
= 1 ⇔ m = m1 =

N(1+qr)
q(Nrp+1)

and
m1 > 1 ⇐⇒ r <

N −q
Nq(p−1)

Thus, in the previous two borderline cases one might expect to find solution
u of the problem (1) with gradient merely summable, as firstly done in [6].

Namely, in this paper, under an appropriate balance of the parameters p,q,r
and the summability of f , we prove the existence of W 1,1

0 (Ω)–distributional
solutions of the problem (1) in the limiting cases drawn above.

Here, by a distributional solution of the Problem (1) we mean a function
u ∈W 1,1

0 (Ω) such that{
g(u)|∇u|q−1 ∈ L1(Ω)∫

Ω

a(x)|∇u|p−2
∇u∇ϕdx+

∫
Ω

g(u)|∇u|q−2
∇u∇ϕdx =

∫
Ω

f ϕdx,
(8)

for every ϕ ∈C∞
0 (Ω).

Theorem 1.1. Assume that hypotheses (2), (3), (4) hold true. Let f ∈ Lm(Ω)
with m = N

N(p−1)+1 and
1
q′

< r ≤ r̄, (9)



624 F. ACHHOUD - S. D’ASERO

where

r̄ =
N(p−1)+1−q

q(N −1)
.

Then, there exists u ∈ W 1,1
0 (Ω) which solves Problem (1) in the sense of the

definition (8).

Remark 1.1. The above Theorem gives the same result as in [7], where g(u) =
0.

Remark 1.2. Note that
lim

m→m̄
r̄(m) = r̄,

hence the result of Theorem 1.1 links up continuously with the result of the
Theorem 1.3 in [1].

The next result investigates the regularizing effect due to the term

−div(g(u)|∇u|q−2
∇u).

Specifically, assuming that the exponent r in g(u) is sufficiently large, we estab-
lish the existence of a distributional solution under a weaker hypotheses on the
datum f .

Theorem 1.2. Assume that (2), (3), (4) are fulfilled. Suppose that

r̄ < r < r̃, (10)

where

r̃ =
N −q

Nq(p−1)
(11)

and

f ∈ Lm1(Ω), with m1 =
N(1+qr)

q(1+Nrp)
. (12)

Then, there exists u ∈ W 1,1
0 (Ω) which solves Problem (1) in the sense of the

definition (8). Moreover, u ∈ Lµ(Ω) with µ =
(

q
p

)∗(
r+ 1

q

)
.

Remark 1.3. Notice that the condition (10) implies that 1 < m1 < N
N(p−1)+1 .

Thus, the summability assumption on f in Theorem 1.2 is weaker than the one
required in Theorem 1.1. Moreover, we point out that µ > N

N−1 , i.e. the regu-
larity obtained in our result is better than the one obtained in [5, 7] by means of
the embedding Sobolev Theorem.
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Remark 1.4. Note that
lim

m→m1
(mq)∗r = µ,

hence the result of Theorem 1.2 links up continuously with the Theorem 1.4 in
[1].

The regularizing effect of other lower order terms on the summability of u
and ∇u has been studied by various author, see for example [5], [6], [7], [9],
[12],

The structure of the paper unfolds as follows: in Section 2 we introduce
a suitable sequence of approximating problems and we will establish a priori
estimates on the corresponding sequence of solutions. Section 3 is devoted to
the proof of Theorem 1.1 and Theorem 1.2.

2. Approximating problems and a priori estimates

To prove our existence results, we begin by approximating the boundary value
Problem (1).

Let f ∈ Lm(Ω), m ≥ 1. For n ∈ N, let us consider the sequence of approxi-
mating problems

{
−div

(
a(x)|∇un|p−2

∇un
)
−div

(
g(un)|∇un|q−2

∇un
)
= fn in Ω,

un = 0 on ∂Ω,
(13)

where { fn} is a sequence of bounded functions such that

fn → f strongly in Lm(Ω), (14)

and
∥ fn∥Lm(Ω) ≤ ∥ f∥Lm(Ω), ∀n ∈ N.

