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1. Introduction: The Segre Conjecture.

Let p1, . . . , pn be general points in the complex projective plane P2 and
let m1, . . . ,mn be positive integers. We let Ld(p

m1
1 , . . . , pmn

n ) be the linear
system of plane curves of degree d having multiplicity at least mi at the point
pi , i = 1, . . . , n. If mi = 1 we suppress the superscript mi for pi in
Ld(p

m1
1 , . . . , pmn

n ).
Let π : S → P2 be the blow-up of P2 at the points p1, . . . , pn . Let L be

a line bundle on S , or, by abusing notation, the corresponding complete linear
system. One de�nes the virtual dimension of L to be:

ν(L) := χ(L) − 1 =
L · (L − KS)

2

where KS is the canonical class on S .
If C is any divisor on S , we similarly de�ne ν(C) := χ(OS(C)) − 1. The

Riemann-Roch Theorem says that if L is effective, then

(1.1) dim(L) = ν(L) + h1(S, L)
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since h2(L) = 0. One also de�nes the expected dimension of L to be

�(L) := max{ν(L), −1}.

If C is any divisor on S we can accordingly de�ne �(C) := max{ν(C), −1}.
One says that a linear systemL on S is non-special if its dimension equals

the expected dimension. This is equivalent to saying that L is non-special
if and only if either it is empty or it is regular, namely not empty and with
h1(S, L) = 0.

Let H be the pull-back via π of a general line of the plane and let
E1, . . . , En be the exceptional divisors contracted by π to the points p1, . . . , pn .
The proper transform of Ld(p

m1
1 , . . . , pmn

n ) on S is the complete linear system
L := |dH − m1E1 − . . . − mi Ei |. By abusing notation, we will denote by L

also the line bundle associated to this linear system.
We apply the language of virtual and expected dimension to the system

Ld(p
m1
1 , . . . , pmn

n ) on the plane also, by using the corresponding notions of the
proper transform. In particular, the virtual dimension of Ld(p

m1
1 , . . . , pmn

n ) is

ν(Ld (p
m1
1 , . . . , pmn

n )) := ν(L) =
d(d + 3)

2
−

n�

i=1

mi (mi + 1)

2

and the expected dimension of Ld (p
m1
1 , . . . , pmn

n ) is

�(Ld(p
m1
1 , . . . , pmn

n )) := �(L).

One says that a system Ld (p
m1
1 , . . . , pmn

n ) of plane curves is non-special if the
proper transform L on S is such.

A linear system L on S , which is not empty, is called reducible [resp.
reduced] if its general curve C is reducible [resp. reduced]. Bertini�s theorem
tells us that, if L is reducible, then either it has some �xed components or it is
composed with a rational pencil P , i.e. the movable part of L consists of the
sum of h ≥ 2 curves of P . The following conjecture is due to B. Segre:

Conjecture 1.2 (Segre�s Conjecture). Suppose that L as above is nonempty
and reduced. Then L is non-special.

Since a plane curve is reduced if and only if it has isolated singularities,
another way of phrasing Segre�s Conjecture is: if the general member of L has
isolated singularities, then H 1(L) = 0. In this form it may generalize to higher
dimensions.

This conjecture is related to more recent conjectures of Harbourne and
Hirschowitz, (see [3] and [4]). It has attracted much attention recently, and
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although we will not give a full history here, the authors have been able to check
the above conjecture for multiplicities at most 13 in [1] and [2]. These articles
used a degeneration technique and standard uppersemicontinuity arguments, as
has most of the work on this problem. This article presents a technique based on
deformation theory, which has not been fully exploited for multiplicities greater
than two as far as the authors are aware.

The authors would like to thank Prof. Herb Clemens for suggesting this
line of attack.

2. Higher-Order Deformations of Fat Points.

In this section we begin to describe a method to attack Segre�s Conjecture
via a deformation theory argument. Suppose that for general points pi there
exists a divisor C ∈ |L| with isolated singularities. Then Segre�s Conjecture
states that H 1(X, L) = 0. We seek to interpret the H 1 as a vector space
which carries obstructions to deforming the divisor C as the points pi vary.
The intention is then to show that every element of H 1 occurs as an obstruction,
and also to remark that since the divisor C exists for general points, there can
be no obstructions. The conclusion that H 1 must be zero would follow.

