

SIGN-CHANGING SOLUTIONS FOR A NONLINEAR DEGENERATE ELLIPTIC SYSTEM

L. THI HONG HANH - D. TRONG

In this article, we study the multiplicity of weak solutions to the nonlinear degenerate elliptic system

$$\begin{aligned} -\frac{\partial^2 u_j}{\partial x^2} - |x|^2 \frac{\partial^2 u_j}{\partial y^2} + \lambda_j u_j &= \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \text{in } \Omega, \\ u_j(x, y) &= 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k, \end{aligned}$$

where $\Omega \subset \mathbb{R}^2$ is a bounded smooth domain, $\lambda_j > 0, k \geq 2, j = 1, \dots, k$, β_{ij} are constants satisfying $\beta_{jj} > 0$, $\beta_{ij} = \beta_{ji} \leq 0$ for $1 \leq i < j \leq k$. The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method.

1. Introduction

In the last decades, the nonlinear Schrödinger system

$$\begin{aligned} -\Delta u_j + \lambda_j u_j &= \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \text{in } \Omega, \\ u_j(x) &= 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k, \end{aligned} \tag{1}$$

Received on November 5, 2024

AMS 2010 Subject Classification: 35B33, 35J60, 35J65

Keywords: degenerate elliptic system, sign-changing solutions, truncation method, method of invariant sets of descending flow.

where $\Omega \subset \mathbb{R}^N$ ($N = 2, 3$) is a bounded domain with smooth boundary, and $\lambda_j > 0$, $\beta_{jj} > 0$, $1 \leq j \leq k$, $\beta_{ij} = \beta_{ji}$, $1 \leq i < j \leq k$ are constants, has been studied by many authors. Mathematical work has been done extensively in recent years, refer the reader to [1, 4–6, 12, 14, 15, 19, 22, 26] and the references therein, for the existence theory and the studies of qualitative property of solutions to attractive and repulsive systems.

One of the classes of degenerate elliptic equations that has been studied widely in recent years is the class of equations involving an operator of the Grushin type (see [8])

$$G_\alpha := \Delta_x + |x|^{2\alpha} \Delta_y, \quad \alpha \geq 0.$$

Note that $G_0 \equiv \Delta$ is the Laplacian operator, and G_α , when $\alpha > 0$, is not elliptic in domains intersecting the surface $x = 0$. Many aspects of the theory of degenerate elliptic differential operators are presented in monographs [24, 25] (see also some recent results in [2, 3, 7, 9–11, 16–18, 20, 23] and the references therein).

In this paper, we consider the existence of sign-changing solutions of the nonlinear degenerate elliptic system

$$\begin{aligned} -\frac{\partial^2 u_j}{\partial x^2} - |x|^2 \frac{\partial^2 u_j}{\partial y^2} + \lambda_j u_j &= \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \text{in } \Omega, \\ u_j(x, y) &= 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k, \end{aligned}$$

where $\Omega \subset \mathbb{R}^2$ is a bounded smooth domain, $\lambda_j > 0$, $k \geq 2$, $j = 1, \dots, k$, β_{ij} are constants satisfying $\beta_{jj} > 0$, $\beta_{ij} = \beta_{ji} \leq 0$ for $1 \leq i < j \leq k$.

We assume $U = (u_1, \dots, u_k)$, $\varepsilon \in \mathbb{R}$ is a small parameter, $F(U, \varepsilon)$, $\frac{\partial F}{\partial u_j}(U, \varepsilon)$ are continuous functions, and $F(U, \varepsilon) = F(-U, \varepsilon)$. For $\varepsilon = 0$, we understand

$$F(U, 0) = 0, \quad \frac{\partial F}{\partial u_j}(U, 0) = 0.$$

Then we consider the perturbed problem

$$\begin{aligned} -\frac{\partial^2 u_j}{\partial x^2} - |x|^2 \frac{\partial^2 u_j}{\partial y^2} + \lambda_j u_j &= \sum_{i=1}^k \beta_{ij} u_i^2 u_j + \frac{\partial F}{\partial u_j}(U, \varepsilon), \quad \text{in } \Omega, \\ u_j(x, y) &= 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k. \end{aligned} \tag{2}$$

Our main result is given by the following theorem.

Theorem 1.1. *The system (1) has infinitely many solutions with each component being sign-changing.*

Theorem 1.2. *Let $l \in \mathbb{N}^+$. Then there exists $\varepsilon_l > 0$ such that for $|\varepsilon| \leq \varepsilon_l$, the system*

$$\begin{aligned} -\frac{\partial^2 u_j}{\partial x^2} - |x|^2 \frac{\partial^2 u_j}{\partial y^2} + \lambda_j u_j &= \sum_{i=1}^k \beta_{ij} u_i^2 u_j + \frac{\partial F}{\partial u_j}(U, \varepsilon), \quad \text{in } \Omega, \\ u_j(x, y) &= 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k. \end{aligned} \quad (3)$$

has l pairs of sign-changing solutions.

Corollary 1.3. *For each $l \in \mathbb{N}^+$, there exists $\beta_l > 0$ such that for $\beta_{ij} = \beta_{ji} \leq \beta_l$ with $1 \leq i < j \leq k$, system (1) has at least l pairs of sign-changing solutions.*

The structure of our note is as follows: In Section 2, we present some definitions and preliminary results. In Section 3, we obtain the sign-changing solutions of the perturbed problem (3), then we obtain the main result.

2. Preliminary results

Definition 2.1. By $S_1^2(\Omega)$ we will denote the set of all functions $u \in L^2(\Omega)$ such that $\frac{\partial u}{\partial x} \in L^2(\Omega)$, $|x| \frac{\partial u}{\partial y} \in L^2(\Omega)$. We define the norm in this space as follows

$$\|u\|_{S_1^2(\Omega)} = \left\{ \int_{\Omega} \left(|u|^2 + \left| \frac{\partial u}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u}{\partial y} \right|^2 \right) dx dy \right\}^{\frac{1}{2}}.$$

We can also define the scalar product in $S_1^2(\Omega)$ as follows

$$(u, v)_{S_1^2(\Omega)} = (u, v)_{L^2(\Omega)} + \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} \right)_{L^2(\Omega)} + \left(|x| \frac{\partial u}{\partial y}, |x| \frac{\partial v}{\partial y} \right)_{L^2(\Omega)}.$$

The space $S_{1,0}^2(\Omega)$ is defined as the closure of $C_0^1(\Omega)$ in the space $S_1^2(\Omega)$.