Thanks to the results of [4], Problem (13) admits a weak solution un in the
sense thatun ∈W 1,p

0 (Ω) g(un)|∇un|q−1 ∈ Lp′(Ω),∫
Ω

a(x)|∇un|p−2
∇un∇ϕdx+

∫
Ω

g(un)|∇un|q−2
∇un∇ϕdx =

∫
Ω

fnϕdx,
(15)

for any ϕ ∈W 1,p
0 (Ω). Moreover, un is also bounded, since fn ∈ L∞(Ω).

We are going to prove that, under the assumptions of the Theorem 1.1 and
Theorem 1.2, the sequence

{
un
}

converges to a distributional solution u ∈
W 1,1

0 (Ω) of the Problem (1). As already done in [5, 7], the main tool will
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be to derive the boundedness of the sequence
{

un
}

in the non reflexive space
W 1,1

0 (Ω).
Let k > 0 and Tk : R→ R the usual truncation function defined by

Tk(s) = max{−k,min{s,k}}, ∀s ∈ R.

By using Tk(un) as test function in the integral identity in (15) and dropping
the positive term in the left-hand side, we obtain the following estimate∫

Ω

|∇Tk(un)|p dx ≤ k
α
∥ f∥L1(Ω) , ∀n ∈ N, (16)

The following lemma will be used in the proof of the Theorem 1.1.

Lemma 2.1. Let the assumptions (2)− (4) hold. Assume that f ∈ Lm(Ω) with
m = N

N(p−1)+1 and
1
q′

< r ≤ r̄.

Then, there exists a positive constant M1, independent of n, such that

∥un∥W 1,1
0 (Ω)

≤M1, ∀n ∈ N. (17)

Moreover, for every measurable subset E ⊂ Ω, it holds

lim
|E|→0

∫
E
|∇un| dx = 0, ∀n ∈ N. (18)

Here and in the sequel, for any measurable set E ⊂ RN , |E| denotes its N -
dimensional measure.

Proof. Let δ > 0. For any t ∈ R, define the function

vδ (t) =
[
(δ + |t|)s̃+1 −δ

s̃+1
]

sign(t),

where

s̃ =
N(1− p)

N −1
. (19)

In the sequel, we denote by Ci, i = 1,2,3..., any positive constant depending
only on the known data and independent of n.

Substituting vδ (un) as the test function into the integral identity (15), we
obtain
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(s̃+1)
∫

Ω

a(x)|∇un|p (δ + |un|)s̃ dx+(s̃+1)
∫

Ω

g(un)|∇un|q (δ + |un|)s̃ dx

=
∫

Ω

fnvδ (un)dx.

(20)
Thanks to (3) and dropping the second (positive) term in the left-hand side, we
get

α(s̃+1)
∫

Ω

|∇un|p (δ + |un|)s̃ dx ≤ ∥ fn∥Lm(Ω)

(∫
Ω

|vδ (un)|m
′
) 1

m′

, (21)

Moreover, dropping the first term in the left-hand side of (20), we have

kq(r−1)+1
∫

Dn(k)
|∇un|q (δ + |un|)s̃ dx ≤ ∥ f∥Lm(Ω)

(∫
Ω

|vδ (un)|m
′
) 1

m′

, (22)

where
Dn(k) = {x ∈ Ω : |un(x)|> k}.

Thus, by (21) and Sobolev’s inequality, we deduce

C(α, s̃)
(∫

Ω

∣∣∣(δ + |un|)
N

(N−1)p∗ −δ
N

(N−1)p∗
∣∣∣p∗) p

p∗

≤ ∥ f∥Lm(Ω)

(∫
Ω

(δ + |un|)m′(s̃+1)
) 1

m′

with

C(α, s̃) =
α(s̃+1)

(
p∗(N−1)

N

)p

S p .

Thanks to the Lebesgue Theorem and the Fatou Lemma, we can pass to the limit
as δ tends to 0 and we deduce

C(α, s̃)
(∫

Ω

|un|
N

N−1

) p
p∗

≤ ∥ f∥Lm(Ω)

(∫
Ω

|un|m
′(s̃+1)

) 1
m′

.

