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SIGN-CHANGING SOLUTIONS FOR A NONLINEAR
DEGENERATE ELLIPTIC SYSTEM

L. THI HONG HANH - D. TRONG

In this article, we study the multiplicity of weak solutions to the non-
linear degenerate elliptic system
2
_ (9 Uuj _
ox?

Zazuj k 2 .
|X| —+),juj:Zﬁijuiuj, in Q,
i=1

dy?
uj(x,y)=0, on dQ,j=1,... .k,
where Q C R? is a bounded smooth domain, Ai>0k>2j=1...k,
Bij are constants satisfying B;; >0, Bi; = Bj; <0for 1 <i< j<k. The

existence of sign-changing solutions is proved by the truncation method
and the invariant sets of descending flow method.

1. Introduction
In the last decades, the nonlinear Schodinger system

k
_Auj—‘v-kjuj: Z[Bijul-zuj, in Q.,
i=1 (D

uj(x) =0, on dQ,j=1,... .k,
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where Q C RV (¥ = 2,3) is a bounded domain with smooth boundary, and
Ai>0,B;;>0,1<j<k, B;j=PBji, 1 <i< j<kareconstants, has been studied
by many authors. Mathematical work has been done extensively in recent years,
refer the reader to [1, 4-6, 12, 14, 15, 19, 22, 26] and the references therein,
for the existence theory and the studies of qualitative property of solutions to
attractive and repulsive systems.

One of the classes of degenerate elliptic equations that has been studied
widely in recent years is the class of equations involving an operator of the
Grushin type (see [8])

Go = A+ x[**A,, a>0.

Note that Gy = A is the Laplacian operator, and Gy, when o > 0, is not
elliptic in domains intersecting the surface x = 0. Many aspects of the theory of
degenerate elliptic differential operators are presented in monographs [24, 25]
(see also some recent results in [2, 3, 7, 9-11, 16-18, 20, 23] and the references
therein).

In this paper, we consider the existence of sign-changing solutions of the
nonlinear degenerate elliptic system

azuj ‘ ‘28
dx? dy?
uj(x,y) =0, ondQ, j=1,...k,

k
2 .
+Aju; = Zﬁiju,-uj, in Q,
i=1

where Q C R? is a bounded smooth domain, ; > 0,k >2,j=1...,k, B;; are
constants satisfying B;; >0, B;; = B;i <O0for1 <i< j<k.

We assume U = (uy,...,ux), € € R is a small parameter, F (U, €), g—z(U,s)
are continuous functions, and F(U,¢) = F(—U,¢€). For € = 0, we understand

JdF

FU.0 =0 2

(U,0) =0.

Then we consider the perturbed problem

82 28 MJ
8x2

F
>+ Aju; = Zﬁu“”} (Us), in Q,

2)
uj(x,y) =0, on 89, j= 1,...,k.

Our main result is given by the following theorem.

Theorem 1.1. The system (1) has infinitely many solutions with each component
being sign-changing.
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Theorem 1.2. Let [ € N*. Then there exists € > 0 such that for €| < g, the
system

82uj 282uj k 2 8F .
_ 32 —|x| 8)12 +z«juj:izzlﬁ,’juiuj—|—&7uj(U,8), n Q., 3)

uj(x,y) =0, ondQ, j=1,... k.

has [ pairs of sign-changing solutions.

Corollary 1.3. For each | € N7, there exists B; > 0 such that for B;; = Bi < By
with 1 <i < j <k, system (1) has at least | pairs of sign-changing solutions.

The structure of our note is as follows: In Section 2, we present some defi-
nitions and preliminary results. In Section 3, we obtain the sign-changing solu-
tions of the perturbed problem (3), then we obtain the main result.

2. Preliminary results

Definition 2.1. By $?(Q) we will denote the set of all functions u € L?(Q) such

d
that 2= € L*(Q), |x| a—u € L*(Q). We define the norm in this space as follows
Y

ox
5 2
lullge ) = /Qw+ )w@
Q

We can also define the scalar product in $?(Q) as follows

03) (.7) +<8u 8v> +(‘ ‘8u | |8v>
u,v = (u,v Rt Moy Mgy '
s TR PE@ T 9x 9x ) 12yq) Iy 9y 20

The space Sio(Q) is defined as the closure of C}(€) in the space S7(Q).

