
LE MATEMATICHE
Vol. LXXX (2025) – Issue II, pp. 641–659
doi: 10.4418/2025.80.2.7

SIGN-CHANGING SOLUTIONS FOR A NONLINEAR
DEGENERATE ELLIPTIC SYSTEM

L. THI HONG HANH - D. TRONG

In this article, we study the multiplicity of weak solutions to the non-
linear degenerate elliptic system

−
∂ 2u j

∂x2 −|x|2
∂ 2u j

∂y2 +λ ju j =
k

∑
i=1

βi ju2
i u j, in Ω,

u j(x,y) = 0, on ∂Ω, j = 1, . . . ,k,

where Ω ⊂ R2 is a bounded smooth domain, λ j > 0,k ≥ 2, j = 1 . . . ,k,
βi j are constants satisfying β j j > 0, βi j = β ji ≤ 0 for 1 ≤ i < j ≤ k. The
existence of sign-changing solutions is proved by the truncation method
and the invariant sets of descending flow method.

1. Introduction

In the last decades, the nonlinear Schödinger system

−∆u j +λ ju j =
k

∑
i=1

βi ju2
i u j, in Ω,

u j(x) = 0, on ∂Ω, j = 1, . . . ,k,

(1)
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where Ω ⊂ RN (N = 2,3) is a bounded domain with smooth boundary, and
λ j > 0, β j j > 0, 1≤ j ≤ k, βi j = β ji, 1≤ i< j ≤ k are constants, has been studied
by many authors. Mathematical work has been done extensively in recent years,
refer the reader to [1, 4–6, 12, 14, 15, 19, 22, 26] and the references therein,
for the existence theory and the studies of qualitative property of solutions to
attractive and repulsive systems.

One of the classes of degenerate elliptic equations that has been studied
widely in recent years is the class of equations involving an operator of the
Grushin type (see [8])

Gα := ∆x + |x|2α
∆y, α ≥ 0.

Note that G0 ≡ ∆ is the Laplacian operator, and Gα , when α > 0, is not
elliptic in domains intersecting the surface x = 0. Many aspects of the theory of
degenerate elliptic differential operators are presented in monographs [24, 25]
(see also some recent results in [2, 3, 7, 9–11, 16–18, 20, 23] and the references
therein).

In this paper, we consider the existence of sign-changing solutions of the
nonlinear degenerate elliptic system

−
∂ 2u j

∂x2 −|x|2
∂ 2u j

∂y2 +λ ju j =
k

∑
i=1

βi ju2
i u j, in Ω,

u j(x,y) = 0, on ∂Ω, j = 1, . . . ,k,

where Ω ⊂ R2 is a bounded smooth domain, λ j > 0,k ≥ 2, j = 1 . . . ,k, βi j are
constants satisfying β j j > 0, βi j = β ji ≤ 0 for 1 ≤ i < j ≤ k.

We assume U = (u1, . . . ,uk), ε ∈R is a small parameter, F(U,ε), ∂F
∂u j

(U,ε)

are continuous functions, and F(U,ε) = F(−U,ε). For ε = 0, we understand

F(U,0) = 0,
∂F
∂u j

(U,0) = 0.

Then we consider the perturbed problem

−
∂ 2u j

∂x2 −|x|2
∂ 2u j

∂y2 +λ ju j =
k

∑
i=1

βi ju2
i u j +

∂F
∂u j

(U,ε), in Ω,

u j(x,y) = 0, on ∂Ω, j = 1, . . . ,k.

(2)

Our main result is given by the following theorem.

Theorem 1.1. The system (1) has infinitely many solutions with each component
being sign-changing.
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Theorem 1.2. Let l ∈ N+. Then there exists εl > 0 such that for |ε| ≤ εl , the
system

−
∂ 2u j

∂x2 −|x|2
∂ 2u j

∂y2 +λ ju j =
k

∑
i=1

βi ju2
i u j +

∂F
∂u j

(U,ε), in Ω,

u j(x,y) = 0, on ∂Ω, j = 1, . . . ,k.

(3)

has l pairs of sign-changing solutions.

Corollary 1.3. For each l ∈ N+, there exists βl > 0 such that for βi j = β ji ≤ βl
with 1 ≤ i < j ≤ k, system (1) has at least l pairs of sign-changing solutions.

The structure of our note is as follows: In Section 2, we present some defi-
nitions and preliminary results. In Section 3, we obtain the sign-changing solu-
tions of the perturbed problem (3), then we obtain the main result.