Since 1∗ =
N

N −1
= m′(s̃+1) and p

p∗ >
1
m′ , we deduce

C(α, s̃)
(∫

Ω

|un|
N

N−1

) p
p∗−

1
m′

≤ ∥ f∥Lm(Ω). (23)
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In addition, from (21) and (22) we obtain∫
Dn(k)

|un|s̃|∇un|pdx ≤ C1, (24)

∫
Dn(k)

|un|s̃|∇un|qdx ≤ C2

kq(r−1)+1 (25)

and the following estimate

∣∣Dn(k)
∣∣≤ C(α, s̃)

k
N

N−1
, ∀k > 0. (26)

Therefore, if we fix ε > 0, then there exists kε > 0 such that for any k ≥ kε∣∣Dn(k)
∣∣≤ ε, uniformly with respect to n. (27)

Now, we prove that {un} is bounded in W 1,1
0 (Ω). Exploiting (21) with δ = 1,

we get ∫
Ω

|∇un|p

(1+ |un|)
N(p−1)

N−1

dx ≤ C3. (28)

By the Hölder’s inequality, we have∫
Ω

|∇un| dx =
∫

Ω

|∇un|

(1+ |un|)
N

p′(N−1)

(1+ |un|)
N

p′(N−1) dx

≤

[∫
Ω

|∇un|p

(1+ |un|)
N(p−1)

N−1

dx

] 1
p [∫

Ω

(1+ |un|)
N

N−1 dx
] 1

p′

.

Thus, by (23) and (28), we conclude that (17) holds true.
Let k > 0, and for any t ∈ R, we define the function

ψk(t) =
[
|t|s̃+1 − ks̃+1]+ sign(t), (1)

where s̃ is the constant defined in (19).
By using ψk(un) as a test function in the integral identity (15), we obtain∫

Ω

a(x) |∇un|p−2
∇un∇ψk(un)dx+

∫
Ω

g(un) |∇un|q−2
∇un∇ψk(un)dx

=
∫

Ω

fnψk(un)dx.

1Here, as usual v+ = max{v,0}, ∀v ∈ R.
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From Hölder’s inequality and the fact that the second term on the left-hand side
is positive, it follows that

C5

∫
Dn(k)

|∇un|p

|un|
N(p−1)

N−1

dx ≤
(∫

Dn(k)
| fn|mdx

) 1
m
(∫

Dn(k)
|un|

N
N−1 dx

) 1
m′

. (29)

Applying again the Hölder’s inequality and taking into account inequalities (23)
and (29), we get∫

Dn(k)
|∇un| dx =

∫
Dn(k)

|∇un|

|un|
N

p′(N−1)

|un|
N

p′(N−1) dx

≤

[∫
Dn(k)

|∇un|p

|un|
N(p−1)

N−1

dx

] 1
p [∫

Dn(k)
|un|

N
N−1 dx

] 1
p′

≤ C6

(∫
Dn(k)

| fn|mdx
) 1

pm

.

Thanks to the previous inequality, for every measurable subset E ⊂ Ω we
have∫

E
|∇un| dx ≤

∫
E
|∇Tk (un)| dx+

∫
Dn(k)

|∇un| dx

≤
[∫

Ω

|∇Tk (un)|p dx
] 1

p

|E|1−
1
p +C6

(∫
Dn(k)

| fn|m dx
) 1

pm

≤
[

k
α
∥ f∥L1(Ω)

] 1
p

|E|1−
1
p +C6

(∫
Dn(k)

| f |m dx
) 1

pm

,

(30)

which, by (27) and the absolute continuity of the integral, gives (18).

The following lemma will be used in the proof of the Theorem 1.2.