Ju

2
d
2
55| M

ou
dy

The following embedding inequality was proved in [23, 25]

1
P
(frax)" <o)l

where 1 < p <6,C(p,Q) > 0. The embedding SiO(Q) — LP(Q) is compact if
1<p<é.
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Definition 2.2. Let B be a real Banach space with its dual space B*,® € C! (B, R).
We say that P satisfies the Palais—Smale if for any sequence {u,}'—* C B such
that ®(u,) is bounded and

1/ ()|

then there exists a subsequence { unk}’;if“’ that converges strongly in B.

B*—>Oasn—>oo,

From Theorem A in [21], we have

Theorem 2.3. Let B be a Banach space, ® be an even C 1—functional onB, A be
an odd, continuous mapping from B to B, and P;,Q;, j=1,...,k be open convex
subsets of B with Q;j = —Pj. Denote W = U’j‘-:] (PiUQ;), X = ﬂ';zl (dP;iNJQ;).
Assume

(Al) D satisfies the Palais-Smale condition.
(A2) ¢* =infex P(x) > 0.

(A3) Foreach by > 0and cy > 0, there exists b= b(by, cp), such that if |P(x)| <
D®(x)|| > by, then

(D®(x),x —Ax) > b|jx — Ax|| > 0.

CO’

(A4) A(dPj) C Pj, A(dQ;) CQj, j=1,...,k
Put
T';={E CB:E iscompact,—E =E,y(ENc ' (X)) > j for c € A},
A={0€C(B,B):cisodd 6(P;) CP;,c(Q;)CQj, j=1,....k

o(x) =xif®(x) <0}

where v = Y(E) denotes the genus of a symmetric set E
y=min{n : there is an odd map @) : E — R"\ {0}}.

We ssume that

(A5) I'jis nonempty for j=1,2,....

We define
ci= inf sup P(x), j=1,2,...,
/ E€l)xep\w )
K. ={xeB:DP(x) =0,P(x) =c}, K. =K \W.
Then

(1) cj>cy, K:j;é(bforjzl,Z,....
(2) cj— +oo, as j— oo

(3) Ifcj=cjp1=---=cjy1=c then y(K}) > L.
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3. Proof of the main result

Define the Euler—Lagrange functional associated with the problem (1) as follows

2/Z<8u] 8u] +7Lu>dxdy—/2ﬁu” dxdy

i,j=1
forU = (u1,...,u) €S =157 (Q) x---x 87 (), the k-fold product of (87 ,(L))".
We shall use the equivalent inner products

du; d du; d
(Mjﬂ’j)j:/( uc Vj +x |2 i V]+)L uy,)dxdy, j=1,...k
Q

dx dx y dy

and the induced norm || - || ;. The inner product

k
Z Uj,vj); = (U1,...,ux), V=v1,..., %),
gives rise to anorm || - || on S.
Recall that a function U = (uy,...,u) € S is called a weak solution of the

problem (1) if for all v; € Sio(Q),j =1,...,k, we have

k7 u; dv; du; dv;
/Z < ax} axj I |2 J af +A; u]vj> dxdy = / Z ﬁl]u u;jvidxdy.
o /=1

i,j=1

Then the critical points of ® are weak solutions of the problem (1).

We recall that U = (uy,...,u;) is a sign-changing solution of the problem
(1) if is a weak solution to the problem (1) and uf #0,j=1,...,k, where
7 =max{0,u;},u; =min{O0,u;}.

u’
J
For M > 0, we define

U
Fy(U,€) = F(‘PM(\UDW,SL
where ¢, is a monotonic smooth function, satisfying

t if t<M,

t) = 1

Pul) M5 if 12 M.
Then we consider the truncated system

82uj .
-3 — |x] 8y2 —|—7L juj = ZBU” uj+ u; (U,e), in Q, @

uj(x,y)=0, on 89, j=1,... .k
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If U= (uy,...,u;) is a weak solution of the system (4), and there exists M >
0 such that |U(x,y)| < M for all (x,y) € Q, then U is also a solution of the
perturbed the problem (3). The system (4) has a variational structure given by
the functional

By (U) = D(U) — / Fu(U, €)dxdy

£(5

k
Z Bij ”12

i,j=1

1 8u]

8u]

+ [xf?