2. Preliminary results

Definition 2.1. By S2
1(Ω) we will denote the set of all functions u ∈ L2(Ω) such

that
∂u
∂x

∈ L2(Ω), |x|∂u
∂y

∈ L2(Ω). We define the norm in this space as follows

∥u∥S2
1(Ω) =


∫
Ω

(
|u|2 +

∣∣∣∣∂u
∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u
∂y

∣∣∣∣2
)

dxdy


1
2

.

We can also define the scalar product in S2
1(Ω) as follows

(u,v)S2
1(Ω) = (u,v)L2(Ω)+

(
∂u
∂x

,
∂v
∂x

)
L2(Ω)

+

(
|x|∂u

∂y
, |x|∂v

∂y

)
L2(Ω)

.

The space S2
1,0(Ω) is defined as the closure of C1

0(Ω) in the space S2
1(Ω).

The following embedding inequality was proved in [23, 25]

(∫
Ω

|u|pdX
) 1

p

≤C(p,Ω)∥u∥S2
1,0(Ω) ,

where 1 ≤ p ≤ 6,C(p,Ω)> 0. The embedding S2
1,0(Ω) ↪→ Lp(Ω) is compact if

1 ≤ p < 6.
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Definition 2.2. Let B be a real Banach space with its dual space B∗,Φ∈C1(B,R).
We say that Φ satisfies the Palais–Smale if for any sequence {un}n=+∞

n=1 ⊂B such
that Φ(un) is bounded and∥∥Φ

′(un)
∥∥
B∗ → 0 as n → ∞,

then there exists a subsequence {unk}k=+∞

k=1 that converges strongly in B.

From Theorem A in [21], we have

Theorem 2.3. Let B be a Banach space, Φ be an even C1-functional on B, A be
an odd, continuous mapping from B to B, and Pj,Q j, j = 1, . . . ,k be open convex
subsets of B with Q j =−Pj. Denote W = ∪k

j=1(Pj ∪Q j), Σ = ∩k
j=1(∂Pj ∩∂Q j).

Assume

(A1) Φ satisfies the Palais-Smale condition.

(A2) c∗ = infx∈Σ Φ(x)> 0.

(A3) For each b0 > 0 and c0 > 0, there exists b= b(b0,c0), such that if |Φ(x)| ≤
c0, ∥DΦ(x)∥ ≥ b0, then

⟨DΦ(x),x−Ax⟩ ≥ b∥x−Ax∥> 0.

(A4) A(∂Pj)⊂ Pj, A(∂Q j)⊂ Q j, j = 1, . . . ,k.

Put

Γ j = {E ⊂ B : E is compact,−E = E, γ(E ∩σ
−1(Σ))≥ j for σ ∈ Λ},

Λ =
{

σ ∈C(B,B) : σ is odd, σ(Pj)⊂ Pj, σ(Q j)⊂ Q j, j = 1, . . . ,k,

σ(x) = x if Φ(x)< 0
}

where γ = γ(E) denotes the genus of a symmetric set E

γ = min{n : there is an odd map ϕ
( j) : E → Rn \{0}}.

We ssume that

(A5) Γ j is nonempty for j = 1,2, . . . .

We define

c j = inf
E∈Γ j

sup
x∈E\W

Φ(x), j = 1,2, . . . ,

Kc = {x ∈ B : DΦ(x) = 0, Φ(x) = c}, K∗
c = Kc \W.

Then

(1) c j ≥ c∗, K∗
c j
̸= /0 for j = 1,2, . . . .

(2) c j →+∞, as j → ∞.

(3) If c j = c j+1 = · · ·= c j+l−1 = c, then γ(K∗
c )≥ l.
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3. Proof of the main result

Define the Euler–Lagrange functional associated with the problem (1) as follows

Φ(U) =
1
2

∫
Ω

k

∑
j=1

(∣∣∣∣∂u j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u j

∂y

∣∣∣∣2 +λ ju2
j

)
dxdy− 1

4

∫
Ω

k

∑
i, j=1

βi ju2
i u2

j dxdy

for U =(u1, . . . ,uk)∈S= S2
1,0(Ω)×·· ·×S2

1,0(Ω), the k-fold product of (S2
1,0(Ω))k.