Lemma 2.2. Let the assumptions (2)− (4) hold. Assume that

r̄ < r < r̃. (31)

and f ∈ Lm1(Ω) with m1 =
N(1+qr)

q(1+Nrp) .
Then, there exist two positive constants M2 and M3, independent of n, such

that
∥un∥Lµ (Ω) ≤M2, ∀n ∈ N (32)

and
∥un∥W 1,1

0 (Ω)
≤M3, ∀n ∈ N. (33)
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Moreover, for every measurable subset E ⊂ Ω, it holds

lim
|E|→0

∫
E
|∇un| dx = 0, ∀n ∈ N. (34)

Proof. Let us define for any t ∈ R, the function

w(t) =
[
|t|s+1 −1

]+
sign(t) ,

with

s =
N(1− p)(1+qr)

N p−q
. (35)

Notice that
r < r̃ ⇒ s+1 > 0.

We choose w(un) as test function in (15). Removing the first positive term in
the left-hand side we get

∫
Dn(1)

|∇un|q|un|q(r−1)+s+1dx ≤
∥ f∥Lm1 (Ω)

(s+1)

(∫
Dn(1)

|un|(s+1)m′
1dx
) 1

m′
1 , (36)

which implies

∫
Ω

∣∣∣∣∣∇
[
|un|

q(r−1)+1+s
q +1 −1

]+∣∣∣∣∣
q

dx ≤

(
s+1

q + r
)q

∥ f∥Lm1 (Ω)

s+1

(∫
Dn(1)

|un|(s+1)m′
1dx
) 1

m′
1 .

By employing the Sobolev’s inequality, from (36) we obtain(∫
Ω

∣∣∣∣[|un|r+
s+1

q −1
]+∣∣∣∣q∗ dx

) q
q∗

≤ C7

(∫
Dn(1)

|un|(s+1)m′
1dx
) 1

m′
1 .

We recall that by the definition of s, it follows

rq∗+
(s+1)q∗

q
= (s+1)m′

1 = µ

and by easy calculations, from the last inequality, we get(∫
Dn(1)

|un|µ dx
) q

q∗

≤ C8

(∫
Dn(1)

|un|(s+1)m′
1dx
) 1

m′
1 +C9.

Since
q
q∗

>
1

m′
1

, we deduce that

∫
Dn(1)

|un|µ dx ≤ C10.
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On the other hand, we have∫
Ω

|un|µ dx =
∫

Dn(1)
|un|µ dx+

∫
Dc

n(1)
|un|µ dx

≤
∫

Dn(1)
|un|µ dx+ |Ω|,

hence ∫
Ω

|un|µ dx ≤ C11,

which implies that (32) holds.
Here and in the sequel, for any set A ⊂ RN , Ac denotes the complement of A, i.e.

Ac = Ω\A.
From (36), we derive∫

Dn(1)
|∇un|q|un|q(r−1)+s+1dx ≤ C12. (37)

Thanks to the Hölder’s inequality with exponents q and q′ = q
q−1 , we can write

∫
Ω

|∇un|dx =
∫

Dc
n(1)

|∇un|dx+
∫

Dn(1)
|∇un|dx

≤
∫

Ω

|∇T1(un)|dx+
∫

Dn(1)
|un|r−1+ s+1

q |∇un|dx

≤

(
∥ f∥L1(Ω)

α

) 1
p

|Ω|
1
p′ +

(∫
Dn(1)

|∇un|q|un|q(r−1)+s+1dx
) 1

q

|Dn(1)|
1
q′

≤

(
∥ f∥L1(Ω)

α

) 1
p

|Ω|
1
p′ +C

1
q
12 |Dn(1)|

1
q′ .

We note that, thanks to (26) with k = 1, the following estimate holds

|Dn(1)| ≤ C13.

Then

∫
Ω

|∇un|dx ≤

(
∥ f∥L1(Ω)

α

) 1
p

|Ω|
1
p′ +C

1
q
12

≤ C14,

hence (33) is proved.
Now, we prove that the sequence {∇un} is equiintegrable. To this aim, let E ⊂ Ω

be measurable subset.
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Thanks to Hölder’s inequality, (16) and the estimate (37), we get

∫
E
|∇un|dx ≤

[∫
Ω

|∇T1 (un)|p dx
] 1

p

|E|1−
1
p +

∫
Dn(1)∩E

|un|r−1+ s+1
q |∇un|dx

≤

[
∥ fn∥L1(Ω)

α

] 1
p

|E|1−
1
p +

(∫
Dn(1)∩E

|∇un|q|un|q(r−1)+s+1dx
) 1

q

|E|
1
q′

≤

[
∥ fn∥L1(Ω)

α

] 1
p

|E|1−
1
p +C

1
q
12 |E|

1
q′ .