+7L,u3> dxdy (5)

u?dxdy—/FM(U,s)dxdy.

-h\—‘

2]
El

Lemma 3.1. &y is a C'-functional on S, and satisfies the Palais-Smale condi-

tion.
Proof. Itis easy to verify that @), is a C!-functional. Also, forV = (vy,...,v) €
S, we obtain
du; 8vJ zauj v
(DPy (U /Z<8x I |x| Jy 9y +Ajujv; | dxdy

(6)
k
/ Z B,Ju ujvidxdy — /ZTM (U, €)v;dxdy,

Qljl j=1

there exists an arbitrary small constant &, such that for |g| < &y, we have that

Py (U) - i<D¢M 4/Z<

8u] 5 | duj 2

dy

+/1,u§> dxdy

Q
ZWUI? -
> P
(7N
Then any Palais-Smale sequence of ®y is bounded in S. Let U, = (utn1,. .., Un i) €

S be a Palais-Smale sequence of the functional ®,;. Assume that U,, — U in S.
By the imbedding S%,O('Q) < L*(Q) is compact hence U, — U in L*(Q). Then
/ Z (‘ M’LJ ”m,J) ? 2 |9 (un,j — tm,j) ?

dy

+ Aj(un,j — Mm,j)2> dxdy
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= (DPy(Uy) — DPp(Un), Uy — Upy) +/ Z ﬁ,]un,unj(unj U, j)dxdy
i,j=1

k
- / Y. Bijitp, ittm,j (ttnj — ttm,) dxdy

o =1
JF, JF,
+/Z < M U, e 31/:]” (Um,g)) (Un,j — Upm,j)dxdy
o /=l

1/4

k
o(1) +clUnlieg | [ Y. (.~ ey
Q=

1/4

k
e Unllsq / Y. (= m) d

aF
+/ =M

0( )+c|\Un—Um||L4(Q) —0, asn,m—oo.

|, j — tm, j|dxdy

JFy
,E) — Tuj(Umvg)

Therefore, we conclude that up to a subsequence a Palais-Smale sequence U,
is a Cauchy sequence in S, hence a convergent sequence. O

We put
A:U:(ul,...,uk) ES'—)V:(Vl,...,Vk) =AU €S
such that

dv; dy; dv; oy 3
[ (G52 ;a’“”f"’f)"xdy—/ L Pueivideds

i=1,i#j
= /Bij}V/jdXd)"i‘ /W(U,e)y/jdxdy,V‘P = (l[/l,.. . l//k) S S,] =1,...,k
Q a
@)
Lemma 3.2. The operator A is well-defined and odd, continuous.

Proof. 1t is easy to verify that A is a odd functional. Therefore, V = AU can be
obtained by solving the minimization problem

inf{G(V):V €S}
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where

2 2
G(V)= ! Ek %; +|x)? al +A; v dxd ! Ek Biju?v2 dxd
2) 4 ox dy Y7o ) 4 PUiVOREY
o /=1 o LimLiFj

)

Mw, €)v;dxdy.
uj

k k
—/ Bjjbl;dexdy—/Z
Q =1 a j=1

J

LetV =AU,V =AU,V = (v,...,%), U = (iiy, ..., ). From (8), we have

v -v|?
k d(vi—v dlvi—v:)
:/Z <‘ ( 5 DNy | 28 ]ay 2 +7Lj(vj—v_j)2> dxdy
o /=1
k k
:/ 27& ﬁij(uizvj—ﬁizﬁj)(vj—V_j)dxder/Z‘,lﬁjj(ui—ﬁi)(vj—v_j)dxdy
o =it =

+/Z <%IZ:I(U,£) %2:[((7 )> (vj—V;j)dxdy

Q
: 2 2 : 3 3
<cf X -l —vldsdyc [ Yl — ) lv; — vldvdy
ol : =1

dFy dFy

+/__1 S U.) = S0, €)| by dxdy
Q=
dFy dFy - _
u-U||v-V U,e)— U V-V
<c(lu =011V =91+ | 5.0 - S0 | IV - o)
hence AU —AU =V —V —0asU — U inS. O