We shall use the equivalent inner products

(u j,v j) j =
∫
Ω

(
∂u j

∂x
∂v j

∂x
+ |x|2

∂u j

∂y
∂v j

∂y
+λ ju jv j

)
dxdy, j = 1, . . . ,k

and the induced norm ∥ · ∥ j. The inner product

(U,V ) =
k

∑
j=1

(u j,v j) j, U = (u1, . . . ,uk), V = (v1, . . . ,vk),

gives rise to a norm ∥ · ∥ on S.
Recall that a function U = (u1, . . . ,uk) ∈ S is called a weak solution of the

problem (1) if for all v j ∈ S2
1,0(Ω), j = 1, . . . ,k, we have

∫
Ω

k

∑
j=1

(
∂u j

∂x
∂v j

∂x
+ |x|2

∂u j

∂y
∂v j

∂y
+λ ju jv j

)
dxdy =

∫
Ω

k

∑
i, j=1

βi ju2
i u jv jdxdy.

Then the critical points of Φ are weak solutions of the problem (1).
We recall that U = (u1, . . . ,uk) is a sign-changing solution of the problem

(1) if is a weak solution to the problem (1) and u±j ̸= 0, j = 1, . . . ,k, where
u+j = max{0,u j},u−j = min{0,u j}.

For M > 0, we define

FM(U,ε) = F
(
ϕM(|U |) U

|U |
,ε
)
,

where ϕM is a monotonic smooth function, satisfying

ϕM(t) :=

t if t < M,

M+
1
2

if t ≥ M.

Then we consider the truncated system

−
∂ 2u j

∂x2 −|x|2
∂ 2u j

∂y2 +λ ju j =
k

∑
i=1

βi ju2
i u j +

∂FM

∂u j
(U,ε), in Ω,

u j(x,y) = 0, on ∂Ω, j = 1, . . . ,k.

(4)
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If U = (u1, . . . ,uk) is a weak solution of the system (4), and there exists M >
0 such that |U(x,y)| < M for all (x,y) ∈ Ω, then U is also a solution of the
perturbed the problem (3). The system (4) has a variational structure given by
the functional

ΦM(U) = Φ(U)−
∫
Ω

FM(U,ε)dxdy

=
1
2

∫
Ω

k

∑
j=1

(∣∣∣∣∂u j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u j

∂y

∣∣∣∣2 +λ ju2
j

)
dxdy

− 1
4

∫
Ω

k

∑
i, j=1

βi ju2
i u2

jdxdy−
∫
Ω

FM(U,ε)dxdy.

(5)

Lemma 3.1. ΦM is a C1-functional on S, and satisfies the Palais-Smale condi-
tion.

Proof. It is easy to verify that ΦM is a C1-functional. Also, for V =(v1, . . . ,vk)∈
S, we obtain

⟨DΦM(U),V ⟩=
∫
Ω

k

∑
j=1

(
∂u j

∂x
∂v j

∂x
+ |x|2

∂u j

∂y
∂v j

∂y
+λ ju jv j

)
dxdy

−
∫
Ω

k

∑
i, j=1

βi ju2
i u jv jdxdy−

∫
Ω

k

∑
j=1

∂FM

∂u j
(U,ε)v jdxdy,

(6)

there exists an arbitrary small constant εM, such that for |ε| ≤ εM, we have that

ΦM(U)− 1
4
⟨DΦM(U),U⟩= 1

4

∫
Ω

k

∑
j=1

(∣∣∣∣∂u j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u j

∂y

∣∣∣∣2 +λ ju2
j

)
dxdy

−
∫
Ω

(
FM(U,ε)− 1

4

k

∑
j=1

∂FM

∂u j
(U,ε)u j

)
dxdy

≥ 1
4
∥U∥2 − c.

(7)
Then any Palais-Smale sequence of ΦM is bounded in S. Let Un =(un,1, . . . ,un,k)∈
S be a Palais-Smale sequence of the functional ΦM. Assume that Un ⇀U in S.
By the imbedding S2

1,0(Ω) ↪→ L4(Ω) is compact hence Un →U in L4(Ω). Then

∫
Ω

k

∑
j=1

(∣∣∣∣∂ (un, j −um, j)

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂ (un, j −um, j)

∂y

∣∣∣∣2 +λ j(un, j −um, j)
2

)
dxdy
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= ⟨DΦM(Un)−DΦM(Um),Un −Um⟩+
∫

Ω

k

∑
i, j=1

βi ju2
n,iun, j(un, j −um, j)dxdy

−
∫
Ω

k

∑
i, j=1

βi ju2
m,ium, j (un, j −um, j)dxdy

+
∫
Ω

k

∑
j=1

(
∂FM

∂u j
(Un,ε)−

∂FM

∂u j
(Um,ε)

)
(un, j −um, j)dxdy

≤ o(1)+ c∥Un∥3
L4(Ω)

∫
Ω

k

∑
j=1

(un, j −um, j)
4dxdy

1/4

+ c∥Um∥3
L4(Ω)

∫
Ω

k

∑
j=1

(un, j −um, j)
4 dx

1/4

+
∫
Ω

k

∑
j=1

∣∣∣∣∂FM

∂u j
(Un,ε)−

∂FM

∂u j
(Um,ε)

∣∣∣∣ |un, j −um, j|dxdy

≤ o(1)+ c∥Un −Um∥L4(Ω) → 0, as n,m → ∞.