Crudely, there is a mapping

�
deformations
of the points

{pi }

�
obstruction

to moving C
−→ H 1(L).

The interpretation of the H 1 as a space carrying obstructions is essentially the
construction of this mapping. The statement that every element of H 1 occurs as
an obstruction is the surjectivity of this mapping. The statement that there are
no obstructions (because of the general existence of C) is the zero-ness of this
mapping. Since a surjective zero map must have target 0, we conclude H 1 = 0
as required.

In what follows we will describe the construction of the mapping, and
prove the surjectivity for double and triple points (when all mi = 2 and when
all mi = 3). We will actually only consider the deformation of the divisor C
upon varying a single one of the points p = pi , having multiplicity m = mi .
We will work on the plane P

2 instead of on X , and choose af�ne coordinates
(x , y) near p such that p = (0, 0).

The original curve C = C0 is then de�ned by a polynomial of degree at
most d :

C0 : F
(0)(x , y) = 0.
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Fix a direction vector (a, b), and deform the point p to pt = (at, bt). Now
try to deform C0 to a divisor Ct (de�ned by Ft (x , y) = 0) which will have
multiplicity m at pt . We may assume that the polynomial Ft in (x , y) has
coef�cients varying formally analytically with t .

If we expand the desired polynomial Ft in a power series in t , we �nd

(2.1) Ft(x , y) =
�

p≥0

F (p)(x , y)t p

where each term F (p) is a polynomial in (x , y) with constant coef�cients.
Change coordinates to (u, v), where (u, v) = (0, 0) at the varying point

pt ; this is done by setting

x = u + at and y = v + bt

Plug this into (2.1), expand via Taylor�s Theorem, and collect terms in t , to
obtain

Ft =
�

p≥0

[
�

q≥0

1

q!
RqF (p)(u, v)t q]t p

=
�

n≥0

[
�

p+q=n

1

q!
RqF (p)(u, v)]t n

where R = a∂/∂x + b∂/∂y .
In order for this to have multiplicity at least m at pt , we must have that the

multiplicity of the t n coef�cient is at least m at (u, v) = (0, 0) for every n. If
we call this coef�cient An , we have then that

An =
�

p+q=n

1

q!
RqF (p)(u, v).

The requirement that the multiplicity of An at (u, v) = (0, 0) be at least m
is a series of conditions, one for each n. We will refer to the condition that
mult(0,0)(An) ≥ m as the n − th order multiplicity condition.

The 0-th order multiplicity condition is that

mult(0,0)F
(0,0)(u, v) ≥ m

which is in fact the hypothesis on the original curve C = C0 in the linear system,
and is therefore automatic.
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It is convenient to expand each F (�) into homogeneous parts; let us denote
by

F
(�)
k

the homogeneous piece of degree k of the polynomial F (�) . The hypothesis that
C0 has multiplicity at least m at (0, 0) is therefore that

(2.2) F (0)
k = 0 for each k = 0, . . . ,m − 1.

3. The First-Order Multiplicity Condition.

The �rst-order multiplicity condition is that A1 has multiplicity at least m
at the origin; since

A1 = F (1) + RF (0)

we see that this has multiplicity at least m if and only if F
(1)
k + RF

(0)
k+1 = 0 for

each k = 0, . . .m − 1. Since F (0) is already assumed to have multiplicity at
least m, using (2.2) we see that this is equivalent to the following:

(a) F (1)
k = 0 for k = 0, . . . ,m − 2 (i.e., mult(0,0)(F

(1)) ≥ m − 1 );

(b) F
(1)
m−1 = −RF (0)

m

The sheaf interpretation of this is as follows. Let E denote the exceptional
divisor above the point p which is the origin for this coordinate system. Then
we have the short exact sequence

0 → L → L(E) → L(E)|E ∼= OE(m − 1) → 0

of sheaves on the blowup X . Taking cohomology, this gives

0 → H 0(L) → H 0(L(E)) → H 0(OE(m − 1))
�
→ H 1(L).