Lemma 3.3. For each by, co > 0, then the following property holds: if |®y (U)| <
co and ||®py(U)|| > by, then there exists b = b(by,cy) such that

(D®y (U), U —AU) > b||U —AU| > 0.
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Proof. We have

k
—W-v. )~ [ Y Bt vpyjdsdy,
for ¥ = (y1,...,¥) € S. By using ¥ = U —V in (9), we obtain

Do), U V)= UV~ [ Y B v,)ddy.
Q i,j=1,i#j
By Bij = Bji <0for 1 <i< j<k, hence
(DY (U),U—V) > |U-V|? (10)
and

k
(DPy(U),U V) > — / Z Bijuf (uj —v;)* dxdy. (11)
i,j=1i#j

It follows from (9) and (11) that

k
’<D<DM(U)"P>’ <U VlP Z Bl]uz —Vj)l[/jdxdy
Qt}:lt;ﬁ]
1/2
k k
Sl -vil+ (= [ Y Bty —v2dsdy| (=] Y Budeiduy
& bi=Lif o =Lt

< U=V +elUll e ¥ 10 (DB (U), U = V)2
which implies that

ID@y (V)| < |U =V +¢|Ul(DPy(U), U~ V)", (12)
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There exists a small constant &, so that for || < &y, by (5) and (9), we have

By (U) —%<U—V, u)

1 1 k
=®y(U)— - (DDy (U f/ Z ﬁuu uj(uj—v;)dxdy
4 4 ey
J=Li#]
oF
—ZluiP+ / z (U )y~ Fu(U,e) | drdy
(13)
Z ﬁ,Ju uj(uj—v;)dxdy
Q Li=1iA]
1o, 1 k
21||UH 2 Y ﬁu” uj(uj—v;)dxdy—c.

So by (13), we obtain
lu?

c(14+|®2y(U)|)+c|(U-V,U)|+¢

/ Z B,Ju uj(uj—v;)dx

i,j=1,i#j

c(1+|@y(U)]) +c|U V| + HU||2+CHU||L4 (DD (U), U~ V)2,

B (14)
Given a positive constant C, if
(DOy(U),U~V) >,
then by (10) we can easily obtain
(DD (U),U—~V)>C|lU-V]>0.
The conclusion holds; if not, let
(DDy(U),U—V) <, (15)
by (14) and (15), we have
U2 < ¢ (1+|@u(U)| +[U =V]?) +eoC U | (16)

Hence, taking C such that ¢oC < 1/2, then we have

IU|* < c(14|@u(U)|+[|U-V]?). (17)
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Substituting (17) into (12), we obtain
| Doy ()]
U=V e (1+1@uU) |+ U =VIF) " (Dew(0).U V)12 15
<|U-vi+ %HD‘PM(U)II +e(1+ [Py (V)| +[IU = V) [|lU = V.
Therefore
1Dy (V)| < e(1+|@u(U)|+ U= VIP) U~V

If | @y (U)| < co and || DDy (U)| > bp > 0, we deduce that there exists b =
b(bo,co) such that ||[U — V|| > b. So it follows from (10) that

(D®y(U),U —AU) > b||U —AU|| > 0. O
Let P;,Q; for j=1,...,k be open convex subsets of S, defined by
P;=P;(8) ={U = (ur,...,ux) € S: [|uj|2(q) < 8},
0;=0j(8) ={U = (u1,...,ux) €S |luf || < &}-
Lemma 3.4. There exist § > 0 and €y > 0 such that for || < &y, it holds that

A(an)CPj, A(an)CQj, forj=1,... k.