Therefore, we conclude that up to a subsequence a Palais-Smale sequence Un

is a Cauchy sequence in S, hence a convergent sequence.

We put

A : U = (u1, . . . ,uk) ∈ S 7→V = (v1, . . . ,vk) = AU ∈ S

such that∫
Ω

(
∂v j

∂x
∂ψ j

∂x
+ |x|2

∂v j

∂y
∂ψ j

∂y
+λ jv jψ j

)
dxdy−

∫
Ω

k

∑
i=1,i ̸= j

βi ju2
i v jψ jdxdy

=
∫
Ω

β j ju3
jψ jdxdy+

∫
Ω

∂FM

∂u j
(U,ε)ψ jdxdy,∀Ψ = (ψ1, . . . ,ψk) ∈ S, j = 1, . . . ,k.

(8)

Lemma 3.2. The operator A is well-defined and odd, continuous.

Proof. It is easy to verify that A is a odd functional. Therefore, V = AU can be
obtained by solving the minimization problem

inf{G(V ) : V ∈ S}
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where

G(V ) =
1
2

∫
Ω

k

∑
j=1

(∣∣∣∣∂v j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂v j

∂y

∣∣∣∣2 +λ jv2
j

)
dxdy− 1

2

∫
Ω

k

∑
i, j=1,i̸= j

βi ju2
i v2

j dxdy

−
∫
Ω

k

∑
j=1

β j ju3
jv j dxdy−

∫
Ω

k

∑
j=1

∂FM

∂u j
(U,ε)v j dxdy.

Let V = AU , V̄ = AŪ , V̄ = (v̄1, . . . , v̄k), Ū = (ū1, . . . , ūk). From (8), we have

∥V −V̄∥2

=
∫
Ω

k

∑
j=1

(∣∣∣∣∂ (v j − v̄ j)

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂ (v j − v̄ j)

∂y

∣∣∣∣2 +λ j(v j − v̄ j)
2

)
dxdy

=
∫
Ω

k

∑
i, j=1,i ̸= j

βi j(u2
i v j − ū2

i v̄ j)(v j − v̄ j)dxdy+
∫
Ω

k

∑
j=1

β j j(u3
j − ū3

j)(v j − v̄ j)dxdy

+
∫
Ω

k

∑
j=1

(
∂FM

∂u j
(U,ε)− ∂FM

∂u j
(Ū ,ε)

)
(v j − v̄ j)dxdy

≤ c
∫
Ω

k

∑
i, j=1,i̸= j

|u2
i − ū2

i | |v j| |v j − v̄ j|dxdy+ c
∫
Ω

k

∑
j=1

|u3
j − ū3

j | |v j − v̄ j|dxdy

+
∫
Ω

k

∑
j=1

∣∣∣∣∂FM

∂u j
(U,ε)− ∂FM

∂u j
(Ū ,ε)

∣∣∣∣ |v j − v̄ j|dxdy

≤ c(∥U −Ū∥∥V −V̄∥+
∥∥∥∥∂FM

∂u j
(U,ε)− ∂FM

∂u j
(Ū ,ε)

∥∥∥∥ ∥V −V̄∥),

hence AU −AŪ =V −V̄ → 0 as U → Ū in S.

Lemma 3.3. For each b0,c0 > 0, then the following property holds: if |ΦM(U)| ≤
c0 and ∥ΦM(U)∥ ≥ b0, then there exists b = b(b0,c0) such that

⟨DΦM(U),U −AU⟩ ≥ b∥U −AU∥> 0.
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Proof. We have

⟨DΦM(U),Ψ⟩

=
∫
Ω

k

∑
j=1

(
∂ (u j − v j)

∂x
∂ψ j

∂x
+ |x|2

∂ (u j − v j)

∂y
∂ψ j

∂y
+λ j(u j − v j)ψ j

)
dxdy

−
∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i (u j − v j)ψ j dxdy

= ⟨U −V, Ψ⟩−
∫
Ω

k

∑
i, j=1,i̸= j

βi ju2
i (u j − v j)ψ j dxdy,

(9)

for Ψ = (ψ1, . . . ,ψk) ∈ S. By using Ψ =U −V in (9), we obtain

⟨DΦM(U),U −V ⟩= ∥U −V∥2 −
∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i (u j − v j)

2 dxdy.