(38)
Therefore (34) holds.

Remark 2.1. By following the same proof as before, the previous result gives

∫
Dn(1)

|un|s|∇un|pdx ≤
∥ f∥Lm1 (Ω)

α(s+1)

(∫
Dn(1)

|un|µdx
) 1

m′
1

≤
∥ f∥Lm1 (Ω)

α(s+1)
M

1
m′

1
2 .

(39)

3. Proof of Main Results

In this section, we give the proof of the Theorems 1.1 and 1.2.
Thanks to the lemmas 2.1 and 2.2 as well as the estimate (16), we have

∥un∥W 1,1
0 (Ω)

≤M, ∀n ∈ N,
un → u strongly in Lγ(Ω) for 1 ≤ γ < N

N−1 ,

un(x)→ u(x) a.e. x ∈ Ω,

Tk (un)⇀ Tk(u) weakly in W 1,p
0 (Ω).

(40)

Let us start proving that under the hypotheses of Theorem 1.1 or Theorem
1.2

un ⇀ u weakly in W 1,1(Ω).

As a matter of fact, from inequalities (30) or (38), we deduce that, for any
i= 1, . . . ,N, the sequence

{
∂un
∂xi

}
is equi–integrable. Thus, by the Dunford-Pettis

theorem, and up to subsequences, there exists vi in L1(Ω) such that

∂un

∂xi
⇀ vi weakly in L1(Ω).
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Since ∂un
∂xi

is the distributional partial derivative of un, for every n ∈ N, we have

∫
Ω

∂un

∂xi
ϕ dx =−

∫
Ω

un
∂ϕ

∂xi
dx, for every ϕ ∈C∞

0 (Ω).

Passing to the limit in the above integral identity, using that ∂un
∂xi

converges
weakly to vi in L1(Ω) and un strongly converges to u in L1(Ω), we obtain

∫
Ω

viϕ dx =−
∫
Ω

u
∂ϕ

∂xi
dx, for every ϕ ∈C∞

0 (Ω).

Then vi =
∂u
∂xi

, for i = 1 . . . ,N. Therefore u ∈W 1,1
0 (Ω) and

un ⇀ u weakly in W 1,1(Ω).

Next, we aim to prove the strong convergence of ∇un to ∇u in L1(Ω), which
will allows us to pass to limit as n →+∞ in the approximating problem (13).

Firstly, we will prove that the sequence
{

∇un(x)
}

converges to ∇u(x) almost
everywhere in Ω. To this aim we will follow the proof of Lemma A.1 in [7] (see
also [8]).

Let 0 < θ < 1
p and 0 < j < k. Let us consider the following integral

In =
∫

Ω

{
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
}θ

dx.

We will prove that In → 0 as n tend to +∞.
We set

Ck = {x ∈ Ω : |u(x)| ≤ k}, Ak = {x ∈ Ω : |u(x)|> k},

and
Dn,k( j) = {x ∈ Ω : |un(x)−Tk(u(x))| ≥ j}.

Moreover, by ωi(k) we denote some quantities such that

lim
k→∞

ωi(k) = 0.

Using twice Hölder inequality with exponent 1
pθ

, 1
1−pθ

and 1
θ

, 1
1−θ

and the
estimate ∥un∥W 1,1

0 (Ω)
≤M, we get
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In =
∫

Ck

{
a(x)

[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇(un −Tk(u))

}θ

dx

+
∫

Ak

{
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
}θ

dx

≤
∫

Ck∩Dc
n,k( j)

{
a(x)

[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇Tj (un −Tk(u))

}θ

dx

+

( ∫
Dn,k( j)

(
a(x)

[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇(un −Tk(u)) dx

) 1
p
)pθ

×|Dn,k( j)|1−pθ

+

(∫
Ω

(
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
) 1

p
dx
)pθ

|Ak|1−pθ

≤
(∫

Ω

a(x)
[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇Tj (un −Tk(u))dx

)θ

|Ω|1−θ

+

(∫
Ω

(
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
) 1

p
dx
)pθ

|Ak|1−pθ

+C15 |Dn,k( j)|1−pθ .