The requirement of (a) in the �rst-order multiplicity condition is that F (1) lie in
the space H 0(L(E)). The restriction map from this space to H 0(OE(m−1)) is
simply the map taking F (1) to its lowest-order part, the piece of homogeneous
degree m − 1, which is F (1)

m−1.
Now the homogeneous polynomial −RF (0)

m of degree m − 1 can be
considered also to lie in the space H 0(OE (m − 1)). Therefore the requirement
of (b) is that the polynomial F (1) in H 0(L(E)) must map to this element
−RF (0)

m ∈ H 0(OE (m − 1)).
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By the exactness of the sequence, such a polynomial F (1) exists if and only
if this element −RF (0)

m maps to zero in H 1(L) under the coboundary map �.
We therefore obtain the obstruction element

�(−RF (0)
m ) ∈ H 1(L)

which must be zero for the original curve C0 to deform to �rst order.
At this point we want to make an important remark. The �rst-order curve

(de�ned by F (1) = 0) depends only on the lowest-order term F (0)
m of the original

curve. In particular if one locally makes an analytic change of coordinates
which does not affect this lowest-order term F (0)

m , then the computations will
not produce any change at all in the �rst-order curve F (1) .

4. Double Points.

Let us show how the case when m = 2 in Segre�s Conjecture can be
handled using the �rst-order multiplicity conditions. Fix r + s general points
{pi }, and denote by Ld(1

r , 2s) the invertible sheaf on the blowup X of the
plane at the pi �s associated to the divisor dH −

�r
i=1 Ei −

�r+s
i=r+1 2Ei . This

corresponds to the linear system of plane curves of degree d having r simple
base points and s double points.

With this notation, the precise statement would then be the following.

Theorem 4.1. Suppose that for general points pi there exists a divisor C ∈

|Ld(1
r , 2s)| with isolated singularities. Then H 1(X, Ld(1

r , 2s)) = 0.

Proof. We work by induction on s , the number of double points. If s = 0, we
are imposing only simple base points, and the vanishing of the H 1 in this case
is a triviality, for all r , as long as the system is non-empty. Suppose then the
theorem is true for s − 1 ≥ 0 double points (and all r ); let us prove it for s
double points.

As noted above we have the long exact sequence

0 → H 0(Ld(1
r , 2s)) → H 0(Ld (1

r+1, 2s−1)) →

→ H 0(OE (1))
�
→ H 1(Ld(1

r , 2s)) → 0

where E is the exceptional divisor on the blowup X over the last point. The
last term is actually H 1(Ld(1

r+1, 2s−1)), which by induction we may assume is
zero. Hence the coboundary map � is onto.

First assume that the general divisor C has an ordinary double point at the
last point. Then we may assume that F (0)

2 (x , y) has the form xy in suitable



A DEFORMATION THEORY APPROACH TO LINEAR. . . 265

coordinates. If R = a∂/∂x + b∂/∂y , then the element −RF (0)
2 ∈ H 0(OE(1))

is ay + bx ; as a and b vary, these elements span the space H 0(OE(1)). We
conclude (since � is onto, and is zero on these elements), that � itself is zero,
and hence that H 1(L(d, 1r , 2s)) vanishes as required.

If the general divisorC has a non-ordinary double point or a point of higher
multiplicity, we argue differently. By imposing additional simple points (that is,
increasing r if necessary), we may assume that dim H 0(Ld(1

r , 2s)) = 1, so that
the general C does not move in its linear system on X . By induction the system
Ld(1

r , 2s−1) is non-special, and hence has af�ne dimension at most 4 (since
imposing the additional double point can impose at most 3 linear conditions).

If the dimension is in fact 4, then the original system Ld(1
r , 2s) has the

expected dimension, and we are done. If the dimension is 3, then by imposing
a simple base point plus a tangent direction, we will reduce the dimension to
one; and therefore we will have the general non-ordinary double point. This
is a contradiction unless the system is composed with a pencil, in which case
the general member will be non-reduced. Similarly if the dimension is two,
imposing a general base point leads to a non-ordinary double point, which is
again a contradiction. The dimension cannot be one by assumption. Q.E.D.

5. The Second-Order Multiplicity Condition.

The second-order multiplicity condition is that A2 has multiplicity at least
m at the origin; since

A2 = F (2) + RF (1) +
1

2
R2F (0)

we see that this has multiplicity at least m if and only if F (2)
k + RF (1)

k+1 +
1
2
R2F (0)

k+2 = 0 for each k = 0, . . .m − 1. This is equivalent to the following,
assuming the �rst-order multiplicity condition:

(a) F (2)
k = 0 for k = 0, . . . ,m − 3 (i.e., mult(0,0)(F

(2)) ≥ m − 2 );

(b) F (2)
m−2 = −RF (1)

m−1 − 1
2
R2F (0)

m = 1
2
R2F (0)

m ;

(c) F
(2)
m−1 = −RF (1)

m − 1
2
R2F

(0)
m+1.