By βi j = β ji ≤ 0 for 1 ≤ i < j ≤ k, hence

⟨DΦM(U),U −V ⟩ ≥ ∥U −V∥2 (10)

and

⟨DΦM(U),U −V ⟩ ≥ −
∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i (u j − v j)

2 dxdy. (11)

It follows from (9) and (11) that

|⟨DΦM(U),Ψ⟩|=

∣∣∣∣∣⟨U −V, Ψ⟩−
∫

Ω

k

∑
i, j=1,i ̸= j

βi ju2
i (u j − v j)ψ j dxdy

∣∣∣∣∣
≤ ∥U −V∥∥Ψ∥+

−
∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i (u j − v j)

2 dxdy

1/2−
∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i ϕ

2
j dxdy

1/2

≤ ∥U −V∥∥Ψ∥+ c∥U∥L4(Ω)∥Ψ∥L4(Ω)⟨DΦM(U),U −V ⟩1/2

which implies that

∥DΦM(U)∥ ≤ ∥U −V∥+ c∥U∥⟨DΦM(U),U −V ⟩1/2. (12)
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There exists a small constant εM, so that for |ε| ≤ εM, by (5) and (9), we have

ΦM(U)− 1
4
⟨U −V,U⟩

= ΦM(U)− 1
4
⟨DΦM(U),U⟩− 1

4

∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i u j(u j − v j)dxdy

=
1
4
∥U∥2 +

∫
Ω

(
1
4

k

∑
j=1

∂FM

∂u j
(U,ε)u j −FM(U,ε)

)
dxdy

− 1
4

∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i u j(u j − v j)dxdy

≥ 1
4
∥U∥2 − 1

4

∫
Ω

k

∑
i, j=1,i ̸= j

βi ju2
i u j(u j − v j)dxdy− c.

(13)

So by (13), we obtain

∥U∥2

≤ c(1+ |ΦM(U)|)+ c|⟨U −V,U⟩|+ c

∣∣∣∣∣
∫

Ω

k

∑
i, j=1,i̸= j

βi ju2
i u j(u j − v j)dx

∣∣∣∣∣
≤ c(1+ |ΦM(U)|)+ c∥U −V∥2 +

1
4
∥U∥2 + c∥U∥2

L4(Ω)⟨DΦM(U),U −V ⟩1/2.

(14)
Given a positive constant C, if

⟨DΦM(U),U −V ⟩ ≥C2
,

then by (10) we can easily obtain

⟨DΦM(U),U −V ⟩ ≥C∥U −V∥> 0.

The conclusion holds; if not, let

⟨DΦM(U),U −V ⟩ ≤C2
, (15)

by (14) and (15), we have

∥U∥2 ≤ c
(
1+ |ΦM(U)|+∥U −V∥2)+ c0C∥U∥2. (16)

Hence, taking C such that c0C ≤ 1/2, then we have

∥U∥2 ≤ c
(
1+ |ΦM(U)|+∥U −V∥2) . (17)



SIGN-CHANGING SOLUTIONS 651

Substituting (17) into (12), we obtain

∥DΦM(U)∥

≤ ∥U −V∥+ c
(
1+ |ΦM(U)|+∥U −V∥2)1/2 ⟨DΦM(U),U −V ⟩1/2

≤ ∥U −V∥+ 1
2
∥DΦM(U)∥+ c

(
1+ |ΦM(U)|+∥U −V∥2)∥U −V∥.

(18)

Therefore

∥DΦM(U)∥ ≤ c(1+ |ΦM(U)|+∥U −V∥2)∥U −V∥.

If |ΦM(U)| ≤ c0 and ∥DΦM(U)∥ ≥ b0 > 0, we deduce that there exists b =
b(b0,c0) such that ∥U −V∥> b. So it follows from (10) that

⟨DΦM(U),U −AU⟩ ≥ b∥U −AU∥> 0.

Let Pj,Q j for j = 1, . . . ,k be open convex subsets of S, defined by

Pj = Pj(δ ) = {U = (u1, . . . ,uk) ∈ S : ∥u−j ∥L4(Ω) < δ},
Q j = Q j(δ ) = {U = (u1, . . . ,uk) ∈ S : ∥u+j ∥L4(Ω) < δ}.