Note that, for every fixed j, we have

limsup
n→+∞

|Dn,k( j)|1−pθ = |{x ∈ Ω : |u(x)−Tk(u(x))|> j}|1−pθ = ω1(k),

therefore, we obtain

In ≤ |Ω|1−θ

(∫
Ω

a(x)
[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇Tj (un −Tk(u))dx

)θ

(41)

+C15ω1(k)+C16ω2(k).

Let us estimate the first integral in the previous inequality.
By using Tj(un −Tk(u)) as test function in (15), it yields∫

Ω

a(x)
[
|∇un|p−2

∇un −|∇Tk(u)|p−2
∇Tk(u)

]
∇Tj(un −Tk(u))dx

+
∫

Ω

g(un)
[
|∇un|q−2

∇un −|∇Tk(u)|q−2
∇Tk(u)

]
∇Tj(un −Tk(u))dx

≤
∫

Ω

fnTj(un −Tk(u))dx−
∫

Ω

a(x) |∇Tk(u)|p−2
∇Tk(u)∇Tj(un −Tk(u))dx

−
∫

Ω

g(un) |∇Tk(u)|q−2
∇Tk(u)∇Tj(un −Tk(u))dx
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which implies, taking into account the positivity of the second term in the left-hand side
of the above inequality, that

In ≤ |Ω|1−θ

(
j
∫

Ω

| fn|dx−Jk, j,n −Kk, j,n

)θ

+C15ω2(k)+C16ω1(k),

with

Jk, j,n =
∫

Ω

a(x) |∇Tk(u)|p−2
∇Tk(u)∇Tj(un −Tk(u))dx,

Kk, j,n =
∫

Ω

g(un) |∇Tk(u)|q−2
∇Tk(u)∇Tj(un −Tk(u))dx.

Let us analyze the previous terms one by one. First of all, thanks to the properties of fn
we have

lim
j→0

lim
n→∞

j
∫

Ω

| fn|dx = lim
j→0

j
∫

Ω

| f |dx = 0.

Since a(x) |∇Tk(u)|p−2
∇Tk(u) ∈ (Lp′(Ω))N and

{
Tk(un)

}
weakly converges to Tk(u) in

W 1,p
0 (Ω), we can pass to the limit as n tends to +∞ and we obtain

lim
j→0

lim
n→∞

Jk, j,n = lim
j→0

∫
{k<|u|<k+ j}

a(x) |∇Tk(u)|p−2
∇Tk(u)∇(u−Tk(u))dx = 0.

On the other hand, we have

lim
j→0

lim
n→∞

Kk, j,n = lim
j→0

lim
n→∞

∫
Ω

g(Tk+ j(un)) |∇Tk(u)|q−2
∇Tk(u)∇Tj(un −Tk(u))dx = 0.

Hence we have

0 ≤ lim
n→∞

In ≤ C16ω2(k)+C17ω1(k)+C18ω3(k).

Therefore, letting k →+∞ we deduce

lim
n→+∞

∫
Ω

{
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
}θ

dx = 0,

which implies (for a suitable subsequence, still denoted by un){
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
}θ

→ 0 a.e. in Ω,

and also (since θ is positive){
a(x)

[
|∇un|p−2

∇un −|∇u|p−2
∇u
]

∇(un −u)
}
→ 0 a.e. in Ω.

Then the previous limit implies that

∇un(x)→ ∇u(x) a.e. in Ω. (42)
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as it is proved in [13].
Thanks to (2), (3) and to the estimate ∥un∥W 1,1

0 (Ω)
≤M, applying Hölder’s inequal-

ity we get ∫
Ω

a(x)|∇un|p−1dx ≤ β

(∫
Ω

|∇un|dx
)p−1

|Ω|2−p

≤ βMp−1|Ω|2−p.