The following embedding inequality was proved in [23, 25]

$$\left(\int_{\Omega} |u|^p dX \right)^{\frac{1}{p}} \leq C(p, \Omega) \|u\|_{S_{1,0}^2(\Omega)},$$

where $1 \leq p \leq 6$, $C(p, \Omega) > 0$. The embedding $S_{1,0}^2(\Omega) \hookrightarrow L^p(\Omega)$ is compact if $1 \leq p < 6$.

Definition 2.2. Let \mathbb{B} be a real Banach space with its dual space \mathbb{B}^* , $\Phi \in C^1(\mathbb{B}, \mathbb{R})$. We say that Φ satisfies the Palais–Smale if for any sequence $\{u_n\}_{n=1}^{n=+\infty} \subset \mathbb{B}$ such that $\Phi(u_n)$ is bounded and

$$\|\Phi'(u_n)\|_{\mathbb{B}^*} \rightarrow 0 \text{ as } n \rightarrow \infty,$$

then there exists a subsequence $\{u_{n_k}\}_{k=1}^{k=+\infty}$ that converges strongly in \mathbb{B} .

From Theorem A in [21], we have

Theorem 2.3. Let \mathbb{B} be a Banach space, Φ be an even C^1 -functional on \mathbb{B} , A be an odd, continuous mapping from \mathbb{B} to \mathbb{B} , and P_j, Q_j , $j = 1, \dots, k$ be open convex subsets of \mathbb{B} with $Q_j = -P_j$. Denote $W = \bigcup_{j=1}^k (P_j \cup Q_j)$, $\Sigma = \bigcap_{j=1}^k (\partial P_j \cap \partial Q_j)$. Assume

(A1) Φ satisfies the Palais–Smale condition.

(A2) $c^* = \inf_{x \in \Sigma} \Phi(x) > 0$.

(A3) For each $b_0 > 0$ and $c_0 > 0$, there exists $b = b(b_0, c_0)$, such that if $|\Phi(x)| \leq c_0$, $\|D\Phi(x)\| \geq b_0$, then

$$\langle D\Phi(x), x - Ax \rangle \geq b \|x - Ax\| > 0.$$

(A4) $A(\partial P_j) \subset P_j$, $A(\partial Q_j) \subset Q_j$, $j = 1, \dots, k$.

Put

$$\begin{aligned} \Gamma_j &= \{E \subset \mathbb{B} : E \text{ is compact, } -E = E, \gamma(E \cap \sigma^{-1}(\Sigma)) \geq j \text{ for } \sigma \in \Lambda\}, \\ \Lambda &= \{\sigma \in C(\mathbb{B}, \mathbb{B}) : \sigma \text{ is odd, } \sigma(P_j) \subset P_j, \sigma(Q_j) \subset Q_j, j = 1, \dots, k, \\ &\quad \sigma(x) = x \text{ if } \Phi(x) < 0\} \end{aligned}$$

where $\gamma = \gamma(E)$ denotes the genus of a symmetric set E

$$\gamma = \min\{n : \text{there is an odd map } \varphi^{(j)} : E \rightarrow \mathbb{R}^n \setminus \{0\}\}.$$

We assume that

(A5) Γ_j is nonempty for $j = 1, 2, \dots$

We define

$$c_j = \inf_{E \in \Gamma_j} \sup_{x \in E \setminus W} \Phi(x), \quad j = 1, 2, \dots,$$

$$K_c = \{x \in \mathbb{B} : D\Phi(x) = 0, \Phi(x) = c\}, \quad K_c^* = K_c \setminus W.$$

Then

(1) $c_j \geq c_*$, $K_{c_j}^* \neq \emptyset$ for $j = 1, 2, \dots$

(2) $c_j \rightarrow +\infty$, as $j \rightarrow \infty$.

(3) If $c_j = c_{j+1} = \dots = c_{j+l-1} = c$, then $\gamma(K_c^*) \geq l$.

3. Proof of the main result

Define the Euler–Lagrange functional associated with the problem (1) as follows

$$\Phi(U) = \frac{1}{2} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial u_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_j}{\partial y} \right|^2 + \lambda_j u_j^2 \right) dx dy - \frac{1}{4} \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_i^2 u_j^2 dx dy$$

for $U = (u_1, \dots, u_k) \in \mathbb{S} = S_{1,0}^2(\Omega) \times \dots \times S_{1,0}^2(\Omega)$, the k -fold product of $(S_{1,0}^2(\Omega))^k$.

We shall use the equivalent inner products

$$(u_j, v_j)_j = \int_{\Omega} \left(\frac{\partial u_j}{\partial x} \frac{\partial v_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial v_j}{\partial y} + \lambda_j u_j v_j \right) dx dy, \quad j = 1, \dots, k$$

and the induced norm $\|\cdot\|_j$. The inner product

$$(U, V) = \sum_{j=1}^k (u_j, v_j)_j, \quad U = (u_1, \dots, u_k), V = (v_1, \dots, v_k),$$

gives rise to a norm $\|\cdot\|$ on \mathbb{S} .

Recall that a function $U = (u_1, \dots, u_k) \in \mathbb{S}$ is called a weak solution of the problem (1) if for all $v_j \in S_{1,0}^2(\Omega)$, $j = 1, \dots, k$, we have

$$\int_{\Omega} \sum_{j=1}^k \left(\frac{\partial u_j}{\partial x} \frac{\partial v_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial v_j}{\partial y} + \lambda_j u_j v_j \right) dx dy = \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_i^2 u_j v_j dx dy.$$

Then the critical points of Φ are weak solutions of the problem (1).

We recall that $U = (u_1, \dots, u_k)$ is a sign-changing solution of the problem (1) if is a weak solution to the problem (1) and $u_j^{\pm} \neq 0$, $j = 1, \dots, k$, where $u_j^+ = \max\{0, u_j\}$, $u_j^- = \min\{0, u_j\}$.