Lemma 3.4. There exist δ > 0 and εM > 0 such that for |ε| ≤ εM, it holds that

A(∂Pj)⊂ Pj, A(∂Q j)⊂ Q j, for j = 1, . . . ,k.

Proof. Choose Ψ =V+ = (v+1 , . . . ,v
+
k ) as test function in (8), we have

∫
Ω

∣∣∣∣∣∂v+j
∂x

∣∣∣∣∣
2

+ |x|2
∣∣∣∣∣∂v+j

∂y

∣∣∣∣∣
2

+λ j(v+j )
2

dxdy−
∫
Ω

k

∑
i=1,i ̸= j

βi ju2
i (v

+
j )

2dxdy

=
∫
Ω

β j ju3
jv

+
j dxdy+

∫
Ω

∂FM

∂u j
(U,ε)v+j dxdy

≤ c

∫
Ω

(u+j )
3v+j dxdy+

∫
Ω

∣∣∣∣∂FM

∂u j
(U,ε)

∣∣∣∣v+j dxdy

 .

Then

∥v+j ∥
2
L4(Ω) ≤ c1∥u+j ∥

3
L4(Ω)∥v+j ∥L4(Ω)+ c2

∥∥∥∥∂FM

∂u j
(U,ε)

∥∥∥∥
L∞(Ω)

∥v+j ∥L4(Ω). (19)

Take δ > 0 such that c1δ 2 ≤ 1/4 and choose εM > 0, such that

|ε| ≤ εM, c2

∥∥∥∥∂FM

∂u j
(U,ε)

∥∥∥∥
L∞(Ω)

≤ δ

4
.
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Then for U ∈ ∂Q j, ∥u+j ∥L4(Ω) = δ , we have

∥v+j ∥
2
L4(Ω) ≤

1
4

δ∥v+j ∥L4(Ω)+
1
4

δ∥v+j ∥L4(Ω),

hence
∥v+j ∥L4(Ω) ≤

1
2

δ .

That is, for U ∈ ∂Q j, we have V = AU ∈ Q j and A(∂Q j) ⊂ Q j, j = 1, . . . ,k.
Similarly, A(∂Pj)⊂ Pj, j = 1, . . . ,k.

Lemma 3.5. There exist δ > 0 and c∗ > 0, such that if U ∈ Σ and |ε| ≤ εM, then
ΦM(U)≥ c∗.

Proof. We have that

ΦM(U) =
1
2

∫
Ω

k

∑
j=1

(∣∣∣∣∂u j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u j

∂y

∣∣∣∣2 +λ ju2
j

)
dxdy− 1

4

∫
Ω

k

∑
i, j=1

βi ju2
i u2

j dxdy

−
∫
Ω

FM(U,ε)dxdy ≥ 1
2
∥U∥2 − 1

4

∫
Ω

k

∑
j=1

β j ju4
j dxdy−

∫
Ω

FM(U,ε)dxdy

≥ c1∥U∥2
L4(Ω)− c2∥U∥4

L4(Ω)−∥FM(U,ε)∥L∞(Ω).

For U ∈ Σ = ∩k
j=1(∂Pj ∩∂Q j), we have

∥U∥4
L4(Ω) =

∫
Ω

k

∑
j=1

(
(u+j )

4 +(u−j )
4
)

dxdy = 2k∥u+j ∥
4
L4(Ω) = 2kδ

4.

By Lemma 3.4, taking δ > 0 such that c2δ 2 ≤ 1
4 c1, and choosing εM such that

for |ε| ≤ εM, we have ∥FM(U,ε)∥L∞(Ω) ≤ 1
4 c1δ 2. Therefore,

ΦM(U)≥ c1δ
2 − c2δ

4 − 1
4

c1δ
2 ≥ 1

2
c1δ

2 := c∗ > 0.

Let

Γ j =
{

E ⊂ X : E is compact,−E = E, γ(E ∩σ
−1(Σ))≥ j for σ ∈ Λ

}
,

Λ =
{

σ ∈C(X ,X) : σ odd, σ(Pj)⊂ Pj, σ(Q j)⊂ Q j, j = 1, . . . ,k,

σ(U) =U if IM(U)< 0
}
,
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and γ = γ(E) is the genus of E,

γ = min{n : there is an odd map ϕ
( j) : E → Rn \{0}}.