Therefore, by (42) and (18) or (34), we can apply Vitali’s theorem and we deduce that

a(x)|∇un|p−2
∇un → a(x)|∇u|p−2

∇u strongly in (L1(Ω))N . (43)

Moreover, thanks to (42) we readily have

g(un)|∇un(x)|q−2
∇un(x)→ g(u)|∇u(x)|q−2

∇u(x) a.e. in Ω.

Now we assume that the hypotheses of the Theorem 1.1 hold.
Let E ⊂ Ω be a measurable set. Due to Hölder’s inequality and inequality (17), we

have∫
E

g(un) |∇un|q−1 dx =
∫

E∩Dn(k)
g(un) |∇un|q−1 dx+

∫
E∩Dc

n(k)
g(un) |∇un|q−1 dx

≤
∫

E∩Dn(k)
|un|q(r−1)+1− s̃(q−1)

p |un|
s̃(q−1)

p |∇un|q−1 dx

+ kq(r−1)+1Mq−1
1 |E|2−q

≤
[∫

E∩Dn(k)
|un|λ dx

] 1
τ
[∫

E∩Dn(k)
|un|s̃ |∇un|p dx

] 1
τ ′

+ kq(r−1)+1Mq−1
1 |E|2−q

≤
[∫

Ω

|un|
N

N−1 dx
] λ (N−1)

Nτ

|E|
1
τ
− λ (N−1)

Nτ

[∫
Dn(k)

|un|s̃ |∇un|p dx
] 1

τ ′

+ kq(r−1)+1Mq−1
1 |E|2−q,

where s̃ is the number defined in (19),

τ =
p

p−q+1
and λ =

(
q(r−1)+1+

N(q−1)(p−1)
p(N −1)

)
τ.

We note that hypotheses r < r̄ and (2) ensure that λ < N
N−1 .

Using (24) and the fact that the sequence {un} is bounded in W 1,1
0 (Ω), we deduce

lim
|E|→0

∫
E

g(un) |∇un|q−1 dx = 0, uniformly with respect to n,

hence we apply Vitali’s Theorem to get

g(un)|∇un|q−2
∇un → g(u)|∇u|q−2

∇u strongly in (L1(Ω))N . (44)
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Therefore, thanks to the convergences (43) and (44), it is possible to pass to the limit in
the integral identity (15) and we prove that the limit u is a distributional solution of the
Problem (1) in the sense of definition (8).

Finally, suppose that the hypotheses of Theorem 1.2 hold.
Applying again the Hölder’s inequality and recalling the Lemma 2.2, we have∫

E
g(un) |∇un|q−1 dx =

∫
E
|un|r−η(q−1)

(
|un|r−1+η |∇un|

)q−1
dx

≤
[∫

E
|un|q(r−η(q−1)) dx

] 1
q
[∫

E
|un|(r−1+η)q |∇un|q dx

] 1
q′

≤
[∫

Ω

|un|ρq(r−η(q−1)) dx
] 1

ρq

|E|
1

ρ ′q

[∫
E
|un|(r−1+η)q |∇un|q dx

] 1
q′

≤
[∫

Ω

|un|µ dx
] 1

ρq

|E|
1

ρ ′q

[∫
Ω

|un|q(r−1)+s+1 |∇un|q dx
] 1

q′

≤M
µ

ρq
2 |E|

1
ρ ′q C

1
q′
12 ,

where µ is the number defined in the statement of the Theorem 1.2, number s is defined
in (35) and

η =
s+1

q
, ρ =

µ

q(r−η(q−1))
.

Notice that hypotheses r < r̃ and (2) ensure that ρ > 1.
Then, by Lemma 2.2 and Vitali’s Theorem we affirm that the convergence (44)

holds true. Hence, taking into account also the convergence (43), we can pass to the
limit in the integral identity (15) and we prove that u is a distributional solution of the
Problem (1) in the sense of definition (8).
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