For $M > 0$, we define

$$F_M(U, \varepsilon) = F\left(\varphi_M(|U|) \frac{U}{|U|}, \varepsilon\right),$$

where φ_M is a monotonic smooth function, satisfying

$$\varphi_M(t) := \begin{cases} t & \text{if } t < M, \\ M + \frac{1}{2} & \text{if } t \geq M. \end{cases}$$

Then we consider the truncated system

$$-\frac{\partial^2 u_j}{\partial x^2} - |x|^2 \frac{\partial^2 u_j}{\partial y^2} + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j + \frac{\partial F_M}{\partial u_j}(U, \varepsilon), \quad \text{in } \Omega, \quad (4)$$

$$u_j(x, y) = 0, \quad \text{on } \partial\Omega, \quad j = 1, \dots, k.$$

If $U = (u_1, \dots, u_k)$ is a weak solution of the system (4), and there exists $M > 0$ such that $|U(x, y)| < M$ for all $(x, y) \in \bar{\Omega}$, then U is also a solution of the perturbed the problem (3). The system (4) has a variational structure given by the functional

$$\begin{aligned}\Phi_M(U) &= \Phi(U) - \int_{\Omega} F_M(U, \varepsilon) dx dy \\ &= \frac{1}{2} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial u_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_j}{\partial y} \right|^2 + \lambda_j u_j^2 \right) dx dy \\ &\quad - \frac{1}{4} \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_i^2 u_j^2 dx dy - \int_{\Omega} F_M(U, \varepsilon) dx dy.\end{aligned}\tag{5}$$

Lemma 3.1. Φ_M is a C^1 -functional on \mathbb{S} , and satisfies the Palais-Smale condition.

Proof. It is easy to verify that Φ_M is a C^1 -functional. Also, for $V = (v_1, \dots, v_k) \in \mathbb{S}$, we obtain

$$\begin{aligned}\langle D\Phi_M(U), V \rangle &= \int_{\Omega} \sum_{j=1}^k \left(\frac{\partial u_j}{\partial x} \frac{\partial v_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial v_j}{\partial y} + \lambda_j u_j v_j \right) dx dy \\ &\quad - \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_i^2 u_j v_j dx dy - \int_{\Omega} \sum_{j=1}^k \frac{\partial F_M}{\partial u_j}(U, \varepsilon) v_j dx dy,\end{aligned}\tag{6}$$

there exists an arbitrary small constant ε_M , such that for $|\varepsilon| \leq \varepsilon_M$, we have that

$$\begin{aligned}\Phi_M(U) - \frac{1}{4} \langle D\Phi_M(U), U \rangle &= \frac{1}{4} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial u_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_j}{\partial y} \right|^2 + \lambda_j u_j^2 \right) dx dy \\ &\quad - \int_{\Omega} \left(F_M(U, \varepsilon) - \frac{1}{4} \sum_{j=1}^k \frac{\partial F_M}{\partial u_j}(U, \varepsilon) u_j \right) dx dy \\ &\geq \frac{1}{4} \|U\|^2 - c.\end{aligned}\tag{7}$$

Then any Palais-Smale sequence of Φ_M is bounded in \mathbb{S} . Let $U_n = (u_{n,1}, \dots, u_{n,k}) \in \mathbb{S}$ be a Palais-Smale sequence of the functional Φ_M . Assume that $U_n \rightharpoonup U$ in \mathbb{S} . By the imbedding $S_{1,0}^2(\Omega) \hookrightarrow L^4(\Omega)$ is compact hence $U_n \rightarrow U$ in $L^4(\Omega)$. Then

$$\int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial(u_{n,j} - u_{m,j})}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial(u_{n,j} - u_{m,j})}{\partial y} \right|^2 + \lambda_j (u_{n,j} - u_{m,j})^2 \right) dx dy$$

$$\begin{aligned}
&= \langle D\Phi_M(U_n) - D\Phi_M(U_m), U_n - U_m \rangle + \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_{n,i}^2 u_{n,j} (u_{n,j} - u_{m,j}) dx dy \\
&\quad - \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_{m,i}^2 u_{m,j} (u_{n,j} - u_{m,j}) dx dy \\
&\quad + \int_{\Omega} \sum_{j=1}^k \left(\frac{\partial F_M}{\partial u_j}(U_n, \varepsilon) - \frac{\partial F_M}{\partial u_j}(U_m, \varepsilon) \right) (u_{n,j} - u_{m,j}) dx dy \\
&\leq o(1) + c \|U_n\|_{L^4(\Omega)}^3 \left(\int_{\Omega} \sum_{j=1}^k (u_{n,j} - u_{m,j})^4 dx dy \right)^{1/4} \\
&\quad + c \|U_m\|_{L^4(\Omega)}^3 \left(\int_{\Omega} \sum_{j=1}^k (u_{n,j} - u_{m,j})^4 dx \right)^{1/4} \\
&\quad + \int_{\Omega} \sum_{j=1}^k \left| \frac{\partial F_M}{\partial u_j}(U_n, \varepsilon) - \frac{\partial F_M}{\partial u_j}(U_m, \varepsilon) \right| |u_{n,j} - u_{m,j}| dx dy \\
&\leq o(1) + c \|U_n - U_m\|_{L^4(\Omega)} \rightarrow 0, \quad \text{as } n, m \rightarrow \infty.
\end{aligned}$$

Therefore, we conclude that up to a subsequence a Palais-Smale sequence U_n is a Cauchy sequence in \mathbb{S} , hence a convergent sequence. \square

We put

$$A : U = (u_1, \dots, u_k) \in \mathbb{S} \mapsto V = (v_1, \dots, v_k) = AU \in \mathbb{S}$$

such that

$$\begin{aligned}
&\int_{\Omega} \left(\frac{\partial v_j}{\partial x} \frac{\partial \psi_j}{\partial x} + |x|^2 \frac{\partial v_j}{\partial y} \frac{\partial \psi_j}{\partial y} + \lambda_j v_j \psi_j \right) dx dy - \int_{\Omega} \sum_{i=1, i \neq j}^k \beta_{ij} u_i^2 v_j \psi_j dx dy \\
&= \int_{\Omega} \beta_{jj} u_j^3 \psi_j dx dy + \int_{\Omega} \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \psi_j dx dy, \forall \Psi = (\psi_1, \dots, \psi_k) \in \mathbb{S}, j = 1, \dots, k.
\end{aligned} \tag{8}$$