Proof. Choose ¥ =Vt = (v],...,v]) as test function in (8), we have
vt 2 k
/ a—] + |)c|2 5 + ﬁ,j(v;r)z dxdy — / Z B,Julz 2dxdy
9) =1,i#j

<c /(uj)%jdxdy—i—/ -

Q Q

Then

8FM(
du;

IV EZs 0y < etlif a1V e @) + 2 U,e)

Vil (19)
L=(Q)

Take & > 0 such that ¢; 6> < 1/4 and choose &, > 0, such that

0
< —.

dFy
7(U78) 4

gl <eg

L=(Q)
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Then for U € 90, Hu7||L4(Q) =, we have

1 1
v} 1) < Z5|\Vf||L4(Q) + Z5||V;r||L4(g)

hence 1
+
Vi s @) < 55-
That is, for U € dQ;, we have V = AU € Q; and A(dQ;) C Qj, j=1,...,k.
Similarly, A(P;) C Pj, j=1,... k. N

Lemma 3.5. There exist 6 > 0 and c¢* > 0, such that if U € ¥ and |€| < &y, then
CI)M(U) 2 c*.

Proof. We have that

w3 5 (|5 e

1 k
_/FM(U,S)dxdyz 2|]U||2_4/Ziﬁjju‘}dxdy—/FM(U,s)dxdy
Q /= Q

5| du

2 k
- 1
J —i—?Lju?) dxdy — 4/'Zlﬁijui2u§dxdy
Q Lj=

dy

> 1 [Us gy — 21U ) — 1 (U, )l

ForU e X = ﬂlj‘.:l(an NdQ;), we have
U740 /Z )dxdy 2kJuc |Is ) = 2k6*.

By Lemma 3.4, taking 6 > 0 such that 6% < 4c1, and choosing &y, such that
for || < &y, we have ||Fy (U, €)|| =) < 4c15 Therefore,

1 1
Dy (U) > €182 — 8% — 26162 > 50152 =c">0.
Let
I';={ECX:Eiscompact, —E =E,y(ENnc ' (Z)) ijorGEA},
A:{cec(x,x) codd, 6(P;) C Pj, 6(Q;) C Q;, j=1,... .k,

o(U)=Uif Iy(U) < 0},
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and y = y(F) is the genus of E,
y = min{n : there is an odd map @) : E — R"\ {0}}.
Now we define a sequence of critical values of the truncated functional ®,,,

cj(M, €)= inf sup Py (U), j=1,2,...
E€ljyep\w

where W = U’J‘.:1 (P;UQj).

Lemma 3.6. The set I'; is nonempty, and there exist d; > 0 independent of M,
€ and SIE,}) > 0, such that if |€| < SZE,;), then cj(M,€e) <d;.

Proof. Let B™ be the unit closed ball of R™®. Assume n = j+ k. Denote r € R
by t = (t1,...,t) and t,; = (timstoms - - - o tum) € R" form = 1,... k. Let v;y, €
Cy(Q),i=1,...,n,m=1,... .k be nk functions in S with disjoint supports.
Define

o) B* —S
r— (P(j)<l) :R(Ztilvil,...,anvik) €S,
i=1 i=1

where R is large enough such that ®(¢(/)(r)) < —10 for r € dB™. Then there
exists gy > 0, so that if |e| < &y, then we have

Py (pV (1)) <D(eV (1) +1<0

for t € dB™. By [13, Lemma 5.6], we have E; := ¢/)(B"*) € T';. Then T; is
nonempty.
Next we estimate ¢ (M, €) for |e| < &y. We have

cj(M,e) = inf sup Py (U) < sup Py (U) < sup (P(U)+1) :=d;.
E€Tjyep\w UEE; UEE,

O

We complete the proof of Theorem 1.1 and Theorem 1.2. For fixed M > 0
and € = 0, we will obtain the critical point U of ®.

Lemma 3.7. Assume D®y(U) =0, @y (U) < L. Then there exist €y > 0 and
K = K(L) independent of M, €, such that for |€| < gy,

1U ()| =) < K-
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Proof. Denote U = (uy,...,ux). By (7), for |€| < &y, we have

L> @y (U) - §<D¢M<U>, )
8uj 2

L E (5 el

k
/Q<FM<U8 ZTM U,€)u )dxdy> lU]? = c.