Now we define a sequence of critical values of the truncated functional ΦM,

c j(M, ε) = inf
E∈Γ j

sup
U∈E\W

ΦM(U), j = 1,2, . . .

where W = ∪k
j=1(Pj ∪Q j).

Lemma 3.6. The set Γ j is nonempty, and there exist d j > 0 independent of M,
ε and ε

( j)
M > 0, such that if |ε| ≤ ε

( j)
M , then c j(M,ε)≤ d j.

Proof. Let Bnk be the unit closed ball of Rnk. Assume n = j+k. Denote t ∈Rnk

by t = (t1, . . . , tk) and tm = (t1m, t2m, . . . , tnm) ∈ Rn for m = 1, . . . ,k. Let vim ∈
C∞

0 (Ω), i = 1, . . . ,n, m = 1, . . . ,k be nk functions in S with disjoint supports.
Define

ϕ
( j) : Bnk −→ S

t 7−→ ϕ
( j)(t) = R

( n

∑
i=1

ti1vi1, . . . ,
n

∑
i=1

tikvik
)
∈ S,

where R is large enough such that Φ(ϕ( j)(t)) < −10 for t ∈ ∂Bnk. Then there
exists εM > 0, so that if |ε| ≤ εM, then we have

ΦM(ϕ( j)(t))≤ Φ(ϕ( j)(t))+1 < 0

for t ∈ ∂Bnk. By [13, Lemma 5.6], we have E j := ϕ( j)(Bnk) ∈ Γ j. Then Γ j is
nonempty.

Next we estimate c j(M, ε) for |ε| ≤ εM. We have

c j(M,ε) = inf
E∈Γ j

sup
U∈E\W

ΦM(U)≤ sup
U∈E j

ΦM(U)≤ sup
U∈E j

(Φ(U)+1) := d j .

We complete the proof of Theorem 1.1 and Theorem 1.2. For fixed M > 0
and ε = 0, we will obtain the critical point U of Φ.

Lemma 3.7. Assume DΦM(U) = 0, ΦM(U) ≤ L. Then there exist εM > 0 and
K = K(L) independent of M,ε , such that for |ε| ≤ εM,

∥U(x)∥L∞(Ω) ≤ K.
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Proof. Denote U = (u1, . . . ,uk). By (7), for |ε| ≤ εM, we have

L ≥ ΦM(U)− 1
4
⟨DΦM(U),U⟩

=
1
4

∫
Ω

k

∑
j=1

(∣∣∣∣∂u j

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u j

∂y

∣∣∣∣2 +λ ju2
j

)
dxdy

−
∫

Ω

(
FM(U,ε)− 1

4

k

∑
j=1

∂FM

∂u j
(U,ε)u j

)
dxdy ≥ 1

4
∥U∥2 − c.

(20)

We know that there exists C(L) > 0, such that ∥U∥ ≤ C(L). Choose ψ j =
u jT |u jT |2r−2,Ψ = (ψ1, . . . ,ψk) as the test function in ⟨DΦM(u j),Ψ⟩= 0, where
r ≥ 1, T > 1, and

u jT (x) :=


T if u j(x)≥ T,
−T if −u j(x)≥ T,
u j(x) if |u j(x)|< T.

We have ∫
Ω

(
∂u j

∂x
∂ψ j

∂x
+ |x|2

∂u j

∂y
∂ψ j

∂y
+λ ju jψ j

)
dxdy

=
∫
Ω

k

∑
i=1

βi ju2
i u jψ j dxdy+

∫
Ω

∂FM

∂u j
(U,ε)ψ j dxdy.

(21)

By (21), it is easy to obtain the inequality

∫
Ω

(
∂u j

∂x
∂ψ j

∂x
+ |x|2

∂u j

∂y
∂ψ j

∂y

)
dxdy

≤
∫
Ω

β j ju3
jψ j dxdy+

∫
Ω

∣∣∣∣∂FM

∂u j
(U,ε)ψ j

∣∣∣∣ dxdy.
(22)

Firstly, we estimate the left-hand side of (22). By S2
1,0(Ω) ↪→ L6(Ω) we have
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that ∫
Ω

(
∂u j

∂x
∂ψ j

∂x
+ |x|2

∂u j

∂y
∂ψ j

∂y

)
dxdy

≥ (2r−1)
∫

Ω

(∣∣∣∣∂u jT

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂u jT

∂y

∣∣∣∣2
)
|u jT |2r−2 dxdy

≥ 2r−1
r2

∫
Ω

(∣∣∣∣∂ |u jT |r

∂x

∣∣∣∣2 + |x|2
∣∣∣∣∂ |u jT |r

∂y

∣∣∣∣2
)

dxdy

≥ c(2r−1)
r2

∫
Ω

|u jT |6r dxdy

1/3

.