The sheaf interpretation of this is as follows. Using the notation above we
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have the diagram

0 0
↓ ↓

0 → L → L(E) → OE (m − 1) → 0
∼= ↓ ↓ ↓

0 → L → L(2E) → L(2E)|2E → 0
↓ ↓

OE (m − 2) ∼= OE (m − 2)
↓ ↓

0 0

Taking cohomology, this gives

0 0
↓ ↓

0 → H 0(L) → H 0(L(E)) → Cm → H 1(L)
∼= ↓ ↓ ↓ ∼= ↓

0 → H 0(L) → H 0(L(2E)) → H 0(L(2E)|2E) → H 1(L)

↓ ↓

Cm−1 ∼= Cm−1

↓

0

of sheaves on the blowup X .
The requirement of (a) in the second-order multiplicity condition is that

F (2) lie in the space H 0(L(2E)). The restriction map from this space to
H 0(L(2E)|2E) is simply the map taking F (2) to its two lowest-order parts (the
parts of homogeneous degrees m − 2 and m − 1); this target space is, as the
diagram shows, naturally �ltered by the Cm piece of homogeneous degree m−1
and the C

m−1 piece of homogeneous degree m − 2.
Now the homogeneous polynomials 1

2
R2 F (0)

m of degree m − 2 and

−RF (1)
m − 1

2
R2F (0)

m+1 of degree m−1 can be therefore considered, as an ordered
pair, to lie in this space H 0(L(2E)|2E). Therefore the requirement of (b) and
(c) is that the polynomial F (2) in H 0(L(2E)) must map to this ordered pair in
H 0(L(2E)|2E).

By the exactness of the horizontal sequences, such a polynomial F (2) exists
if and only if this ordered pair maps to zero in H 1(L) under the coboundarymap
�. We therefore obtain the obstruction element

�(
1

2
R2F (0)

m , −RF (1)
m −

1

2
R2F (0)

m+1) ∈ H 1(L)
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which must be zero for the original curve C0 to deform to second order.

6. Triple Points.

Let us apply these considerations to the analysis of the case of triple points.
We again use the notation Ld(1

r , 2s, 3t ) to denote the invertible sheaf on the
blowup of the plane at r + s + t points, corresponding to the linear system of
plane curves of degree d with r simple points, s double points, and t triple
points prescribed.

Firstly, let us remark that we can assume that the general triple point is
either ordinary (with three distinct tangents) or has at least two distinct tangents.
For this we may suppose (by increasing the number r of simple points) that the
dimension of the linear system is exactly zero. Now suppose that the general
member has a non-ordinary triple point with a triple tangent. Removing this
triple base point from the conditions on the system, we see that we arrive at
a linear system |D| of dimension at most six. If the dimension is exactly six,
we are done. If the dimension is at most two, already by induction and the
double point case, imposing a double point will give a non-reduced general
curve, which is a contradiction. If the dimension is three, then imposing a
double point will either make the general member non-reduced, or will give
a triple point; in either case we have a contradiction.

If the dimension is four, consider the induced map φ : X → P4, where
X is the blowup of the plane at the base points. If the image of φ is a curve,
then imposing a double point is equivalent to imposing a tangent line to the
curve, in which case again we get a non-reduced component. Hence we may
assume that the image of φ is a surface. Look at the tangent hyperplanes at the
point in question, which form a pencil. In this pencil there is assumed to be a
triple point intersection; therefore the general element of this pencil has at least
two �xed tangent directions (a pencil generated by a double point curve and a
triple point curve will have every member having the two tangents of the double
point curve). Therefore the second fundamental form of the surface must be
zero-dimensinal, since this is happening at a general point. Hence the surface
is developable, and therefore already imposing a general double point gives a
non-reduced component.

Finally if the dimension is �ve, again consider the map to P
5 given by the

linear system. The image is again a surface by the same arguments. Assume
that the general triple point has a single tangent. Look at the tangent space to
this family of hyperplanes: these correspond to curves with a double point and
a single tangent. However there is a two-dimensional family of such curves,
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and therefore these are all of the tangents. Again this implies that the surface is
developable, and we have a non-reduced component to the double point system
already.