Lemma 3.2. *The operator A is well-defined and odd, continuous.*

Proof. It is easy to verify that A is an odd functional. Therefore, $V = AU$ can be obtained by solving the minimization problem

$$\inf\{G(V) : V \in \mathbb{S}\}$$

where

$$\begin{aligned}
G(V) &= \frac{1}{2} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial v_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial v_j}{\partial y} \right|^2 + \lambda_j v_j^2 \right) dx dy - \frac{1}{2} \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 v_j^2 dx dy \\
&\quad - \int_{\Omega} \sum_{j=1}^k \beta_{jj} u_j^3 v_j dx dy - \int_{\Omega} \sum_{j=1}^k \frac{\partial F_M}{\partial u_j}(U, \varepsilon) v_j dx dy.
\end{aligned}$$

Let $V = AU$, $\bar{V} = A\bar{U}$, $\bar{V} = (\bar{v}_1, \dots, \bar{v}_k)$, $\bar{U} = (\bar{u}_1, \dots, \bar{u}_k)$. From (8), we have

$$\begin{aligned}
&\|V - \bar{V}\|^2 \\
&= \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial(v_j - \bar{v}_j)}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial(v_j - \bar{v}_j)}{\partial y} \right|^2 + \lambda_j (v_j - \bar{v}_j)^2 \right) dx dy \\
&= \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} (u_i^2 v_j - \bar{u}_i^2 \bar{v}_j) (v_j - \bar{v}_j) dx dy + \int_{\Omega} \sum_{j=1}^k \beta_{jj} (u_j^3 - \bar{u}_j^3) (v_j - \bar{v}_j) dx dy \\
&\quad + \int_{\Omega} \sum_{j=1}^k \left(\frac{\partial F_M}{\partial u_j}(U, \varepsilon) - \frac{\partial F_M}{\partial u_j}(\bar{U}, \varepsilon) \right) (v_j - \bar{v}_j) dx dy \\
&\leq c \int_{\Omega} \sum_{i,j=1, i \neq j}^k |u_i^2 - \bar{u}_i^2| |v_j| |v_j - \bar{v}_j| dx dy + c \int_{\Omega} \sum_{j=1}^k |u_j^3 - \bar{u}_j^3| |v_j - \bar{v}_j| dx dy \\
&\quad + \int_{\Omega} \sum_{j=1}^k \left| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) - \frac{\partial F_M}{\partial u_j}(\bar{U}, \varepsilon) \right| |v_j - \bar{v}_j| dx dy \\
&\leq c(\|U - \bar{U}\| \|V - \bar{V}\| + \left\| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) - \frac{\partial F_M}{\partial u_j}(\bar{U}, \varepsilon) \right\| \|V - \bar{V}\|),
\end{aligned}$$

hence $AU - A\bar{U} = V - \bar{V} \rightarrow 0$ as $U \rightarrow \bar{U}$ in \mathbb{S} . \square

Lemma 3.3. *For each $b_0, c_0 > 0$, then the following property holds: if $|\Phi_M(U)| \leq c_0$ and $\|\Phi_M(U)\| \geq b_0$, then there exists $b = b(b_0, c_0)$ such that*

$$\langle D\Phi_M(U), U - AU \rangle \geq b\|U - AU\| > 0.$$

Proof. We have

$$\begin{aligned}
& \langle D\Phi_M(U), \Psi \rangle \\
&= \int_{\Omega} \sum_{j=1}^k \left(\frac{\partial(u_j - v_j)}{\partial x} \frac{\partial \psi_j}{\partial x} + |x|^2 \frac{\partial(u_j - v_j)}{\partial y} \frac{\partial \psi_j}{\partial y} + \lambda_j(u_j - v_j) \psi_j \right) dx dy \\
&\quad - \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j) \psi_j dx dy \\
&= \langle U - V, \Psi \rangle - \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j) \psi_j dx dy,
\end{aligned} \tag{9}$$

for $\Psi = (\psi_1, \dots, \psi_k) \in \mathbb{S}$. By using $\Psi = U - V$ in (9), we obtain

$$\langle D\Phi_M(U), U - V \rangle = \|U - V\|^2 - \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j)^2 dx dy.$$

By $\beta_{ij} = \beta_{ji} \leq 0$ for $1 \leq i < j \leq k$, hence

$$\langle D\Phi_M(U), U - V \rangle \geq \|U - V\|^2 \tag{10}$$

and

$$\langle D\Phi_M(U), U - V \rangle \geq - \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j)^2 dx dy. \tag{11}$$

It follows from (9) and (11) that

$$\begin{aligned}
|\langle D\Phi_M(U), \Psi \rangle| &= \left| \langle U - V, \Psi \rangle - \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j) \psi_j dx dy \right| \\
&\leq \|U - V\| \|\Psi\| + \left(- \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 (u_j - v_j)^2 dx dy \right)^{1/2} \left(- \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 \psi_j^2 dx dy \right)^{1/2} \\
&\leq \|U - V\| \|\Psi\| + c \|U\|_{L^4(\Omega)} \|\Psi\|_{L^4(\Omega)} \langle D\Phi_M(U), U - V \rangle^{1/2}
\end{aligned}$$

which implies that

$$\|D\Phi_M(U)\| \leq \|U - V\| + c \|U\| \langle D\Phi_M(U), U - V \rangle^{1/2}. \tag{12}$$

There exists a small constant ε_M , so that for $|\varepsilon| \leq \varepsilon_M$, by (5) and (9), we have

$$\begin{aligned}
 & \Phi_M(U) - \frac{1}{4} \langle U - V, U \rangle \\
 &= \Phi_M(U) - \frac{1}{4} \langle D\Phi_M(U), U \rangle - \frac{1}{4} \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 u_j (u_j - v_j) dx dy \\
 &= \frac{1}{4} \|U\|^2 + \int_{\Omega} \left(\frac{1}{4} \sum_{j=1}^k \frac{\partial F_M}{\partial u_j}(U, \varepsilon) u_j - F_M(U, \varepsilon) \right) dx dy \\
 &\quad - \frac{1}{4} \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 u_j (u_j - v_j) dx dy \\
 &\geq \frac{1}{4} \|U\|^2 - \frac{1}{4} \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 u_j (u_j - v_j) dx dy - c.
 \end{aligned} \tag{13}$$

So by (13), we obtain

$$\begin{aligned}
 & \|U\|^2 \\
 &\leq c(1 + |\Phi_M(U)|) + c|\langle U - V, U \rangle| + c \left| \int_{\Omega} \sum_{i,j=1, i \neq j}^k \beta_{ij} u_i^2 u_j (u_j - v_j) dx \right| \\
 &\leq c(1 + |\Phi_M(U)|) + c\|U - V\|^2 + \frac{1}{4}\|U\|^2 + c\|U\|_{L^4(\Omega)}^2 \langle D\Phi_M(U), U - V \rangle^{1/2}.
 \end{aligned} \tag{14}$$