(23)

Let M > 0, there exists εM such that for |ε| ≤ εM, we have∥∥∥∥∂FM

∂u j
(U,ε)

∥∥∥∥
L∞(Ω)

< 1.

Then the right-hand side of (22) satisfies∫
Ω

β j ju3
jψ j dxdy+

∫
Ω

∣∣∣∣∂FM

∂u j
(U,ε)ψ j

∣∣∣∣ dxdy

≤ c

∫
Ω

|u j|3|u jT |2r−1 dxdy+
∫
Ω

1 · |u jT |2r−1 dxdy


≤ c

∫
Ω

(
1+ |u j|3

)
|u j|2r−1 dxdy


≤ c

1+
∫
Ω

|u j|3|u j|2r−1 dxdy


≤ c

1+

∫
Ω

|u j|6dxdy

 1
3
∫

Ω

|u j|3r dxdy

 2
3


≤ c

1+

∫
Ω

|u j|3r dxdy

 2
3


≤ cmax

1,

∫
Ω

|u j|3r dxdy

 2
3

 .

(24)
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Let T → ∞ such that u jT (x,y)→ u j(x,y). By (23) and (24), we obtain

(∫
Ω

|u jT |6rdxdy
) 1

3 ≤ cr2

2r−1
max

{
1,
(∫

Ω

|u j|3r dxdy
) 2

3
}
. (25)

Using iteration, we have that(∫
Ω

|u j|12 dxdy
) 1

12

≤
(

4c
3

) 1
4

max

{
1,
(∫

Ω

|u j|6dxdy
) 1

6
}
. (26)

Therefore, for any m = 1,2, . . . and by (26), we obtain

(∫
Ω

|u j|3.2
m+2

dxdy
) 1

3.2m+2

≤
(

22m+2c
2m+2 −1

) 1
2m+2

max

{
1,
(∫

Ω

|u j|3.2
m+1

dxdy
) 1

3.2m+1
}

≤
m

∏
i=0

(
2i+1c

2i+2 −1

) 1
2i+2

max

{
1,
(∫

Ω

|u j|6 dxdy
) 1

6
}
,

We put C0 =
m
∏
i=0

(
2i+1c

2i+2−1

) 1
2i+2

, then

∥u j∥L3.2m+2
(Ω)

≤C0(1+∥u j∥L6(Ω)). (27)

Let m → ∞ in (27), by (20), we have

∥u j∥L∞(Ω) ≤C0(1+∥u j∥L6(Ω))≤ c = c(L), ∀ j = 1, . . . ,k.

Hence
∥U(x)∥L∞(Ω) ≤ K.

Proof of Theorem 1.2. By Lemmas 3.1, 3.3-3.6, for a sufficiently small param-
eter ε , the functional ΦM satisfies the conditions (A3), (A4)–(A7) of the The-
orem 2.3. Then, c j(M,ε) is a critical value of the functional ΦM, and each
component of the corresponding critical point U j(M,ε) is sign-changing. That
is, U j(M,ε) is a sign-changing solution of the truncated the system (4). More-
over, given l ∈ N+, L∗ > 0, by Lemma 3.6, there exists ε∗

M > 0 such that for
|ε| ≤ ε∗

M = min{ε
(1)
M , . . . ,ε

(l)
M },

c j(M, ε)≤ L∗ = max{d1, . . . ,dl}, j = 1, . . . , l.
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By Lemma 3.7, there exist the constant K∗ independent of M, ε , and εM > 0,
such that for |ε| ≤ εM, we obtain

∥U j(M, ε)∥L∞(Ω) ≤ K∗, j = 1, . . . , l.

Now take M ≥ K∗ + 1, then for |ε| ≤ εl , U j(ε) := U j(M, ε), j = 1, . . . , l are
sign-changing solutions of the perturbed the system (3).

Taking ε = 0, we have

F(U,0) = 0,
∂F
∂u j

(U,0) = 0,

then the solutions to the perturbed system (3) are also solutions to the original
system (1).

We have obtained the sign-changing critical points of the truncated func-
tional ΦM. Therefore, by Theorem 1.2, we know that system (3) has l pairs of
sign-changing solutions. Then, for ε = 0, the system (1) has infinitely many
sign-changing solutions, and we have thus proved the main result.
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