Theorem 6.1. Suppose that for r + s + t general points there exists a divisor
C ∈ |Ld(1

r , 2s, 3t)| with isolated singularities. Then H 1(X, Ld(1
r , 2s, 3t )) =

0.

Proof. Again we work by induction, on t ; for t = 0 the result is the double
point case. By the above discussion we may assume that the general triple point
is ordinary, or has at least two tangents. Hence we may assume that coordinates
have been chosen so that F

(0)
3 = x 3 + y3 or F

(0)
3 = x 2y . We will start with the

�rst case.
Both the �rst-order and second-order conditions come into play in the triple

point analysis. The �rst-order analysis gives the long exact sequence

0 → H 0(Ld (1
r , 2s, 3t)) → H 0(Ld (1

r , 2s+1, 3t−1)) →

→ H 0(OE (2))
�
→ H 1(Ld (1

r , 2s, 3t )) → 0

where E is the exceptional divisor on the blowup X over the last triple point.
The last term is actually H 1(Ld(1

r , 2s+1, 3t−1)), which by induction we may
assume is zero. Hence the coboundary map � is onto, and the dimension of the
H 1 in question is at most three.

The �rst-order condition gives that the element −RF
(0)
3 = −3(ax 2+by2),

as a homogeneous quadratic in the coordinates of E , must go to zero for all
choices of a and b. Unfortunately this cannot prove the zeroness of the H 1,
since for this (or any) �xed F (0)

3 , we cannot span the three-dimensional space
H 0(OE (2)) by varying a and b.

The second-order condition gives the sequence

0 → H 0(Ld (1
r , 2s, 3t)) → H 0(Ld (1

r+1, 2s, 3t−1)) →

→ C
5 �
→ H 1(Ld (1

r , 2s, 3t)) → 0

where the last term is zero by the induction hypothesis. The map on the right
of the �rst row sends the second-order term F (2) to its two homogeneous lower-
order pieces, of degree one and two. The second-order analysis says that this
must go to the pair of homogeneous polynomials

(
1

2
R2F (0)

3 , −RF (1)
3 −

1

2
R2F (0)

4 );
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note that the linear term here is 3(a2x + b2y).
As we remarked earlier, the �rst-order polynomial F (1) , and hence its cubic

term F
(1)
3 , depends only on F

(0)
3 , by the �rst-order analysis. Hence we can treat

the term −RF (1)
3 as �xed, and not subject to change at the second-order step.

By making a nonlinear analytic change of coordinates at the given point
(essentially replacing (x , y) with (x + P, y + Q) for polynomials P and Q
of higher degree) we can arrange that the degree four part F

(0)
4 of the original

equation is general. (Note that this has no effect on the F
(1)
3 term as remarked

above.) In this case the contribution of R2F (0)
4 to the second component of the

map above will be general enough so that this second component will vary as
a general quadratic in the parameters a and b, with quadratic expressions in x
and y . This is suf�cient to prove that we will span the full 5-dimensional space
in the restriction map to C5, and hence the coboundary map � will be zero.

To be speci�c, this change of coordinates has the following effect on the
third and fourth order terms of F (0):

(5) (x + P)3 + (y + Q)3 + F (0)
4 (x + P, y + Q) =

= x 3 + y3 + [3x 2P2 + 3y2Q2 + F (0)
4 (x , y)]+ O

where P2 and Q2 are the quadratic terms of P and Q , respectively; the
bracketed terms above form the �new� F (0)

4 term. Applying R2 to this, we
see that we have effected a change of 3R2(x 2P2 + y2Q2) in the mapping.
Collected in terms of x and y , these are three independent quadratic expressions
for general P2 and Q2. Speci�cally, if P2 = c0x

2 + c1xy + c2y
2 and

Q2 = d0x
2 + d1xy + d2y

2, then the above quadratic part is

x 2(12c0a
2 + 6c1ab + (2c2 + 2d0)b

2) +

+ xy(6c1a
2 + (8c2 + 8d0)ab + 6d1b

2) +

+ y2((2c2 + 2d0)a
2 + 6d1ab + 12d2b

2)

and the determinant of the above 3× 3 matrix of coef�cients is not identically
zero.

The nonlinear change of local coordinates is equivalent to making a non-
linear deformation arc (instead of the linear deformation arc pt = (at, bt)).

The same considerations (and similar computations) apply in the case when
F

(0)
3 = x 2y . �
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