Given a positive constant \bar{C} , if

$$\langle D\Phi_M(U), U - V \rangle \geq \bar{C}^2,$$

then by (10) we can easily obtain

$$\langle D\Phi_M(U), U - V \rangle \geq \bar{C}\|U - V\| > 0.$$

The conclusion holds; if not, let

$$\langle D\Phi_M(U), U - V \rangle \leq \bar{C}^2, \tag{15}$$

by (14) and (15), we have

$$\|U\|^2 \leq c(1 + |\Phi_M(U)| + \|U - V\|^2) + c_0 \bar{C}\|U\|^2. \tag{16}$$

Hence, taking \bar{C} such that $c_0 \bar{C} \leq 1/2$, then we have

$$\|U\|^2 \leq c(1 + |\Phi_M(U)| + \|U - V\|^2). \tag{17}$$

Substituting (17) into (12), we obtain

$$\begin{aligned} & \|D\Phi_M(U)\| \\ & \leq \|U - V\| + c \left(1 + |\Phi_M(U)| + \|U - V\|^2 \right)^{1/2} \langle D\Phi_M(U), U - V \rangle^{1/2} \quad (18) \\ & \leq \|U - V\| + \frac{1}{2} \|D\Phi_M(U)\| + c \left(1 + |\Phi_M(U)| + \|U - V\|^2 \right) \|U - V\|. \end{aligned}$$

Therefore

$$\|D\Phi_M(U)\| \leq c(1 + |\Phi_M(U)| + \|U - V\|^2) \|U - V\|.$$

If $|\Phi_M(U)| \leq c_0$ and $\|D\Phi_M(U)\| \geq b_0 > 0$, we deduce that there exists $b = b(b_0, c_0)$ such that $\|U - V\| > b$. So it follows from (10) that

$$\langle D\Phi_M(U), U - AU \rangle \geq b \|U - AU\| > 0. \quad \square$$

Let P_j, Q_j for $j = 1, \dots, k$ be open convex subsets of \mathbb{S} , defined by

$$\begin{aligned} P_j &= P_j(\delta) = \{U = (u_1, \dots, u_k) \in \mathbb{S} : \|u_j^-\|_{L^4(\Omega)} < \delta\}, \\ Q_j &= Q_j(\delta) = \{U = (u_1, \dots, u_k) \in \mathbb{S} : \|u_j^+\|_{L^4(\Omega)} < \delta\}. \end{aligned}$$

Lemma 3.4. *There exist $\delta > 0$ and $\varepsilon_M > 0$ such that for $|\varepsilon| \leq \varepsilon_M$, it holds that*

$$A(\partial P_j) \subset P_j, \quad A(\partial Q_j) \subset Q_j, \quad \text{for } j = 1, \dots, k.$$

Proof. Choose $\Psi = V^+ = (v_1^+, \dots, v_k^+)$ as test function in (8), we have

$$\begin{aligned} & \int_{\Omega} \left(\left| \frac{\partial v_j^+}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial v_j^+}{\partial y} \right|^2 + \lambda_j(v_j^+)^2 \right) dx dy - \int_{\Omega} \sum_{i=1, i \neq j}^k \beta_{ij} u_i^2 (v_j^+)^2 dx dy \\ & = \int_{\Omega} \beta_{jj} u_j^3 v_j^+ dx dy + \int_{\Omega} \frac{\partial F_M}{\partial u_j}(U, \varepsilon) v_j^+ dx dy \\ & \leq c \left(\int_{\Omega} (u_j^+)^3 v_j^+ dx dy + \int_{\Omega} \left| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \right| v_j^+ dx dy \right). \end{aligned}$$

Then

$$\|v_j^+\|_{L^4(\Omega)}^2 \leq c_1 \|u_j^+\|_{L^4(\Omega)}^3 \|v_j^+\|_{L^4(\Omega)} + c_2 \left\| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \right\|_{L^\infty(\Omega)} \|v_j^+\|_{L^4(\Omega)}. \quad (19)$$

Take $\delta > 0$ such that $c_1 \delta^2 \leq 1/4$ and choose $\varepsilon_M > 0$, such that

$$|\varepsilon| \leq \varepsilon_M, \quad c_2 \left\| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \right\|_{L^\infty(\Omega)} \leq \frac{\delta}{4}.$$

Then for $U \in \partial Q_j$, $\|u_j^+\|_{L^4(\Omega)} = \delta$, we have

$$\|v_j^+\|_{L^4(\Omega)}^2 \leq \frac{1}{4}\delta\|v_j^+\|_{L^4(\Omega)} + \frac{1}{4}\delta\|v_j^+\|_{L^4(\Omega)},$$

hence

$$\|v_j^+\|_{L^4(\Omega)} \leq \frac{1}{2}\delta.$$

That is, for $U \in \partial Q_j$, we have $V = AU \in Q_j$ and $A(\partial Q_j) \subset Q_j$, $j = 1, \dots, k$. Similarly, $A(\partial P_j) \subset P_j$, $j = 1, \dots, k$. \square

Lemma 3.5. *There exist $\delta > 0$ and $c^* > 0$, such that if $U \in \Sigma$ and $|\varepsilon| \leq \varepsilon_M$, then $\Phi_M(U) \geq c^*$.*

Proof. We have that

$$\begin{aligned} \Phi_M(U) &= \frac{1}{2} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial u_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_j}{\partial y} \right|^2 + \lambda_j u_j^2 \right) dx dy - \frac{1}{4} \int_{\Omega} \sum_{i,j=1}^k \beta_{ij} u_i^2 u_j^2 dx dy \\ &\quad - \int_{\Omega} F_M(U, \varepsilon) dx dy \geq \frac{1}{2} \|U\|^2 - \frac{1}{4} \int_{\Omega} \sum_{j=1}^k \beta_{jj} u_j^4 dx dy - \int_{\Omega} F_M(U, \varepsilon) dx dy \\ &\geq c_1 \|U\|_{L^4(\Omega)}^2 - c_2 \|U\|_{L^4(\Omega)}^4 - \|F_M(U, \varepsilon)\|_{L^\infty(\Omega)}. \end{aligned}$$