+ W?) dxdy 20)

We know that there exists C(L) > 0, such that ||U|| < C(L). Choose y; =

wir|ujr|* 2, = (y1,..., y) as the test function in (D@ (u;), ¥) = 0, where
r>1,T >1,and

We have

<a""a% | |281;J aa"” + 2 u,%) dxdy

/ ox Jdx
k OF 201
/ Z Bijutu;y;dxdy + / TM (U,€)yjdxdy.
i=1 uj
Q o)
By (21), it is easy to obtain the inequality
du; 81//] 28u, 81//]
/ <8x ax | | y ay dXd
(22)

/ﬁ”u l//,dxdy—l—/‘ (U, €e)yj| dxdy.

Firstly, we estimate the left-hand side of (22). By S%70(Q) < L9(Q) we have
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du;j 8% ZauJ Iy,
/(ax dx +h dy dy dxdy
Q
8147 2

S (0r— j
= (2r 1)/9 <‘ dx
- 2r—1/ Alujr|"|*
- 2 Ja dx

+ |
c(2r

)
> 5 / |ujr | dxdy
o

that

2
T > \ujr\zrfzdxdy

23)
Aur|”|? (
3y‘ dxdy

1/3

Let M > 0, there exists &y such that for || < &y, we have

0Fy
8uj
Then the right-hand side of (22) satisfies

/Buu %dxdy—i—/

< 1.
L2(Q)

(U,e)

(U,€)y;j| dxdy

/\uj|3|ujT|2r71dxdy+/l'|ujT|2r71dxdy
Q Q

<c /(1 + |uj|?) uj | dxdy
Q

<c 1+/\uj|3|uj]2r71dxdy

1 2
3 3

<c| 1+ /|uj]6dxdy /\uj|3rdxdy (24)
Q

Wi

<cl|l+ /\ujP’dxdy

2
3

<cmax{ 1, /|uj|3’dxdy
Q
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Let T — oo such that u;7(x,y) — u;(x,y). By (23) and (24), we obtain

b :
6r 3r
(/Q]ujﬂ dxdy) < 2r_lmax{l, </Q|MJ| dxdy) } (25)

Using iteration, we have that

1 1 1
i 4c\ # 5
(/ |uj‘12dxdy> < <C> max{l, </ ‘uj’6dxdy> } (26)
Q 3 Q
Therefore, for any m = 1,2,... and by (26), we obtain
1 _1_ 1
3. mt2 322 2Im+2e N\ 2 3 mtl 320
</Q |ujl dxdy> <2m+2_1 max-< 1, /Q |ujl dxdy
. 1 1
m 2l+lc 22 6
< —_— 1 /|® dxd
_g<21+2_1> max{ ,(/Q]u]\ xy) },

1
m i+1 22
We put Cyp = [] <%>2+ , then
0

=

IN

lullsmv2 ) < o1+ ) @7)
Let m — o0 in (27), by (20), we have
[l =) < Co(L+[|ujlls() S c=c(L),Vj=1,....k

Hence
1U ()|l =@) < K.

O

Proof of Theorem 1.2. By Lemmas 3.1, 3.3-3.6, for a sufficiently small param-
eter &, the functional @), satisfies the conditions (A3), (A4)—(A7) of the The-
orem 2.3. Then, ¢;(M,€) is a critical value of the functional @, and each
component of the corresponding critical point U;(M,€) is sign-changing. That
is, Uj(M, €) is a sign-changing solution of the truncated the system (4). More-
over, given / € N*, L* > 0, by Lemma 3.6, there exists &, > 0 such that for

le| <& = min{slfll), e ,el(é)},

cj(M,e) <L* =max{di,...,d;}, j=1,...,L
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By Lemma 3.7, there exist the constant K* independent of M, €, and &, > 0,
such that for |e| < &y, we obtain

|U;j(M, €)=y <K*, j=1,...,L

Now take M > K* + 1, then for |e| < g, Uj(e) :=U;(M,¢€),j=1,...,1 are
sign-changing solutions of the perturbed the system (3). O

Taking € = 0, we have

JdF
FU,0)=0, 2-(,0)=0,
then the solutions to the perturbed system (3) are also solutions to the original
system (1).

We have obtained the sign-changing critical points of the truncated func-
tional ®),. Therefore, by Theorem 1.2, we know that system (3) has [ pairs of
sign-changing solutions. Then, for € = 0, the system (1) has infinitely many
sign-changing solutions, and we have thus proved the main result.
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