For $U \in \Sigma = \bigcap_{j=1}^k (\partial P_j \cap \partial Q_j)$, we have

$$\|U\|_{L^4(\Omega)}^4 = \int_{\Omega} \sum_{j=1}^k \left((u_j^+)^4 + (u_j^-)^4 \right) dx dy = 2k \|u_j^+\|_{L^4(\Omega)}^4 = 2k\delta^4.$$

By Lemma 3.4, taking $\delta > 0$ such that $c_2\delta^2 \leq \frac{1}{4}c_1$, and choosing ε_M such that for $|\varepsilon| \leq \varepsilon_M$, we have $\|F_M(U, \varepsilon)\|_{L^\infty(\Omega)} \leq \frac{1}{4}c_1\delta^2$. Therefore,

$$\Phi_M(U) \geq c_1\delta^2 - c_2\delta^4 - \frac{1}{4}c_1\delta^2 \geq \frac{1}{2}c_1\delta^2 := c^* > 0.$$

\square

Let

$$\begin{aligned} \Gamma_j &= \left\{ E \subset X : E \text{ is compact, } -E = E, \gamma(E \cap \sigma^{-1}(\Sigma)) \geq j \text{ for } \sigma \in \Lambda \right\}, \\ \Lambda &= \left\{ \sigma \in C(X, X) : \sigma \text{ odd, } \sigma(P_j) \subset P_j, \sigma(Q_j) \subset Q_j, j = 1, \dots, k, \right. \\ &\quad \left. \sigma(U) = U \text{ if } I_M(U) < 0 \right\}, \end{aligned}$$

and $\gamma = \gamma(E)$ is the genus of E ,

$$\gamma = \min\{n : \text{there is an odd map } \varphi^{(j)} : E \rightarrow \mathbb{R}^n \setminus \{0\}\}.$$

Now we define a sequence of critical values of the truncated functional Φ_M ,

$$c_j(M, \varepsilon) = \inf_{E \in \Gamma_j} \sup_{U \in E \setminus W} \Phi_M(U), \quad j = 1, 2, \dots$$

where $W = \cup_{j=1}^k (P_j \cup Q_j)$.

Lemma 3.6. *The set Γ_j is nonempty, and there exist $d_j > 0$ independent of M , ε and $\varepsilon_M^{(j)} > 0$, such that if $|\varepsilon| \leq \varepsilon_M^{(j)}$, then $c_j(M, \varepsilon) \leq d_j$.*

Proof. Let B^{nk} be the unit closed ball of \mathbb{R}^{nk} . Assume $n = j+k$. Denote $t \in \mathbb{R}^{nk}$ by $t = (t_1, \dots, t_k)$ and $t_m = (t_{1m}, t_{2m}, \dots, t_{nm}) \in \mathbb{R}^n$ for $m = 1, \dots, k$. Let $v_{im} \in C_0^\infty(\Omega)$, $i = 1, \dots, n$, $m = 1, \dots, k$ be nk functions in \mathbb{S} with disjoint supports. Define

$$\begin{aligned} \varphi^{(j)} : B^{nk} &\longrightarrow \mathbb{S} \\ t &\longmapsto \varphi^{(j)}(t) = R\left(\sum_{i=1}^n t_{i1} v_{i1}, \dots, \sum_{i=1}^n t_{ik} v_{ik}\right) \in \mathbb{S}, \end{aligned}$$

where R is large enough such that $\Phi(\varphi^{(j)}(t)) < -10$ for $t \in \partial B^{nk}$. Then there exists $\varepsilon_M > 0$, so that if $|\varepsilon| \leq \varepsilon_M$, then we have

$$\Phi_M(\varphi^{(j)}(t)) \leq \Phi(\varphi^{(j)}(t)) + 1 < 0$$

for $t \in \partial B^{nk}$. By [13, Lemma 5.6], we have $E_j := \varphi^{(j)}(B^{nk}) \in \Gamma_j$. Then Γ_j is nonempty.

Next we estimate $c_j(M, \varepsilon)$ for $|\varepsilon| \leq \varepsilon_M$. We have

$$c_j(M, \varepsilon) = \inf_{E \in \Gamma_j} \sup_{U \in E \setminus W} \Phi_M(U) \leq \sup_{U \in E_j} \Phi_M(U) \leq \sup_{U \in E_j} (\Phi(U) + 1) := d_j.$$

□

We complete the proof of Theorem 1.1 and Theorem 1.2. For fixed $M > 0$ and $\varepsilon = 0$, we will obtain the critical point U of Φ .

Lemma 3.7. *Assume $D\Phi_M(U) = 0$, $\Phi_M(U) \leq L$. Then there exist $\varepsilon_M > 0$ and $K = K(L)$ independent of M, ε , such that for $|\varepsilon| \leq \varepsilon_M$,*

$$\|U(x)\|_{L^\infty(\Omega)} \leq K.$$

Proof. Denote $U = (u_1, \dots, u_k)$. By (7), for $|\varepsilon| \leq \varepsilon_M$, we have

$$\begin{aligned} L &\geq \Phi_M(U) - \frac{1}{4} \langle D\Phi_M(U), U \rangle \\ &= \frac{1}{4} \int_{\Omega} \sum_{j=1}^k \left(\left| \frac{\partial u_j}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_j}{\partial y} \right|^2 + \lambda_j u_j^2 \right) dx dy \\ &\quad - \int_{\Omega} \left(F_M(U, \varepsilon) - \frac{1}{4} \sum_{j=1}^k \frac{\partial F_M}{\partial u_j}(U, \varepsilon) u_j \right) dx dy \geq \frac{1}{4} \|U\|^2 - c. \end{aligned} \quad (20)$$

We know that there exists $C(L) > 0$, such that $\|U\| \leq C(L)$. Choose $\psi_j = u_{jT} |u_{jT}|^{2r-2}, \Psi = (\psi_1, \dots, \psi_k)$ as the test function in $\langle D\Phi_M(u_j), \Psi \rangle = 0$, where $r \geq 1, T > 1$, and

$$u_{jT}(x) := \begin{cases} T & \text{if } u_j(x) \geq T, \\ -T & \text{if } -u_j(x) \geq T, \\ u_j(x) & \text{if } |u_j(x)| < T. \end{cases}$$

We have

$$\begin{aligned} &\int_{\Omega} \left(\frac{\partial u_j}{\partial x} \frac{\partial \psi_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial \psi_j}{\partial y} + \lambda_j u_j \psi_j \right) dx dy \\ &= \int_{\Omega} \sum_{i=1}^k \beta_{ij} u_i^2 u_j \psi_j dx dy + \int_{\Omega} \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \psi_j dx dy. \end{aligned} \quad (21)$$

By (21), it is easy to obtain the inequality

$$\begin{aligned} &\int_{\Omega} \left(\frac{\partial u_j}{\partial x} \frac{\partial \psi_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial \psi_j}{\partial y} \right) dx dy \\ &\leq \int_{\Omega} \beta_{jj} u_j^3 \psi_j dx dy + \int_{\Omega} \left| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \psi_j \right| dx dy. \end{aligned} \quad (22)$$

Firstly, we estimate the left-hand side of (22). By $S_{1,0}^2(\Omega) \hookrightarrow L^6(\Omega)$ we have

that

$$\begin{aligned}
& \int_{\Omega} \left(\frac{\partial u_j}{\partial x} \frac{\partial \psi_j}{\partial x} + |x|^2 \frac{\partial u_j}{\partial y} \frac{\partial \psi_j}{\partial y} \right) dx dy \\
& \geq (2r-1) \int_{\Omega} \left(\left| \frac{\partial u_{jT}}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial u_{jT}}{\partial y} \right|^2 \right) |u_{jT}|^{2r-2} dx dy \\
& \geq \frac{2r-1}{r^2} \int_{\Omega} \left(\left| \frac{\partial |u_{jT}|^r}{\partial x} \right|^2 + |x|^2 \left| \frac{\partial |u_{jT}|^r}{\partial y} \right|^2 \right) dx dy \\
& \geq \frac{c(2r-1)}{r^2} \left(\int_{\Omega} |u_{jT}|^{6r} dx dy \right)^{1/3}.
\end{aligned} \tag{23}$$

Let $M > 0$, there exists ε_M such that for $|\varepsilon| \leq \varepsilon_M$, we have

$$\left\| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \right\|_{L^\infty(\Omega)} < 1.$$

Then the right-hand side of (22) satisfies

$$\begin{aligned}
& \int_{\Omega} \beta_{jj} u_j^3 \psi_j dx dy + \int_{\Omega} \left| \frac{\partial F_M}{\partial u_j}(U, \varepsilon) \psi_j \right| dx dy \\
& \leq c \left(\int_{\Omega} |u_j|^3 |u_{jT}|^{2r-1} dx dy + \int_{\Omega} 1 \cdot |u_{jT}|^{2r-1} dx dy \right) \\
& \leq c \left(\int_{\Omega} (1 + |u_j|^3) |u_j|^{2r-1} dx dy \right) \\
& \leq c \left(1 + \int_{\Omega} |u_j|^3 |u_j|^{2r-1} dx dy \right) \\
& \leq c \left(1 + \left(\int_{\Omega} |u_j|^6 dx dy \right)^{\frac{1}{3}} \left(\int_{\Omega} |u_j|^{3r} dx dy \right)^{\frac{2}{3}} \right) \\
& \leq c \left(1 + \left(\int_{\Omega} |u_j|^{3r} dx dy \right)^{\frac{2}{3}} \right) \\
& \leq c \max \left\{ 1, \left(\int_{\Omega} |u_j|^{3r} dx dy \right)^{\frac{2}{3}} \right\}.
\end{aligned} \tag{24}$$

Let $T \rightarrow \infty$ such that $u_{jT}(x, y) \rightarrow u_j(x, y)$. By (23) and (24), we obtain

$$\left(\int_{\Omega} |u_{jT}|^{6r} dx dy \right)^{\frac{1}{3}} \leq \frac{cr^2}{2r-1} \max \left\{ 1, \left(\int_{\Omega} |u_j|^{3r} dx dy \right)^{\frac{2}{3}} \right\}. \quad (25)$$

Using iteration, we have that

$$\left(\int_{\Omega} |u_j|^{12} dx dy \right)^{\frac{1}{12}} \leq \left(\frac{4c}{3} \right)^{\frac{1}{4}} \max \left\{ 1, \left(\int_{\Omega} |u_j|^6 dx dy \right)^{\frac{1}{6}} \right\}. \quad (26)$$

Therefore, for any $m = 1, 2, \dots$ and by (26), we obtain

$$\begin{aligned} \left(\int_{\Omega} |u_j|^{3 \cdot 2^{m+2}} dx dy \right)^{\frac{1}{3 \cdot 2^{m+2}}} &\leq \left(\frac{2^{2m+2}c}{2^{m+2}-1} \right)^{\frac{1}{2^{m+2}}} \max \left\{ 1, \left(\int_{\Omega} |u_j|^{3 \cdot 2^{m+1}} dx dy \right)^{\frac{1}{3 \cdot 2^{m+1}}} \right\} \\ &\leq \prod_{i=0}^m \left(\frac{2^{i+1}c}{2^{i+2}-1} \right)^{\frac{1}{2^{i+2}}} \max \left\{ 1, \left(\int_{\Omega} |u_j|^6 dx dy \right)^{\frac{1}{6}} \right\}, \end{aligned}$$

We put $C_0 = \prod_{i=0}^m \left(\frac{2^{i+1}c}{2^{i+2}-1} \right)^{\frac{1}{2^{i+2}}}$, then

$$\|u_j\|_{L^{3 \cdot 2^{m+2}}(\Omega)} \leq C_0(1 + \|u_j\|_{L^6(\Omega)}). \quad (27)$$

Let $m \rightarrow \infty$ in (27), by (20), we have

$$\|u_j\|_{L^\infty(\Omega)} \leq C_0(1 + \|u_j\|_{L^6(\Omega)}) \leq c = c(L), \forall j = 1, \dots, k.$$

Hence

$$\|U(x)\|_{L^\infty(\Omega)} \leq K.$$

□

Proof of Theorem 1.2. By Lemmas 3.1, 3.3-3.6, for a sufficiently small parameter ε , the functional Φ_M satisfies the conditions (A3), (A4)–(A7) of the Theorem 2.3. Then, $c_j(M, \varepsilon)$ is a critical value of the functional Φ_M , and each component of the corresponding critical point $U_j(M, \varepsilon)$ is sign-changing. That is, $U_j(M, \varepsilon)$ is a sign-changing solution of the truncated the system (4). Moreover, given $l \in \mathbb{N}^+$, $L^* > 0$, by Lemma 3.6, there exists $\varepsilon_M^* > 0$ such that for $|\varepsilon| \leq \varepsilon_M^* = \min\{\varepsilon_M^{(1)}, \dots, \varepsilon_M^{(l)}\}$,

$$c_j(M, \varepsilon) \leq L^* = \max\{d_1, \dots, d_l\}, \quad j = 1, \dots, l.$$

By Lemma 3.7, there exist the constant K^* independent of M , ε , and $\varepsilon_M > 0$, such that for $|\varepsilon| \leq \varepsilon_M$, we obtain

$$\|U_j(M, \varepsilon)\|_{L^\infty(\Omega)} \leq K^*, \quad j = 1, \dots, l.$$

Now take $M \geq K^* + 1$, then for $|\varepsilon| \leq \varepsilon_l$, $U_j(\varepsilon) := U_j(M, \varepsilon)$, $j = 1, \dots, l$ are sign-changing solutions of the perturbed system (3). \square

Taking $\varepsilon = 0$, we have

$$F(U, 0) = 0, \quad \frac{\partial F}{\partial u_j}(U, 0) = 0,$$

then the solutions to the perturbed system (3) are also solutions to the original system (1).

We have obtained the sign-changing critical points of the truncated functional Φ_M . Therefore, by Theorem 1.2, we know that system (3) has l pairs of sign-changing solutions. Then, for $\varepsilon = 0$, the system (1) has infinitely many sign-changing solutions, and we have thus proved the main result.

Acknowledgements

The author would like to thank the anonymous referees for their carefully reading this paper and their useful comments.

REFERENCES

- [1] A. Ambrosetti, E. Colorado, *Standing waves of some coupled nonlinear Schrödinger equations*. J. Lond. Math. Soc., 75 (2007), 67–82.
- [2] C. O. Alves and A. R. F. de Holanda, *A Berestycki–Lions type result for a class of degenerate elliptic problems involving the Grushin operator*, Proc. A: Math. 153 (2023), no. 4, 1244–1271.
- [3] C. T. Anh and B. K. My, *Existence of solutions to Δ_λ –Laplace equations without the Ambrosetti–Rabinowitz condition*, Complex Var. Elliptic Equ. 61 (2016), 137–150.
- [4] T. Bartsch, Z.-Q. Wang, *Note on ground states of nonlinear Schrödinger systems*, J. Partial Differential Equations, 19 (2006), 200–207.
- [5] E. N. Dancer, J. Wei, T. Weth, *A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system*. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953–969.

- [6] B. D. Esry, C. H. Greene, J. P. Burke Jr, J. L. Bohn, *Hartree-Fock theory for double condensates*. Phys. Rev. Lett., 78 (1997), 3594–3597.
- [7] B. Franchi and E. Lanconelli, *An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality*, Comm. Partial Differential Equations, 9 (1984), 1237–1264.
- [8] V. V. Grushin, *A certain class of hypoelliptic operators*, Mat. Sb. (N.S.) 83 (1970), no. 125, 456–473 [in Russian].
- [9] C. Hua and L. Peng, *Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators*, Calc. Var. Partial Differential Equations, 54 (2015), no. 3, 2831–2852.
- [10] C. Hua and Z. Yifu, *Lower bounds of eigenvalues for a class of bi-subelliptic operators*. J. Differential Equations. 262 (2017), no. 12, 5860–5879.
- [11] A. E. Kogoj and E. Lanconelli, *On semilinear Δ_λ –Laplace equation*, Nonlinear Analysis. 75 (2012), no. 12, 4637–4649.
- [12] T.-C. Lin, J. Wei, *Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^n, n \leq 3$* . Comm. Math. Phys., 255 (2005), 629–653.
- [13] J. Liu, X. Liu, Z.-Q. Wang, *Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth*. J. Differential Equations, 261 (2016), 7194–7236.
- [14] Z. Liu, Z.-Q. Wang, *Multiple bound states of nonlinear Schrödinger systems*. Comm. Math. Phys., 282 (2008), 721–731.
- [15] Z. Liu, Z.-Q. Wang, *Ground states and bound states of a nonlinear Schrödinger system*. Adv. Nonlinear Stud., 10 (2010), 175–193.
- [16] D. Lupo and K. Payne, *Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types*, Comm. Pure Appl. Math. 56 (2003), no. 3, 403–424.
- [17] D. T. Luyen and N. M. Tri, *Existence of solutions to boundary value problems for semilinear Δ_γ differential equations*, Math. Notes. 97 (2015), no. 1, 73–84.
- [18] D. T. Luyen and N. M. Tri, *On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators*. Complex Var. Elliptic Equ. 64 (2019), no. 6, 1050–1066.
- [19] E. Montefusco, B. Pellacci, M. Squassina, *Semiclassical states for weakly coupled nonlinear Schrödinger systems*. J. Eur. Math. Soc., 10 (2008), 47–71.
- [20] R. Monti and D. Morbidelli, *Kelvin transform for Grushin Operators and critical semilinear equations*, Duke Math. J. 131 (2006), 167–202.
- [21] M. Schechter and W. Zou, *Infinitely many solutions to perturbed elliptic equations*, J. Funct. Anal. 228 (2005), no. 1, 1–38.
- [22] E. Timmermans; *Phase separation of Bose-Einstein condensates*. Phys. Rev. Lett., 81 (1998), 5718–5721.
- [23] P. T. Thuy and N. M. Tri, *Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations*, NoDEA Nonlinear Differential Equations Appl. 19 (3) (2012), 279–298.

- [24] N. M. Tri, *Semilinear Degenerate Elliptic Differential Equations*, Local and global theories, Lambert Academic Publishing, 2010, 271p.
- [25] N. M. Tri, *Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators*, Publishing House for Science and Technology of the Vietnam Academy of Science and Technology, 2014, 380p.
- [26] J. Wei, T. Weth, *Radial solutions and phase separation in a system of two coupled Schrödinger equations*. Arch. Ration Mech. Anal., 190 (2008), 83-106.

L. THI HONG HANH

Department of Mathematics, Hoa Lu University, Ninh Binh, Vietnam.

e-mail: lthhanh@hluv.edu.vn

D. TRONG

Department of Mathematics, Hoa Lu University, Ninh Binh, Vietnam.

e-mail: dtluyen.dnb@moet.edu.vn, dtluyen@hluv.edu.vn